a\gorﬂhms and
comPufaﬁona\

let's
(talk \

0010010100101011
1100110100111001

00100101
00101011
00010010
10100100
11001101
00111001
11110011
01010011

1111001101010011

I]
- = [#K)

f g
C.
o O PO | PO e e e Ef-f-f. o o0
| | | I | I I | [| | |
= ——]

IIIIIIIIIIII
lllllllllllllll

00100101001010110001001010100100

11001101001110011111001101010011

prob\em

how do Jou tell the
computer what to do,
H Jou don't speak its
lanquage and 1t
doesn't speak Jours?

7/

.

S
- o
Y~

}/,/””3ebc6a/userFi1es—eadd4714-93e2—4765-8a37—9b8d5cc7ccaf/spark—examples—1.3.1—hadoop2.4.e.jar to class loader
’ 15/07/24 312 INFO Executor: Finished task 7.0 in stage 0.0 (TID 7). 736 bytes result sent to driver
15/07/24 312 INFO TaskSetManager: Starting task 8.0 in stage 0.0 (TID 8, localhost, PROCESS_LOCAL,
15/07/24 13:12:15 INFO Executor: Finished task 3.0 in stage 0.0 (TID 3). 736 bytes result sent to driver

15/07/24 13:12:15 INFO TaskSetManager: Starting task 9.0 in stage 0.0 (TID 9, localhost, PROCESS_LOCAL, 1338 bytes)
15/07/24 13:12:15 INFO Executor: Finished task 5.0 in stage 0.0 (TID 5). 736 bytes result sent to driver

15/07/24 13:12:15 INFO Executor: Running task 9.0 in stage 0.0 (TID 9)

15/07/24 13:12:15 INFO Executor: Running task 8.0 in stage 0.0 (TID 8)

15/07/24 13:12:15 INFO Executor: Finished task ©.0 in stage 0.0 (TID ©). 736 bytes result sent to driver

15/07/24 13:12:15 INFO TaskSetManager: Finished task 3.0 in stage 0.0 (TID 3) in 863 ms on localhost (1/10)
15/07/24 13:12:15 INFO TaskSetManager: Finished task 7.0 in stage 0.0 (TID 7) in 805 ms on localhost (2/10)
15/07/24 13:12:15 INFO TaskSetManager: Finished task 5.8 in stage 0.0 (TID 5) in 869 ms on localhost (3/10)

. ¢ 15/07/24 13:12:15 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID @) in 826 ms on localhost (4/10)
15/07/24 13:12:15 INFO Executor: Finished task 4.0 in stage 0.0 (TID 4). 736 bytes result sent to driver

15/07/24 13:12:15 INFO TaskSetManager: Finished task 4.0 in stage 0.0 (TID 4) in 818 ms on localhost (5/10)
15/07/24 13:12:15 INFO Executor: Finished task 1.0 in stzge ©.0 (TID 1). 736 bytes result sent to driver

15/07/24 13:12:15 INFO Executor: Finished task 6.0 i~ stage 0.0 (TID 6). 736 bytes result sent to driver

15/07/24 13:12:15 INFO TaskSetManager: Finished tazk 1.0 in stage 0.0 (TID 1) in 825 ms on localhost (6/10)
15/07/24 13:12:15 INFO TaskSetManager: Finished task 6.0 in stage 0.0 (TID 6) in 822 ms on localhost (7/10)
M15/07/24 13:12:15 INFO Executor: Finished task 2.0 in stage 6.0 (TID 2). 736 bytes result sent to driver

15/07/24 13:12:15 INFO TaskSetManager: Finished task 2.0 in stage 0.0 (TID 2) in 869 ms on localhost (8/10)
15/07/24 13:12:15 INFO Executor: Finished task 9.0 in stage 0.0 (TID 9). 736 bytes result sent to driver

15/07/24 13:12:15 INFO TaskSetManager: Finishe/ task 9.0 in stage 0.0 (TID 9) in 71 ms on localhost (9/10)

15/07/24 13:12:15 INFO Executor: Finished task 8.0 in stage 0.0 (TID 8). 736 bytes result sent to driver

15/07/24 13:12:15 INFO TaskSetManager: Finishel task 8.8 in stage 0.0 (TID 8) in 78 ms on localhost (10/10)
15/07/24 13:12:15 INFO DAGScheduler: Stage @ (r-educe at SparkPi.scala:35) finished in 0.900 s

15/07/24 13:12:15 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool

15/07/24 13:12:15 INFO DAGScheduler: Job @ finished: reduce at SparkPi.scala:35, took 1.068825 s

