
algorithms and
computational

thinking

course
overview

x

n + y

n = z

n

0010010100101011
1100110100111001
1111001101010011

1111001101010011

00100101
00101011
00010010
10100100
11001101
00111001
11110011
01010011

c
c

Prelude No. 4
F. ChopinLargo.

Sheet Music from www.mfiles.co.uk

°

¢
&#

p

espressivo

œ. œ ˙. œ ˙. œ ˙. œ ˙. œ#
?# Œ

p sempre molto tenuto

œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ# œœœ œœœ œœœ œœœ#n œœœ œœœ œœœ œœœn œœœ œœœ# œœœ œœœ# œœœ œœœ œœœ œœœn œœœ œœœ# œœœ
6°

¢
&# ˙n . œ ˙. œ ˙. œ. œ >̇. œ>#
?# œœœn œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ# œœœ œœœ œœœ œœœn œœœ œœœ œœœ

cresc.œœœ œœœ œœœ œœœ œœœn œœœ œœœ œœœ œœœ œœœ œœœ œœœ
10°

¢
&# œ œ œ

dim.

œ œ œ œ ˙. œ ˙. fiœjœ œ œ œ œ œ# œ
3œ œ œ

?# œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ# œœœ œœœ œœœ œœœ œœœ
pœœœ# œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ# Œ Ó dim.

14°

¢
&# ˙. œ ˙. œ ˙. œ œ. œ# œ œœ œ‹ œ

œn
cresc.

strettoœ. œ

?#pœœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ#n œœœ œœœ œœœ œœœ##n œœœ œœœn œœœ œœœ œœœ œœœ œœœ œœœn œœœ œœœ# œœœ œœœ## œœœ œœœnn œœœ
18°

¢
&# œ œ# œ œ œ œ œ œ œn œ

3œ œ œ œ. œj ˙.
p

fiœjœ ˙. œ. œ
?#

f

œœ
j
œœœœ œœœœ œœœœ œœœœ# œœœ œœœ œœœ œœœ œœœ œj

œœœJ
dim.œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ# œœœ œœœ œœœ

22°

¢
&#

>̇. œ ˙. œ ˙ ÓU
pp

?
˙̇̇̇∏∏∏∏ ˙̇̇̇##

∏∏∏∏∏∏∏∏∏∏∏∏∏∏∏∏∏∏ ∏∏∏

wwww
U

?# œœœ œœœ œœœ œœœ
smorz.œœœb œœœ œœœ œœœ œœœ œœœ œœœ# œœœ œœœn œœœ œœœ œœœ ˙̇̇n# ÓU

˙̇
˙

˙̇̇ ww
U

© Jim Paterson www.mfiles.co.uk

00100101001010110001001010100100
11001101001110011111001101010011

let’s
talk

problem
how do you tell the

computer what to do,
if you don’t speak its

language and it
doesn’t speak yours?

think precisely in
computational terms

express problems formally
and solutions as algorithms

use high-level
programming languages

use tools to develop, 
and debug programs

approach of this course

computer science
theoretical and practical study  

of how to design and use  
computer-based systems

computer science aims at devising automated
algorithmic processes and computer-based
systems that can run in a scalable manner

computational thinking

thought processes involved in formulating
problems and expressing their solutions so

that a computer can execute them

 such solutions are expressed in terms of algorithms, which
are in turn written in some programming language

compiled and executed on some computer-based system

computer science 
(design and use computer-based systems)

computational
thinking  

(only use computer systems)

computational thinking ⊂ computer science

computer science ⊄ computational thinking

professor assistants

Benoît  
Garbinato

teaching staff

Vaibhav 
Kulkarni

Arielle 
Moro

PhD in ComputerScience
Worked in the industry
Professor since 2004

Benoît 
Garbinato

BSc in Business Computing 
MSc in Information Systems  
PhD student in Information Systems

Arielle
Moro

B. Eng. in Electronics & Telecommunication 
MSc in Communication Technology 
MSc in Embedded Systems 
PhD student in Information Systems

Vaibhav 
Kulkarni

student assistants

Arnaud Francesco Jean-Marc

Milena
Nomeny

Xavier Yannick

Adrian

course objective
learn a set of

thinking skills and
practical methods  
to formulate and

solve problems using
algorithms and

computing devices

course objective
what’s a computer?

what’s an algorithm?

what’s a compiler?

what’s programming?

etc...

