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let’s 
talk



problem 
how do you tell the 

computer what to do, 
if you don’t speak its 

language and it 
doesn’t speak yours?





think precisely in 
computational terms 

express problems formally 
and solutions as algorithms

use high-level 
programming languages 

use tools to develop, 
and debug programs

approach of this course



computer science
theoretical and practical study  

of how to design and use  
computer-based systems 

computer science aims at devising automated 
algorithmic processes and computer-based 
systems that can run in a scalable manner



computational thinking

thought processes involved in formulating 
problems and expressing their solutions so 

that a computer can execute them 

 such solutions are expressed in terms of algorithms, which 
are in turn written in some programming language 

compiled and executed on some computer-based system



computer science 
(design and use computer-based systems) 

computational 
thinking  

(only use computer systems)

computational thinking  ⊂  computer science

computer science  ⊄  computational thinking



professor assistants

Benoît  
Garbinato

teaching staff

Vaibhav 
Kulkarni

Arielle 
Moro



PhD in ComputerScience 
Worked in the industry 
Professor since 2004 

Benoît 
Garbinato



BSc in Business Computing 
MSc in Information Systems  
PhD student in Information Systems

Arielle 
Moro



B. Eng. in Electronics & Telecommunication 
MSc in Communication Technology 
MSc in Embedded Systems 
PhD student in Information Systems

Vaibhav 
Kulkarni



student assistants

Arnaud Francesco Jean-Marc

Milena
Nomeny

Xavier Yannick

Adrian



course objective
learn a set of 

thinking skills and 
practical methods  
to formulate and 

solve problems using 
algorithms and 

computing devices



course objective
what’s a computer? 

what’s an algorithm? 

what’s a compiler? 

what’s programming? 

etc...
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content & approach



hardware

software
algorithms i ⟵ i + 1

i = 0 
i = i + 1
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{runtime | interpreter} + libraries
operating system

your

system 
software}

content & approach



what are the 
benefits of this 

course?



direct benefits



the ability to reason 
in algorithmic terms

and under 
computational 
constraints



the ability to 
precisely specify 
various problems

and solve them by 
writing computers 

programs



indirect benefits



learn to
 think 

creative
ly

learn to think differently

experiment the design attitude 

be ready for the  
digital transformation

learn to navigate through 
different levels of abstraction



decision attitude

assumes that t
he 

alternativ
e courses

 

of action
 are read

y 

at hand, 
including

 

the best 
one

passive view of the 
decision maker as a 
problem solver



design attitude
a design attitude views 

each project as an 
opportunity for 

invention that includes 
a questioning of 
basic assumptions

designers relish the lack of
 

predetermined outcomes



managing as designing

Managing as Designing 
R. Boland, F. Collopy 
Stanford Press

managers should act not 
only as decision makers, 
but also as designers

though decision and design are 
linked in management action, 
managers and scholars have 
emphasized the decision face 

over the design face.

http://www.amazon.com/exec/obidos/search-handle-url/103-2183138-7602251?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Richard%20Boland
http://www.amazon.com/exec/obidos/search-handle-url/103-2183138-7602251?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Fred%20Collopy


typical design cycle

problem

algorithmalgorithm

specify

writetest



typical design cycle

market

businessbusiness

analyze

designvalidate



think abstractions
an abstraction is a set of common properties and 
laws extracted from several particular examples 

thinking in abstractions is one of  
the key traits in human being

Mutationem motus proportionalem esse 
vi motrici impressae, et fieri secundum 
lineam rectam qua vis illa imprimitur

The alteration of motion is ever proportional to the 
motive force impressed, and is made in the direction 

of the right line in which that force is impressed

f(x, y) =
p

x

2 + y

2

X
~F = m~a

mammals

examples:

sphere



stacking 
abstractions

hardware

your software

algorithms

system software

operating system
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P2 (Preserving perpetual accuracy). Let p be any process. If no process suspects
p in HD before time t, then no process suspects p in outputR before time t. More
formally:

8p 2 ⇧,8t 2 T :
8t0 < t,8q 2 ⇧� F (t0) : p 62 HD(q, t0)

) 8t0 < t,8q 2 ⇧� F (t0) : p 62 outputR(q, t0)

P3 (Preserving eventual accuracy). Let p be any correct process. If there is a
time after which no correct process suspects p in HD, then there is a time after
which no correct process suspects p in outputR. More formally:

8p 2 correct(F ) :
9t 2 T ,8q 2 correct(F ),8t0 � t : p 62 HD(q, t0)

) 9t 2 T ,8q 2 correct(F ),8t0 � t : p 62 outputR(q, t0)

Lemma 1. TD!D0 satisfies P1.

