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understand the basics of binary computation 

learn the basics of the Von Neumann architecture
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what’s a computer?



a dual origin

Logic

• A function can be written in many ways. For example, xy + x, x + yx, x(y + 1) and

(x + z)y + x − yz are all ways of writing the same function. Logicians refer to the

particular way a function is written as a statement form.

You may wonder why we’re concerned with statement forms since we’re not concerned

with function forms in other areas of mathematics but just their values. That is a miscon-

ception. We are concerned with function forms in algebra. It’s just that you’re so used

to the equality of different forms that you’ve forgotten
that. Knowing that certain forms

represent the same function allow us to manipulate formulas. For example, the commu-

tative (ab = ba and a + b = b + a) and distributive (a(b + c) = ab + ac) laws allow us to

manipulate the function forms xy + x, x + yx and x(y + 1) to show that they all have the

same value; that is, they all represent the same function. As soon as the equality of the

function forms is less familiar, you’re aware of their importance. For example (au)v = auv ,

sin(2x) = 2 sinx cosx and d(ex)/dx = ex .

Since some of you may still be confused, let’s restate this. For our purposes, we shall

say that two statement forms are different as statement forms, or simply different if they

“look different.” They are the same if they “look the same.” This is not very precise, but is

good enough. Thus, for example, p∨q and q∨p look different and so are different statement

forms. We say that two statement forms are logically
equivale

nt (or simply equivale
nt) if

they have the same truth table. The statement forms p ∨ q and q ∨ p are equivalent (have

same truth table). Likewise, (p ∧ q) ∨ r and (p ∨ r) ∧ (q ∨ r) are different statement forms

that are equivalent, as may be seen by doing a truth table for each form and comparing

them. We are familiar with these ideas from high school algebra. For example, x(y + z)

and xy + xz look different but are equivalent functions.

Sometimes we’ll let our logic hat slip and use Boolean function terminology. In par-

ticular, we’ll often use 0 instead of “false” and 1 instead of “true.”

The constant functions are particularly important and are given special names.

Definition 1 (Tautology,
contradiction) A statement form that represents the con-

stant 1 function is called a tautolog
y. In other words, the statement form is true for all

truth values of the statement variables. A statement form that represents the constant 0

function is called a contradictio
n. In other words, the statement form is false for all truth

values of the statement variables.

Recall the some of the basic functions studied in Unit BF: not, and and or, denoted

by ∼, ∧ and ∨, respectively.
We defined these three functions by giving their values in

tabular form, which is called a truth table just as it is for Boolean functions in Unit BF.

In that unit, definitions were as follows, where we have replaced 0 and 1 by F and T to

emphasize “false” and “true;” however, we’ll usually use 0 and 1.

p ∼p

F T

T F

p q p ∧ q

F F F

F T F

T F F

T T T

p q p ∨ q

F F F

F T T

T F T

T T T

p q p “equals” q

F F
T

F T
F

T F
F

T T
T

We said there were three functions, but there is a fourth table. Besides, p “equals” q isn’t a

function—is it? What happened? The statement p “equals” q is either true of false. Thus,
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Section 1: Propositional Logic

we can think of “equals” as a function with domain {F, T}2 and range {F, T}. In symbols,

“equals” : {F, T}2 → {F, T}. In what follows, we’ll replace “equals” with the symbol “⇔”

(equivalence) which is usually used in logic. We use the more familiar “=” for assigning

meaning and values. Thus

• q = “the sky is blue” assigns an English meaning to q.

• q = p∨ r says that q “means” p∨ r; that is, we should replace q by the statement form

p ∨ r.

• p = 1 means we are assigning the value 1 (true) to p.

Since propositional logic can be viewed as the study of Boolean functions, the tech-

niques we developed for proving results about Boolean functions (Venn diagrams, truth

tables and algebraic) can also be used in propositional logic. For convenience, we recall the

theorem for manipulating Boolean statements:

Theorem 1 (Algebraic rules for statement forms) Each rule states that two different

statement forms are equivalent. That is, they look different but have the same truth table.

Associative Rules: (p ∧ q) ∧ r ⇔ p ∧ (q ∧ r) (p ∨ q) ∨ r ⇔ p ∨ (q ∨ r)

Distributive Rules: p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)

Idempotent Rules: p ∧ p ⇔ p
p ∨ p ⇔ p

Double Negation: ∼∼p ⇔ p

DeMorgan’s Rules: ∼(p ∧ q) ⇔ ∼p ∨ ∼q ∼(p ∨ q) ⇔ ∼p ∧ ∼q

Commutative Rules: p ∧ q ⇔ q ∧ p
p ∨ q ⇔ q ∨ p

Absorption Rules: p ∨ (p ∧ q) ⇔ p
p ∧ (p ∨ q) ⇔ p

Bound Rules: p ∧ 0 ⇔ 0 p ∧ 1 ⇔ p p ∨ 1 ⇔ 1 p ∨ 0 ⇔ p

Negation Rules: p ∧ (∼p) ⇔ 0
p ∨ (∼p) ⇔ 1

Truth tables and algebraic rules are practically the same as the tabular method and

algebraic rules for sets discussed in Section 1 of Unit SF. The next example explains why

this is so. You may want to read the first four pages of Unit SF now.