0010010100101011
0001001010100100
1100110100111001
1111001101010011

i ⟵ i + 1

content & approach

hardware

software
algorithms i ⟵ i + 1

i = 0
i = i + 1

0010010100101011
0001001010100100
1100110100111001
1111001101010011

{runtime | interpreter} + libraries
operating system

your

system
software}

content & approach

what are the
benefits of this

course?

direct benefits

the ability to reason
in algorithmic terms

and under
computational
constraints

the ability to
precisely specify
various problems

and solve them by
writing computers

programs

indirect benefits

learn to
 think

creative
ly

learn to think differently

experiment the design attitude

be ready for the  
digital transformation

learn to navigate through
different levels of abstraction

decision attitude

assumes that t
he

alternativ
e courses

of action
 are read

y

at hand,
including

the best
one

passive view of the
decision maker as a
problem solver

design attitude
a design attitude views

each project as an
opportunity for

invention that includes
a questioning of
basic assumptions

designers relish the lack of

predetermined outcomes

managing as designing

Managing as Designing
R. Boland, F. Collopy
Stanford Press

managers should act not
only as decision makers,
but also as designers

though decision and design are
linked in management action,
managers and scholars have
emphasized the decision face

over the design face.

http://www.amazon.com/exec/obidos/search-handle-url/103-2183138-7602251?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Richard%20Boland
http://www.amazon.com/exec/obidos/search-handle-url/103-2183138-7602251?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Fred%20Collopy

typical design cycle

problem

algorithmalgorithm

specify

writetest

typical design cycle

market

businessbusiness

analyze

designvalidate

think abstractions
an abstraction is a set of common properties and
laws extracted from several particular examples

thinking in abstractions is one of  
the key traits in human being

Mutationem motus proportionalem esse
vi motrici impressae, et fieri secundum
lineam rectam qua vis illa imprimitur

The alteration of motion is ever proportional to the
motive force impressed, and is made in the direction

of the right line in which that force is impressed

f(x, y) =
p

x

2 + y

2

X
~F = m~a

mammals

examples:

sphere

stacking
abstractions

hardware

your software

algorithms

system software

operating system

· 13

P2 (Preserving perpetual accuracy). Let p be any process. If no process suspects
p in HD before time t, then no process suspects p in outputR before time t. More
formally:

8p 2 ⇧,8t 2 T :
8t0 < t,8q 2 ⇧� F (t0) : p 62 HD(q, t0)

) 8t0 < t,8q 2 ⇧� F (t0) : p 62 outputR(q, t0)

P3 (Preserving eventual accuracy). Let p be any correct process. If there is a
time after which no correct process suspects p in HD, then there is a time after
which no correct process suspects p in outputR. More formally:

8p 2 correct(F) :
9t 2 T ,8q 2 correct(F),8t0 � t : p 62 HD(q, t0)

) 9t 2 T ,8q 2 correct(F),8t0 � t : p 62 outputR(q, t0)

Lemma 1. TD!D0 satisfies P1.

Proof. Let p be any process that crashes. Suppose that there is a time t after
which some correct process q permanently suspects p in HD. We must show that
there is a time after which every correct process suspects p in outputR.

Since p crashes, there is a time t0 after which no process receives a message from
p. Consider the execution of Task 1 by process q after time tp = max(t, t0). Process
q sends a message of the type (q, suspectsq) with p 2 suspectsq to all processes.
Eventually, every correct process receives (q, suspectsq) and adds p to output (in
Task 2). Since no correct process receives any messages from p after time t0 and
tp � t0, no correct process removes p from output after time tp. Thus, there is a
time after which every correct process permanently suspects p in outputR.

Lemma 2. TD!D0 satisfies P2.

Proof. Let p be any process. Suppose there is a time t before which no process
suspects p in HD. No process sends a message of the type (�, suspects) with p 2
suspects before time t. Thus, no process q adds p to outputq before time t.

Lemma 3. TD!D0 satisfies P3.

Proof. Let p be any correct process. Suppose that there is a time t after which
no correct process suspects p in HD. Thus, all processes that suspect p after time
t eventually crash. Thus, there is a time t0 after which no correct process receives
a message of the type (�, suspects) with p 2 suspects.

Let q be any correct process. We must show that there is a time after which q
does not suspect p in outputR. Consider the execution of Task 1 by process p after
time t0. Process p sends a message m = (p, suspectsp) to q. When q receives m, it
removes p from outputq (see Task 2). Since q does not receive any messages of the
type (�, suspects) with p 2 suspects after time t0, q does not add p to outputq after
time t0. Thus, there is a time after which q does not suspect p in outputR.

Theorem 1. Q ⌫ P, W ⌫ S, Q ⌫ P, and W ⌫ S.

Proof. Let D be any failure detector in Q, W , Q, or W . We show that
TD!D0 transforms D into a failure detector D0 in P, S, P, or S, respectively.
Since D satisfies weak completeness, by Lemma 1, D0 satisfies strong completeness.