Proof. Let p be any process that crashes. Suppose that there is a time t after
which some correct process q permanently suspects p in HD. We must show that
there is a time after which every correct process suspects p in outputR.

Since p crashes, there is a time t0 after which no process receives a message from
p. Consider the execution of Task 1 by process q after time tp = max(t, t0). Process
q sends a message of the type (q, suspectsq) with p 2 suspectsq to all processes.
Eventually, every correct process receives (q, suspectsq) and adds p to output (in
Task 2). Since no correct process receives any messages from p after time t0 and
tp � t0, no correct process removes p from output after time tp. Thus, there is a
time after which every correct process permanently suspects p in outputR.

Lemma 2. TD!D0 satisfies P2.

Proof. Let p be any process. Suppose there is a time t before which no process
suspects p in HD. No process sends a message of the type (�, suspects) with p 2
suspects before time t. Thus, no process q adds p to outputq before time t.

Lemma 3. TD!D0 satisfies P3.

Proof. Let p be any correct process. Suppose that there is a time t after which
no correct process suspects p in HD. Thus, all processes that suspect p after time
t eventually crash. Thus, there is a time t0 after which no correct process receives
a message of the type (�, suspects) with p 2 suspects.

Let q be any correct process. We must show that there is a time after which q
does not suspect p in outputR. Consider the execution of Task 1 by process p after
time t0. Process p sends a message m = (p, suspectsp) to q. When q receives m, it
removes p from outputq (see Task 2). Since q does not receive any messages of the
type (�, suspects) with p 2 suspects after time t0, q does not add p to outputq after
time t0. Thus, there is a time after which q does not suspect p in outputR.

Theorem 1. Q ⌫ P, W ⌫ S, Q ⌫ P, and W ⌫ S.

Proof. Let D be any failure detector in Q, W , Q, or W . We show that
TD!D0 transforms D into a failure detector D0 in P, S, P, or S, respectively.
Since D satisfies weak completeness, by Lemma 1, D0 satisfies strong completeness.
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get ready for the 
digital transformation

digital transformation is the accelerating and profound 
transformation of all aspects of human society, including 
communication, business, learning, entertainment, etc., 

by the means of digital technologies

indeed, digital technologies are not longer being simply used as support for 
existing human activities but rather becoming the driver of profound changes 

in the way we do things and even the source of totally new activities

to be part of that movement, you have to 
understand the potential of digital technologies and 
learn to think algorithmically and computationally



books & papers

and more to come during  
our journey together...

George T. Heineman,  
Gary Pollice & Stanley Selkow

Algorithms
in a Nutshell

2nd Edition

A PRACTICAL GUIDE
COMMUNICATIONS OF THE ACM March  2006/Vol. 49, No. 3 33

Computational thinking
builds on the power and
limits of computing

processes, whether they are exe-
cuted by a human or by a

machine. Computational
methods and models give us
the courage to solve prob-

lems and design systems that no one of us would
be capable of tackling alone. Computational think-
ing confronts the riddle of machine intelligence:
What can humans do better than computers? and
What can computers do better than humans? Most
fundamentally it addresses the question: What is
computable? Today, we know only parts of the
answers to such questions. 

Computational thinking is a fundamental skill for
everyone, not just for computer scientists. To read-
ing, writing, and arithmetic, we should add compu-
tational thinking to every child’s analytical ability.
Just as the printing press facilitated the spread of the
three Rs, what is appropriately incestuous about this
vision is that computing and computers facilitate the
spread of computational thinking. 

Computational thinking involves solving prob-
lems, designing systems, and understanding human
behavior, by drawing on the concepts fundamental
to computer science. Computational thinking
includes a range of mental tools that reflect the
breadth of the field of computer science. 

Having to solve a particular problem, we might
ask: How difficult is it to solve? and What’s the best
way to solve it? Computer science rests on solid the-
oretical underpinnings to answer such questions pre-

cisely. Stating the difficulty of a problem accounts
for the underlying power of the machine—the com-
puting device that will run the solution. We must
consider the machine’s instruction set, its resource
constraints, and its operating environment. 

