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ABSTRACT

Location-based services today, exceedingly depend on user
mobility prediction, in order to push context aware services
ahead of time. Existing location forecasting techniques are
driven by large volumes of data to train the prediction mod-
els in a centralised server. This amounts to considerably long
waiting times before the model kicks in. Disclosing highly
sensitive location information to third party entities also ex-
poses the user to several privacy risks. To address these is-
sues, we put forth a mobility prediction system, able to pro-
vide swift realtime predictions, evading the strenuous train-
ing procedure. We enable this by constantly adapting the
model to substantive user mobility behaviours that facilitate
accurate predictions even on marginal time bounded move-
ments. In comparison to existing frameworks, we utilise
less volumes of data to produce satisfactory prediction ac-
curacies. This in turn lowers the computational complex-
ity making implementation on mobile devices feasible and a
step towards privacy preservation. Here, only the predicted
location can be sent to such services to maintain the util-
ity /privacy tradeoff. Our preliminary evaluations based on
real world mobility traces corroborate our hypothesis.

Categories and Subject Descriptors

H.4.2 INFORMATION SYSTEMS APPLICATIONS]:

Spatial-temporal systems

Keywords

Realtime Mobility Prediction; Mobility Behaviour; Location
based Services

1. INTRODUCTION

The rapid proliferation in the number of applications of-
fering Location-based Services (LBS), such as Google Now
and Google Maps equipped with user location forecasting,
makes it evident that mobility prediction is becoming a
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Figure 1: Traditional Prediction Systems vs. Our System. The
process on the top, depicts the traditional mobility prediction ap-
proach. The process chain shown at the bottom gives an overview
of our technique.

key paradigm of such services. However, numerous data
breaches and malicious third party entities has casted a
shadow over LBS. As can be seen, it is quite evident that
their success depends on how well the user privacy is taken
into account.

Existing mobility prediction techniques, utilise about 70%
of the data, exclusively for model training. This results in
substantial waiting times until the model is able to produce
usable predictions in real deployment scenarios. We find
that, a major downside with learning on a large dataset is
the shadowing effect on marginal user movements, which
appear insignificant as a whole. This has a direct impact
on the granularity of predictions. The present works, which
link user behaviours with forecasting models, are only able to
produce statistical motion patterns that do not truly grasp
the inherent nature of human movements. On the other
hand, when this data is sent to third party servers, a mali-
cious entity can easily infer sensitive user information such as
significant places using simple heuristics. Furthermore, the
algorithmic cost of making predictions on a mobile device
is relatively high due to the complex ensemble techniques
used, making it necessary to have a powerful server.

2. PROBLEM STATEMENT
AND CONTRIBUTIONS

The main goal of our approach is to reduce the amount of
data required to produce predictions with a satisfactory ac-
curacy to small time windows. We analyse the realtime user
mobility behavioural changes to adapt this window length
accordingly. We quantify user behaviours in terms of the
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Figure 2: Movement periodicity estimation coupled with realtime
prediction.

evolution of frequently visited places with time and the pe-
riodicities of movements amongst those places. The major
contributions are listed hereafter.

e We propose a mobility prediction system on realtime
sequential location logs, constantly adapting to sub-
stantial user mobility behaviours.

e The lower computational complexity, due to lesser data
involved, makes implementation on hand held devices
feasible. This avoids the usual long waiting periods
and obtains quicker predictions.

e Our reactive frequently visited place computation scheme,

models the behaviours restricted to small time bounds,
achieving predictions with fine granularity as compared
to conventional approaches.

3. RELATED WORK

Predicting future movements based on the mobility be-
haviours has been studied widely in the literature. Such a
scheme to predict users next move based on the current po-
sition and involving a large part of the dataset for training
is presented in [2, 6]. [4] first extracts all the frequently vis-
ited places by a user and uses the transitions within them to
create a pattern tree. [1] applies clustering technique to ex-
tract such places with mean travel time to formulate the mo-
bility models. Such approaches operate on the assumption
that the frequently visited places will be static throughout,
which does not necessarily hold in practice. According to
our observation, such places evolve over time and have to be
monitored continually to adapt to user behaviours. [5] com-
putes the periodicity, by analysing the users visit frequency
within certain places which is used to predict the next visit.
However, the analysis is performed on the entire dataset, as
opposed to our work in real time processing and retrieving
non stationary periodic patterns lasting only for short time
intervals.

4. SCOPE AND DESIGN

In this section, we discuss the quantification of mobility
behaviours with respect to the evolving frequently visited
places and the periodicity of movement. We describe the
different families of prediction techniques used to evaluate
the prediction accuracy. Futher, we present the system as a
whole and illustrate, how the mobility behaviours are cou-
pled with the predictors to produce next place predictions
in realtime.

4.1 Mobility Behaviours

Frequently visited place evolution. We present the
sudo code (see Algorithm 1) to obtain the user’s frequently
visited places in realtime. Here, a cluster represents a unique
visit in a delimited area and a cluster group represents a
zone consisting of several clusters intersecting each other.
Two intersecting clusters are merged. Finally, we define a

Algorithm 1 ZOI discovery algorithm

Require: cluster, clusters, group, groups, zois

1: function ANALYZE(loc) b Called when a new loc is detected
2 if distance(loc, cluster.centroid) < dmas then

3 cluster.add(loc)

4 else

5: if cluster.stayingTime() > tmin then

6: tryToMerge(groups)

7 if !tryToPut(cluster, groups) then

8 create new group

9: group.put(cluster)

10: groups.add(group)

11: clusters.add(cluster)

12: if currentVisitNB < visitThreshold then

13: currentVisitNB = visitNB(clusters)

14: updateZOIs()

15: create new cluster

16: cluster.add(loc)

17: function UPDATEZOIS

18: zois =

19: for group € groups do

20: if group.clusterNB > currentVisitNB AND time(now,

group.lastVisit) < ¢,,,, then
: zois.add(group)

Zone of Interest (ZOI) as a frequently and recently visited
group of these clusters. Tracking these bounds over time
enables to discover their evolution which in turn captures
the user behavioural movement patterns.