· 13

P2 (Preserving perpetual accuracy). Let p be any process. If no process suspects
p in HD before time t, then no process suspects p in outputR before time t. More
formally:

8p 2 ⇧,8t 2 T :
8t0 < t,8q 2 ⇧� F (t0) : p 62 HD(q, t0)

) 8t0 < t,8q 2 ⇧� F (t0) : p 62 outputR(q, t0)

P3 (Preserving eventual accuracy). Let p be any correct process. If there is a
time after which no correct process suspects p in HD, then there is a time after
which no correct process suspects p in outputR. More formally:

8p 2 correct(F) :
9t 2 T ,8q 2 correct(F),8t0 � t : p 62 HD(q, t0)

) 9t 2 T ,8q 2 correct(F),8t0 � t : p 62 outputR(q, t0)

Lemma 1. TD!D0 satisfies P1.

Proof. Let p be any process that crashes. Suppose that there is a time t after
which some correct process q permanently suspects p in HD. We must show that
there is a time after which every correct process suspects p in outputR.

Since p crashes, there is a time t0 after which no process receives a message from
p. Consider the execution of Task 1 by process q after time tp = max(t, t0). Process
q sends a message of the type (q, suspectsq) with p 2 suspectsq to all processes.
Eventually, every correct process receives (q, suspectsq) and adds p to output (in
Task 2). Since no correct process receives any messages from p after time t0 and
tp � t0, no correct process removes p from output after time tp. Thus, there is a
time after which every correct process permanently suspects p in outputR.

Lemma 2. TD!D0 satisfies P2.

Proof. Let p be any process. Suppose there is a time t before which no process
suspects p in HD. No process sends a message of the type (�, suspects) with p 2
suspects before time t. Thus, no process q adds p to outputq before time t.

Lemma 3. TD!D0 satisfies P3.

Proof. Let p be any correct process. Suppose that there is a time t after which
no correct process suspects p in HD. Thus, all processes that suspect p after time
t eventually crash. Thus, there is a time t0 after which no correct process receives
a message of the type (�, suspects) with p 2 suspects.

Let q be any correct process. We must show that there is a time after which q
does not suspect p in outputR. Consider the execution of Task 1 by process p after
time t0. Process p sends a message m = (p, suspectsp) to q. When q receives m, it
removes p from outputq (see Task 2). Since q does not receive any messages of the
type (�, suspects) with p 2 suspects after time t0, q does not add p to outputq after
time t0. Thus, there is a time after which q does not suspect p in outputR.

Theorem 1. Q ⌫ P, W ⌫ S, Q ⌫ P, and W ⌫ S.

Proof. Let D be any failure detector in Q, W , Q, or W . We show that
TD!D0 transforms D into a failure detector D0 in P, S, P, or S, respectively.
Since D satisfies weak completeness, by Lemma 1, D0 satisfies strong completeness.

get ready for the 
digital transformation

digital transformation is the accelerating and profound
transformation of all aspects of human society, including
communication, business, learning, entertainment, etc., 

by the means of digital technologies

indeed, digital technologies are not longer being simply used as support for
existing human activities but rather becoming the driver of profound changes

in the way we do things and even the source of totally new activities

to be part of that movement, you have to
understand the potential of digital technologies and
learn to think algorithmically and computationally

books & papers

and more to come during  
our journey together...

George T. Heineman,
Gary Pollice & Stanley Selkow

Algorithms
in a Nutshell

2nd Edition

A PRACTICAL GUIDE
COMMUNICATIONS OF THE ACM March 2006/Vol. 49, No. 3 33

Computational thinking
builds on the power and
limits of computing

processes, whether they are exe-
cuted by a human or by a

machine. Computational
methods and models give us
the courage to solve prob-

lems and design systems that no one of us would
be capable of tackling alone. Computational think-
ing confronts the riddle of machine intelligence:
What can humans do better than computers? and
What can computers do better than humans? Most
fundamentally it addresses the question: What is
computable? Today, we know only parts of the
answers to such questions.

Computational thinking is a fundamental skill for
everyone, not just for computer scientists. To read-
ing, writing, and arithmetic, we should add compu-
tational thinking to every child’s analytical ability.
Just as the printing press facilitated the spread of the
three Rs, what is appropriately incestuous about this
vision is that computing and computers facilitate the
spread of computational thinking.

Computational thinking involves solving prob-
lems, designing systems, and understanding human
behavior, by drawing on the concepts fundamental
to computer science. Computational thinking
includes a range of mental tools that reflect the
breadth of the field of computer science.