In solving a problem efficiently,, we might further
ask whether an approximate solution is good
enough, whether we can use randomization to our
advantage, and whether false positives or false nega-
tives are allowed. Computational thinking is refor-
mulating a seemingly difficult problem into one we
know how to solve, perhaps by reduction, embed-
ding, transformation, or simulation. 

Computational thinking is thinking recursively. It
is parallel processing. It is interpreting code as data
and data as code. It is type checking as the general-
ization of dimensional analysis. It is recognizing
both the virtues and the dangers of aliasing, or giv-
ing someone or something more than one name. It
is recognizing both the cost and power of indirect
addressing and procedure call. It is judging a pro-
gram not just for correctness and efficiency but for
aesthetics, and a system’s design for simplicity and
elegance. 

Computational thinking is using abstraction and
decomposition when attacking a large complex task
or designing a large complex system. It is separation
of concerns. It is choosing an appropriate representa-
tion for a problem or modeling the relevant aspects
of a problem to make it tractable. It is using invari-
ants to describe a system’s behavior succinctly and
declaratively. It is having the confidence we can
safely use, modify, and influence a large complex
system without understanding its every detail. It isLI

SA
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Viewpoint Jeannette M. Wing

Computational Thinking
It represents a universally applicable attitude and skill set everyone, not just
computer scientists, would be eager to learn and use. 

            

Introduction to Algorithms, 3rd Edition. 
T.H.Cormen, C.E. Leiserson, R.L. Rivest, 
C. Stein. July 2009. MIT Press.

Computational thinking. J.M. Wing. 
Communication of the ACM,  
49(3):33–35, March 2006.

Algorithms in a Nutshell, 2nd Edition. 
 G.T. Heineman, G. Pollice, S. Selkow. 
March 2016. O’Reilly.



computer 
architecture 

overview - week 1



system 
software 

overview - week 2



programming 
basics

overview - week 3



induction & 
recursion

overview - week 4



algorithms & 
computational 
complexity 

overview - week 5



overview - week 6

mid-term test 



searching 
algorithms

overview - week 7



graph 
algorithms 

overview - week 8



spatial tree 
algorithms 

overview - week 9



probabilistic 
algorithms 

overview - week 10



classes, 
objects & 
interfaces

overview - week 11



inheritance & 
polymorphism 

overview - week 12



abstract 
classes & 
types 

overview - week 13



functional 
programming 

overview - week 14



programming languages

python
scala

swift
(      )



development tools

XCode 
 (swift) 

IntelliJ 
(scala and python)

the good old  
terminal



Calendar

doplab.unil.ch/act

TUESDAY
8:00–10:00

WEEK

Sep 19 course overview computer architecture 1

Sep 26 system software 2

Oct 03 basic programming 3

Oct 10 iteration and recursion 4

Oct 17 algorithms and computational complexity 5

Oct 24 mid-term test 6

Oct 31 searching algorithms 7

Nov 07 graph algorithms 8

Nov 14 spatial tree algorithms 9

Nov 21 probabilistic algorithms 10

Nov 28 classes, objects and interfaces 11

Dec 05 inheritance and polymorphism 12

Dec 12 abstract classes and types 13

Dec 19 functional programming 14

theory



Calendar

doplab.unil.ch/act

practice
MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

8:00 - 9:00 ACT – Theory 
ALL

ACT – Practice 
HEC9:00 - 10:00

10:00 - 11:00

11:00 - 12:00

12:00 - 13:00

13:00 - 14:00 ACT – Practice 
ESC - Group B14:00 - 15:00 ACT – Practice 

ESC - Group A15:00 - 16:00 ACT – Practice 
ESC - Group A16:00 - 17:00 ACT – Practice 

ESC - Group B17:00 - 18:00

18:00 - 19:00



practical issues

if you consider taking this class 
register as soon as possible via  

the following webpage: 

http://bit.ly/2cqPvDf

lectures: Amphimax 351  
exercises: Internef 143

hec students



practical issues

you don’t get to choose 
whether you want to 
attend this course 

!

lectures: Amphimax 351  
exercises: Amphipôle 140 + 146

esc students

"



evaluation

grade = 0.4 x test + 0.6 x exam

the evaluation is based on  
• an intermediate test during the semester 
• a final exam* during the exam session

* the final exam is written in the regular 
session and oral in the retake session



warning

good news  you will be able to say “I was 
among the first students to learn 
about computational thinking” 

bad news  you will serve as our guinea pigs

this course is given for 
the first time... 

...in such a large audience



http://speakup.info