Movement periodicity. A major challenge here is to
identify periods, which do not repeat precisely at same times
in addition to having multiple interlaced patterns in the non-
stationary time series. Thus, standard period estimation
techniques, such as autocorrelation and Fourier transform,
cannot be directly applied. Further, the realtime location
logs, cannot be assumed to arrive at a uniform rate. We
use semivariance interpolation which conceals the incoming
data stream about spatial variance at a specified distance
to get a uniformly sampled stream. We further process the
stream by taking the first difference and applying the log
transform to get a series with constant variance. To calcu-
late the periodicity, we calculate the power spectral density
to get the candidate periods and feed them to autocorrela-
tion estimator to rectify any false alarms resulting due to
spectral leakage as shown in Figure 2

We evaluate the system performance with Mobility Markov
chain (MMC) models, simple classification, artificial neural
networks, recurrent neural networks and Fourier extrapola-
tion.

4.2 Overall System

We formulate the problem as a non-stationary time series
prediction, where the model needs to be retrained accord-
ing to variations in the incoming data stream. In our case,
these correspond to user movements and the variations link
to changing periodicities and number of ZOIs as depicted in
Figure 1. We empirically determine that the model accura-
cies are affected for an autocorrelation index change of 0.2
and greater, which serves as a trigger for retraining. The
feature vector consists of, ZOI evolution (representing the
movements), starting and stay times which are fed to the
predictors. In case of MMC models, their inherent structure
leads to a strong dependency on the ZOI evolution pattern.
The size of the training window in realtime is determined by
computing the mean between each ZOI update, which sets
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Figure 3: Realtime Evaluation Scheme.

the threshold to limit the window length. In case the thresh-
old is reached without detecting any updates, the training
is halted and resumes with the detection of a new update.
Thus, the continual tracking of ZOI updates and periodicity
ensures the freshness of the predictions.

5. PRELIMINARY RESULTS
AND DISCUSSION

We base our experiments on the Nokia dataset [3], con-
sisting of mobility traces of 168 users for a period of at least
30 days. Our evaluation scheme is depicted in Figure 3. The
prediction accuracy is considered as the fraction of samples
for which the model correctly predicts the next location. We
evaluate the entire dataset to determine the parameters of
ZOI and set dmaz, tmin and visitThreshold to 60 meters,
900 seconds and 6 visits respectively. To simulate realtime
incoming data, we read the data-points sequentially, accord-
ing to the timestamps.

Number of users (% days
greater than baseline)

Prediction Baseline <=20% >20% & >60% Number of
technique accuracy (%) <=60% satisfactory users
1-NN 59.28 168 0 0 101
ANN 60.85 103 65 0 129
RNN 72.79 37 131 0 149
Fourier ext. 63.87 65 103 0 112
1-order MMC 57.19 137 17 14 93
2-order MMC 98.21 158 6 4 142

Table 1: Dataset Analysis.

The preliminary findings of our evaluation are detailed in
Table 1. As baselines, we compute the accuracies following
the traditional approach of training on 70% data and eval-
uating on the rest. We observe that, 34% of users reach a
satisfactory accuracy (>50% correct predictions for at least
30 days) with less than 100 days of data. We noticed that
2-order MMC and RNN based predictors achieve higher pre-
diction accuracies. In case of 2-order MMC, this is due to
accounting for the current state and the previous state to
make the prediction. RRN blends the input vector at cur-
rent state with the previously learnt state vector to yield a
new state. Thus taking the entire history into account be-
fore making new predictions, effectively combining high level
direction with low level modelling. We also saw a clear cor-
relation between the periodicity and the accuracy of classifi-
cation, neural networks and Fourier extrapolation, as these
techniques weigh current state more than the past depict-
ing linearity with the periodicity. In Figure 4, we show the
running accuracy difference between our system and for all
predictors against the baselines at each training model up-
date for one user. We see this trend across the dataset,
where RNN and 2-order MMC achieve better results, some-
times even exceeding the baselines making them ideal pre-
dictors for the system. The complexity of a learning model
is directly linked to a quadratic equation which involves in-
verting a matrix having a complexity of the order n® and
the training time has the order of n* where, n is the size
of training data. Thus reducing the model complexity as
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Figure 4: Comparison of our systems’ accuracy for individual
predictors against the baseline accuracies for one user.

compared to the model formed on 70% of the dataset.

6.

CONCLUSION AND FUTURE WORK

With the growing ubiquity of location-aware devices, be-
coming more powerful everyday, it will become possible to
compute mobility predictions locally, without resorting to

backend servers.

Yet, traditional approaches rely on pro-

cessing large datasets on powerful servers, which makes the
process quite tedious and slow, with the additional concern
about location privacy, threatening the widespread adoption
of LBS in the coming days. In this poster, we take a step to-
wards this era, forming the prediction model on a handheld
device to produce swift realtime predictions. We practically
demonstrate that is it possible to achieve satisfactory pre-
diction accuracies, utilising lesser volumes of data, taking
the mobility behaviour in to account.

Our future work, will attempt to have an ensemble ap-
proach to select suitable predictor in realtime according to
behavioural changes, to achieve higher accuracies as we ob-
served that certain family of predictors are better suited for
particular mobility behaviours. We will also quantify the
computational cost of the approach on an actual mobile de-
vice and optimise the process to have fewer model updates,
which has a direct impact on the cost.
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