
Introduction to
Distributed Systems

Benoît Garbinato

Introduction

Introduction © Benoît Garbinato

Distributed systems (1)

“A distributed system is one that stops you from
getting any work done when a machine you’ve never
even heard of crashes.”

L. Lamport, quoted by S. Müllender in
Distributed Systems. 2nd edition. Addison-Wesley, 1993.

Introduction © Benoît Garbinato

Distributed systems (2)
“As long as there were no machines, programming was no problem

at all; when we had a few weak computers, programming became a

mild problem and now that we have gigantic computers,

programming has become an equally gigantic problem. In this

sense the electronic industry has not solved a single problem, it has

only created them - it has created the problem of using its products.”

Edgster Dijkstra, The Humble Programmer.
Communication of the ACM, vol. 15, no. 10.

October 1972. Turing Award Lecture.

distributed

distributed

distributednetworks

networks

networks

Introduction © Benoît Garbinato

Distributed systems (3)

“ A distributed system is a collection of autonomous
computers linked by a network, with software designed
to produce an integrated computing facility.”

In Distributed Systems: Concept and Design.
2nd edition. Addison-Wesley, 1994.

Introduction © Benoît Garbinato

Historical background
Hardware became continuously cheaper

Cheap and fast networks emerged

The example of Unix:
1969 K. Thompson & D. Ritchie develop Unix as a
 multi-users system on PDP-7
1979 B. Joy enhances Unix with interprocess
 communication facilities (BSD Unix)
1980’s Sun Microsystems used BSD Unix as
 operating systems for its workstations

Introduction © Benoît Garbinato

Approach of this course (1)
This course teaches distributed systems from both a
practical and a theoretical perspective

“In theory, there is not difference between 
theory & practice. In practice, there is.”

The practitioner needs the theoretical perspective to
understand the implicit assumptions hidden in the
technologies, and their consequences

The theoretician needs the practical perspective to
validate that theoretical models, problems & solutions
work in accordance to existing technologies

Introduction © Benoît Garbinato

Approach of this course (2)
To achieve this, we will approach distributed
systems through four complementary views:

The model view

The interaction view

The architecture view

The algorithm view

Introduction © Benoît Garbinato

The model view

What distributed entities? 
E.g., processes, objects, threads, etc.

What time assumptions? 
E.g., synchronous, asynchronous, etc.

What failure assumption? 
E.g., crash-stop, malicious, etc.

Introduction © Benoît Garbinato

The interaction view

What interaction paradigm? 
E.g., message passing, shared memory, etc.

What reliability guarantees? 
E.g., best-effort, reliable, secure, etc.

Introduction © Benoît Garbinato

The architecture view

What level of decentralization? 
E.g., client/server, multi-tier, etc.

What level of separation of concerns? 
E.g., library-based, container-based, etc.

Introduction © Benoît Garbinato

The algorithm view

What problem?  
E.g., internet payment, consensus, etc.

What algorithm? 
E.g., two phase commit, sliding window, etc.

What complexity and what performance?  
E.g., NP-complete, polynomial, etc.

Introduction © Benoît Garbinato

The big picture
When implementing a distributed program, you will
always end up writing some algorithm. In doing so,
you will have to answer the following questions:

What problem am I trying to solve?
What model do I assume?
What architecture do I follow?
What interaction do I use?

model

algorithm interactionarchitecture

assumes

usesfollows

problem

solves

Introduction © Benoît Garbinato

Content overview

Remote method invocation

Basics of distributed algorithms

Concurrent & network programming

Mobile distributed programming

Introduction © Benoît Garbinato

Technologies we will use

Java programming platform

Objective-C + iOS software platform

Internet protocols (TCP, UDP)

Introduction © Benoît Garbinato

Lectures + exercises + practical project

Evaluation :
Project (P) – group project (compulsory)
Final exam (E) – individual exam (compulsory)

If E ≥ 3 : Final grade = 0.5 x P + 0.5 x E  
If E < 3 : Final grade = E

For the project, the mark of each member of a
group might vary, based on participation

Organization

Introduction © Benoît Garbinato

Exercises & the project
Exercises should help you get started with
individual technologies presented

The project should allow you to understand how
technologies can be combined to devise a
complete solution... and have fun!

some business logic other business logicdistribution technologies

Introduction © Benoît Garbinato

The project

The subject of the project is free but must have
a distributed nature and be based on the
concepts & tools presented in the lecture and
exercise sessions

Projects are done in groups(membership  
may slightly vary between groups this is
taken into account when grading)

Introduction © Benoît Garbinato

Timetable
13:15 - 14:00 14:15 - 15:00 15:15 - 16:00 16:15 - 17:00

Sep 22, 2016 Introduction Remote Method Invocation Discover Lab Tools

Sep 29, 2016 Exercises [Java RMI]

Oct 6, 2016 Concurrent Programming
Exercises

Oct 13, 2016 Network Programming

Oct 20, 2016 Basic Programming in Objective-C Exercises Project kickoff

Oct 27, 2016 Project specification

Nov 3, 2016 Intermediate Presentation | Specification Validation Project Implementation

Nov 10, 2016 Network Programming in Objective-C Exercises Project Implementation

Nov 17, 2016 Thematic Week

Nov 24, 2016
Distributed Algorithms

Project Implementation
Dec 1, 2016

Dec 8, 2016
Project Q&A

Dec 15, 2016

Dec 22, 2016 Final Presentation | Project Demo & Assessment

Introduction © Benoît Garbinato

Further information
http://doplab.unil.ch/ids

arielle.moro@unil.ch

vaibhav.kulkarni@unil.ch

benoit.garbinato@unil.ch

Interesting book:
Distributed Systems - Concepts and Design,
4th Edition, J. Dollimore, T. Kindberg, G.
Coulouris, Addison Wesley / Pearson
Education, 2005.

http://doplab.unil.ch/ids