Having to solve a particular problem, we might
ask: How difficult is it to solve? and What’s the best
way to solve it? Computer science rests on solid the-
oretical underpinnings to answer such questions pre-

cisely. Stating the difficulty of a problem accounts
for the underlying power of the machine—the com-
puting device that will run the solution. We must
consider the machine’s instruction set, its resource
constraints, and its operating environment.

In solving a problem efficiently,, we might further
ask whether an approximate solution is good
enough, whether we can use randomization to our
advantage, and whether false positives or false nega-
tives are allowed. Computational thinking is refor-
mulating a seemingly difficult problem into one we
know how to solve, perhaps by reduction, embed-
ding, transformation, or simulation.

Computational thinking is thinking recursively. It
is parallel processing. It is interpreting code as data
and data as code. It is type checking as the general-
ization of dimensional analysis. It is recognizing
both the virtues and the dangers of aliasing, or giv-
ing someone or something more than one name. It
is recognizing both the cost and power of indirect
addressing and procedure call. It is judging a pro-
gram not just for correctness and efficiency but for
aesthetics, and a system’s design for simplicity and
elegance.

Computational thinking is using abstraction and
decomposition when attacking a large complex task
or designing a large complex system. It is separation
of concerns. It is choosing an appropriate representa-
tion for a problem or modeling the relevant aspects
of a problem to make it tractable. It is using invari-
ants to describe a system’s behavior succinctly and
declaratively. It is having the confidence we can
safely use, modify, and influence a large complex
system without understanding its every detail. It isLI

SA
 H

AN
EY

Viewpoint Jeannette M. Wing

Computational Thinking
It represents a universally applicable attitude and skill set everyone, not just
computer scientists, would be eager to learn and use.

Introduction to Algorithms, 3rd Edition.
T.H.Cormen, C.E. Leiserson, R.L. Rivest, 
C. Stein. July 2009. MIT Press.

Computational thinking. J.M. Wing.
Communication of the ACM,  
49(3):33–35, March 2006.

Algorithms in a Nutshell, 2nd Edition.
 G.T. Heineman, G. Pollice, S. Selkow.
March 2016. O’Reilly.

computer
architecture

overview - week 1

system
software

overview - week 2

programming
basics

overview - week 3

induction &
recursion

overview - week 4

algorithms &
computational
complexity

overview - week 5

overview - week 6

mid-term test

searching
algorithms

overview - week 7

graph
algorithms

overview - week 8

spatial tree
algorithms

overview - week 9

probabilistic
algorithms

overview - week 10

classes,
objects &
interfaces

overview - week 11

inheritance &
polymorphism

overview - week 12

abstract
classes &
types

overview - week 13

functional
programming

overview - week 14

programming languages

python
scala

swift
()

development tools

XCode
 (swift)

IntelliJ
(scala and python)

the good old  
terminal

Calendar

doplab.unil.ch/act

TUESDAY
8:00–10:00

WEEK

Sep 19 course overview computer architecture 1

Sep 26 system software 2

Oct 03 basic programming 3

Oct 10 iteration and recursion 4

Oct 17 algorithms and computational complexity 5

Oct 24 mid-term test 6

Oct 31 searching algorithms 7

Nov 07 graph algorithms 8

Nov 14 spatial tree algorithms 9

Nov 21 probabilistic algorithms 10

Nov 28 classes, objects and interfaces 11

Dec 05 inheritance and polymorphism 12

Dec 12 abstract classes and types 13

Dec 19 functional programming 14

theory

Calendar

doplab.unil.ch/act

practice
MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

8:00 - 9:00 ACT – Theory
ALL

ACT – Practice
HEC9:00 - 10:00

10:00 - 11:00

11:00 - 12:00

12:00 - 13:00

13:00 - 14:00 ACT – Practice
ESC - Group B14:00 - 15:00 ACT – Practice

ESC - Group A15:00 - 16:00 ACT – Practice
ESC - Group A16:00 - 17:00 ACT – Practice

ESC - Group B17:00 - 18:00

18:00 - 19:00

practical issues

if you consider taking this class 
register as soon as possible via  

the following webpage:

http://bit.ly/2cqPvDf

lectures: Amphimax 351
exercises: Internef 143

hec students

practical issues

you don’t get to choose
whether you want to
attend this course

!

lectures: Amphimax 351
exercises: Amphipôle 140 + 146

esc students

"

evaluation

grade = 0.4 x test + 0.6 x exam

the evaluation is based on
• an intermediate test during the semester
• a final exam* during the exam session

* the final exam is written in the regular
session and oral in the retake session

warning

good news you will be able to say “I was
among the first students to learn
about computational thinking”

bad news you will serve as our guinea pigs

this course is given for
the first time...

...in such a large audience

http://speakup.info