Pi is roughly 3.140524

15/07/24 13:12:15 INFO ContextHandler: stopped
15/07/24 13:12:15 INFO ContextHandler: stopped
15/07/24 13:12:15 INFO ContextHandler: stopped
15/07/24 13:12:15 INFO ContextHandler: stopped
15/07/24 13:12:15 INFO ContextHandler: stopped
15/07/24 13:12:15 INFO ContextHandler: stopped
15/07/24 13:12:15 INFO ContextHandler: stopped
15/07/24 13:12:15 INFO ContextHandler: stopped
15/07/24 13:12:15 INFO ContextHandler: stopped

1338 bytes)

-"

8

.ServletContextHandler{/metrics/json,null}

.ServlietContextHandler{/stages/stage/kill,null}

.ServletContextHandler{/,null}

.ServletContextHandler{/static,null}

.ServletContextHandler {/executors/threadDump/json,null}

.ServletContextHandler{/executors/threadDump.null} —

.ServletContextHandler{/executors/json,null} 4 -)

.ServletContextHandler{/executors,null} Sa 2
— .

.ServletContextHandler{/environment/json,null}

Oo0oO0OO0O0O0OO0OO0O
Lunuuunuuwounn
[P ISP SR TP S S SRy
wuuuwunununwunn

[seees T 241 AM 100% m-—

Done World Clock o=

[

® Cupertino

Today, +0HRS

PS New York

Todlay, +3HRS

® petroit

Today, +3HRS

PS London

Today, +BHRS

approach of this course

think precisely in T use high-\eve\
computational terms programming \anguages

express problems formally use tools to develop,
and solutions as algorithms and debuqg programs

comPufer science

theoretical and practical rl’udj
of how to desigm and use
computer-based s1s1’ems

computer science aims at devising automated
a\gori‘ﬂnmic processes and computer-based
sjrhems that carn run in a scalable manner

computational fhinking

‘though‘r processes involved in formdaﬁng
problems and expressihg their solutions so
that a computer can execute them

such solutions are expressed in terms of algorithms, which
are in turn written n some programming \anguage
compiled and executed on some computer-based sjrl'em

comPu‘l'er science

(desigm and use computer-based sqﬂ'ems)

computational thinking C computer science
T — D—

computer science ¢ computational thinking

{eachihg staff

Benort Arielle Vaibhav
Garbinato Moro Kulkarni

professor

PhD in Computerscience (M

ORACLE"

Professor since 2004 e

LLLLLLLLLLLLLLLLLLLLLLLLLLLLL USANNE

RArielle
g

BSC In Business Computing Hes 50/
MSc in \information Systems TR

PhD student in iInformation Sjsfems Uit | HEC

Vaibhav
Kulkarni

Contiki

The Open Source OS for the Internet of Things

| — P

5. Eng. in Electronics £ Telecommunication
MSc in Communication Tec\rmo\ogj '..E

MSc in Embedded Systems TU/e
PhD student in iInformation Systems =l

student assistants |

—— —

Francesco Jean-Marc

Milerna

course objecﬁve

learn a set of
‘fhihkihg skills and
practical methods

to formulate and
solve problems using

a\goriﬂnms and

comPuﬁhg devices

course objecﬁve

what's a computer?

what's an a\gor'rthm?

Ry O 1001 1
VITO 1 7 o

what's a compiler?

o0 7 177

what's programming?

efc...

confent & approach

0010010100101011
0001001010100100
1100110100111001
1111001101010011

content & approach

Q-u,r sof&mare

{rum&me | m&mr&er} + Lubr&més system

op era&sr\g s%em | software

k ci 1 |oo10010100101011
ATAWMATE 1 =4 0001001010100100

1100110100111001
1111001101010011

what are the
benefits of this

course?

direct benefits

;.‘:"‘l ‘i ‘4‘
500111011100001

the ability to reason
in algorithmic terms

1001010100110010]

and under
comPu‘l’ athonal

constraints

QU7 1 Ll N S —
et R e

o

the ability to
precisely speciy
various problems

.’.I...

....

—

writing computers

programs

®

W

direct benefits

learn to think diﬂe\renﬂsl

) (>

learn to navigafe ﬂwough
different levels of abstraction

be ready for the
digi‘m\ transformation

decision athtude

passive view of the
decision maker as a
prob\em solveyr

design attitude

Q design athtude views
each project as an
opport uhi‘l’\, for
invention that includes
a questioning of
basic assumptions

designers velish the lack of ‘ s

Predd‘erm'\ned outcomes
D ——

managimg Qs desighihg

managers shou\ci act not

only as decision makers,

but also as designers

oooooooo
RicHARD J. BoLaND, |R. AND FRED COLLOPY

though decision and design are
linked in management action,

| = managers and scholars have
Managing as Designing |

R. Boland, F. Collopy emphasized the decision face
Stanford P .
ANIOTE TIEss over the dengh face.

http://www.amazon.com/exec/obidos/search-handle-url/103-2183138-7602251?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Richard%20Boland
http://www.amazon.com/exec/obidos/search-handle-url/103-2183138-7602251?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Fred%20Collopy

Npica\ design cjc\e

sPeciﬂ

» problem

test write
a\goriﬂam a\gori‘ﬂnm

Npica\ design cjc\e

ana\qze

ﬁ market

validate design
business business

think abstractions

an abstraction is a set of common properties and
laws extracted from several particular examples

Mutationem motus proportionalem esse

QXGW\E les: E F = ma vi motrici impressae, et fieri secundum

lineam rectam qua vis illa imprimitur

The alteration of motion is ever proportional to the
motive force impressed, and is made in the direction
of the right line in which that force is impressed

mammals

I

flz,y) = Va2 +y?

R —

sphere

——————

‘thihking in abstractions is one of
the ke1 traits in human being

rl’ackihg
abstractions

THEOREM 1. Q> P, W > 8§, CQ = &P, and W = OS.

PROOF. Let D be any failure detector in O, W, ¢Q, or GW. We show that
Tp_.p transforms D into a failure detector D’ in P, S, OP, or ¢S, respectively.
Since D satisfies weak completeness, by Lemma 1, D’ satisfies strong completeness.

LEMMA 1. Tp_p/ SCLtiSﬁ@S P1.

PROOF. Let p be any process that crashes. Suppose that there is a time ¢ after
which some correct process ¢ permanently suspects p in Hp. We must show that
there is a time after which every correct process suspects p in output™.

.- et X RS

" operating sgatem |

hardware

get ready for the
digi‘l’a\ transformation

digital transformation is the accelerating and profound
transformation of all aspects of human society, including
communication, business, learning, entertainment, etc,,
by the means of digital technologjies

indeed, digital technologies are not longer being simply used as support for
exisﬁng human activities but rather becoming the driver of profound changes
in the way we do fhings and even the source of totally new activities

to be part of that movement, Jyou have to

understand the potential of digi'ra\ fechno\ogies and
learn to think a\gori'thmica\N and computationally

VieWPOi nt ‘Jeannette M. Wing

Computational Thinking

It represents a universally applicable attitude and skill set everyone, not just
computer scientists, would be eager to learn and use.

omputational thinking
Cbuilds on the power and

limits of computing
processes, whether they are exe-
cuted by a human or by a
machine. Computational
methods and models give us
the courage to solve prob-
lems and design systems that no one of us would
be capable of tackling alone. Computational think-
ing confronts the riddle of machine intelligence:
‘What can humans do better than computers? and
What can computers do better than humans? Most
fundamentally it addresses the question: What is
computable? Today, we know only parts of the
answers to such questions.

Computational thinking is a fundamental skill for
everyone, not just for computer scientists. To read-
ing, writing, and arithmetic, we should add compu-
tational thinking to every child’s analytical ability.
Just as the printing press facilitated the spread of the
three Rs, what is appropriately incestuous about this
vision is that computing and computers facilitate the
spread of computational thinking.

Computational thinking involves solving prob-
lems, designing systems, and und ling human
behavior, by drawing on the concepts fundamental
to computer science. Computational thinking
includes a range of mental tools that reflect the
breadth of the field of computer science.

Having to solve a particular problem, we might
ask: How difficult is it to solve? and What's the best
way to solve itz Computer science rests on solid the-
oretical underpinnings to answer such questions pre-

cisely. Stating the difficulty of a problem accounts
for the underlying power of the machine—the com-
puting device that will run the solution. We must
consider the machine’s instruction set, its resource
constraints, and its operating environment.

In solving a problem efficiently, we might further
ask whether an approximate solution is good
enough, whether we can use randomization to our
advantage, and whether false positives or false nega-
tives are allowed. Computational thinking is refor-
mulating a seemingly difficult problem into one we
know how to solve, perhaps by reduction, embed-
ding, transformation, or simulation.

Computational thinking is thinking recursively. It
is parallel processing. It is interpreting code as data
and data as code. It is type checking as the general-
ization of dimensional analysis. It is recognizing
both the virtues and the dangers of aliasing, or giv-
ing someone or something more than one name. Tt
is recognizing both the cost and power of indirect
addressing and procedure call. It is judging a pro-
gram not just for correctness and efficiency but for
aesthetics, and a system’s design for simplicity and
elegance.

Computational thinking is using abstraction and
decomposition when attacking a large complex task
or designing a large complex system. It is separation
of concerns. It is choosing an appropriate representa-
tion for a problem or modeling the relevant aspects
of a problem to make it tractable. It is using invari-
ants to describe a system’s behavior succinctly and
declaratively. It is having the confidence we can
safely use, modify, and influence a large complex
system without understanding its every detail. It is

'COMMUNICATIONS OF THE ACM March 2006/Vol. 49.No.3 33

Computational thinking. J.M. Wing.
Communication of the ACM,
49(3):33-35, March 2006.

THOMAS H.CORMEN
CHARLES E. LEISERSON

RONALD L. RIVEST

\ CLIFFORD STEIN

INTRODUCTION TO

LGORITHMS

1 THIRD EDITION

Introduction to Algorithms, 3rd Edition.
T.H.Cormen, C.E. Leiserson, R.L. Rivest,
C. Stein. July 2009. MIT Press.

books & papers

OREILLY"

Algorithms
In a Nutshell

A PRACTICAL GUIDE

Algorithms in a Nutshell, 2nd Edition.
G.T. Heineman, G. Pollice, S. Selkow.
March 2016. O’Reilly.

and more to come cluring
our journey foge‘ﬂner...

overview - week |

comPu‘l'er
architecture

- week 2

4

oveyview

s S
S
X

overview - week 3

progmmmihg

basics

overview - week 4

induction &
recuyrsion

9

overview - week ¢
algorithms &

comPufaﬁona\

overview - week 6

mid-term test 4 ’

O
O

overview - week 7

searchihg

overview - week 8

4 \\ A’ ¥

\V ’ \h
A') a\gori‘thms
‘\\ |

===
EE—

overview - week 9

spathal free
a\goriﬂams

overview - week lo

probabi\irﬁc

0 ° a\gori‘thms

overview - week |

i
ﬁ@\\\ A0 F“‘f‘ﬂ T\ classes,

objects ¢

'. - @ “—’ interfaces
LT ==
= ==

e ———

overview - week 12

inheritance &
po\1morphism

overview - week 13

abstract
classes &

T Jpes

overview - week |4

functional
progmmmihg

programmihg \ahguages

development tools

o

intellid
(scala and python) KCOC‘Q
(swift)

the good old
terminal

TUESORY

Sep 19
Sep 26
Oct 03
oct lo
oct I7
Ooct 24
Oct 3l
Nov 07
Nov 1Y
Nov 2|
Nov 28
Dec 05
Dec 12
Dec 19

Calendar
fheor1

8:00-10:00

course overview computer architecture
system software
basic programming
iteration and recursion

a\gor'rﬂnms and computational comp\exiﬂ

mid-term test

searchihg a\goriﬂnms

graph algorithms
spatial tree algorithms
probabilistic algorithms
classes, objects and interfaces
inheritance and polymorphism
abstract classes and types

functional Programming

doplab.unil.ch/act

WEEK

c N £ W N

~

> 4

lo
]
12
3
iy

Calendar
prachce

TUESORY | WEONESORY | THURSORY | FRORY

8:00 - %00 RCT - Theory RCT - Practice

900 - lo:00 ALL Hec
lo:00 - koo

W00 - 12:00

12:00 - 13:00

12:00 - 1400 RCT - Practice

H:00 - I5:00 RCT - Practice | ESC - Group ®

Is:00 - l6:00 ESC - Group R | por Practice

1t:00 - I7:00 RCT - Practice | ESC - Group R

:00 - 18:00 ESC - Group ©

18:00 - 19:00

doplab.unil.ch/act

pracﬁca\ Issues
hec students

lectures: Amphimax 36l

exercises: \internef U3

f Jou consider faking this class
regirl'er as soon as possib\e via
the fo\\ovuing webpagez

Witp://bit.\y/2cqPvOf

pracﬁca\ Issues
esc students

lectures: Amphimax 36l

exercises: Amphipole 1Yo + e

Jou don't ge‘l' Yo choose
whether Jou want to
attend this course

evaluathon « ’

O
O

the evaluatiorn is based on
e an intermediate test cluring the semester
e a final exam” during the exam session

gmde = 0.4 x test + 0.6 x exam

—————

*4he final exam is written in the regu\ar
session and oral in the retake session

vuarhihg

this course is given for
‘the {irﬁ ﬁme“‘

...in such a \arge audience

good news you will be able to say "t was
among the £irst students to learn
about computational ‘thinking"

Jou will serve as our gumea |>|gs @T®

~opeakup

et your audience anonymously share and rate each
other's guestions to answer the best ones.

Recent

Stiglitz Lecture
38918

20 hauwrs age

You say that technology can
increase or reduce
inequalities, can you give
examples?

What is the main reason
inequality is such a big
issue?

Available on the iPhone \ ANDROID APP ON X, Available on
D App Store Google play | ¥} the Web

Witp://speakup.info