Example 1 (Logic and Sets) We’ve already pointed out that propositional logic and

Boolean arithmetic can be viewed as different aspects of the same thing. In this example,

we show that basic manipulation of sets are also related.

Suppose we are studying some sets, say P , Q and R. Let the corresponding lower case

letters p, q and r stand for the statement that x belongs to the set. For example p is the

statement “x ∈ P”.

Consider the distributive rule for sets:

P ∩ (Q ∪ R) = (P ∩ Q) ∪ (P ∩ R).

It is equivalent to saying that

x ∈ P ∩ (Q ∪ R) if and only if x ∈ (P ∩ Q) ∪ (P ∩ R)
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¬¬p� p

¬(p ⇤ q)� ¬p ⌅ ¬q ¬(p ⌅ q)� ¬p ⇤ ¬q

p ⇥ F � F p ⇥ T � p p ⇥ T � T p ⇥ F � p

p ⇤ (¬p)� F
p ⇤ (¬p)� T

260 Chapter 11 Sequences and Series
EXAMPLE 11.1.9 Determine whether {(sinn)/

√
n}∞

n=1 converges or diverges. If it

converges, compute the limit. Since | sinn| ≤ 1, 0 ≤ | sinn/
√
n| ≤ 1/

√
n and we can use

theorem 11.1.3 with an = 0 and cn = 1/
√
n. Since lim

n→∞
an = lim

n→∞
cn = 0, lim

n→∞
sinn/

√
n =

0 and the sequence converges to 0.EXAMPLE 11.1.10 A particularly common and useful sequence is {rn}∞
n=0 , for various

values of r. Some are quite easy to understand: If r = 1 the sequence converges to 1 since

every term is 1, and likewise if r = 0 the sequence converges to 0. If r = −1 this is

the sequence of example 11.1.7 and diverges. If r > 1 or r < −1 the terms rn get large

without limit, so the sequence diverges. If 0 < r < 1 then the sequence converges to 0.

If −1 < r < 0 then |rn| = |r|n and 0 < |r| < 1, so the sequence {|r|n}∞
n=0 converges to

0, so also {rn}∞
n=0 converges to 0. converges. In summary, {rn} converges precisely when

−1 < r ≤ 1 in which case

lim
n→∞

rn =
{

0 if −1 < r < 11 if r = 1

Sometimes we will not be able to determine the limit of a sequence, but we still would

like to know whether it converges. In some cases we can determine this even without being

able to compute the limit.A sequence is called increasing or sometimes strictly increasing if ai < ai+1 for

all i. It is called non-decreasing or sometimes (unfortunately) increasing if ai ≤ ai+1

for all i. Similarly a sequence is decreasing if ai > ai+1 for all i and non-increasing if

ai ≥ ai+1 for all i. If a sequence has any of these properties it is called monotonic.

EXAMPLE 11.1.11 The sequence
{

2i− 1
2i

}∞

i=1
= 1

2
,
3

4
,
7

8
,
15
16

, . . . ,

is increasing, and

{

n+ 1
n

}

∞

i=1
= 2

1
,
3

2
,
4

3
,
5

4
, . . .

is decreasing.
A sequence is bounded above if there is some number N such that an ≤ N for every

n, and bounded below if there is some number N such that an ≥ N for every n. If a

sequence is bounded above and bounded below it is bounded. If a sequence {an}∞
n=0 is

increasing or non-decreasing it is bounded below (by a0), and if it is decreasing or non-

increasing it is bounded above (by a0). Finally, with all this new terminology we can state

an important theorem.

11.1 Sequences 261

THEOREM 11.1.12 If a sequence is bounded and monotonic then it converges.

We will not prove this; the proof appears in many calculus books. It is not hard to

believe: suppose that a sequence is increasing and bounded, so each term is larger than the

one before, yet never larger than some fixed value N . The terms must then get closer and

closer to some value between a0 and N . It need not be N , since N may be a “too-generous”

upper bound; the limit will be the smallest number that is above all of the terms ai.

EXAMPLE 11.1.13 All of the terms (2i − 1)/2i are less than 2, and the sequence is

increasing. As we have seen, the limit of the sequence is 1—1 is the smallest number that

is bigger than all the terms in the sequence. Similarly, all of the terms (n+1)/n are bigger

than 1/2, and the limit is 1—1 is the largest number that is smaller than the terms of the

sequence.

We don’t actually need to know that a sequence is monotonic to apply this theorem—

it is enough to know that the sequence is “eventually” monotonic, that is, that at some

point it becomes increasing or decreasing. For example, the sequence 10, 9, 8, 15, 3, 21, 4,

3/4, 7/8, 15/16, 31/32, . . . is not increasing, because among the first few terms it is not.

But starting with the term 3/4 it is increasing, so the theorem tells us that the sequence

3/4, 7/8, 15/16, 31/32, . . . converges. Since convergence depends only on what happens as

n gets large, adding a few terms at the beginning can’t turn a convergent sequence into a

divergent one.

EXAMPLE 11.1.14 Show that {n1/n} converges.

We first show that this sequence is decreasing, that is, that n1/n > (n+1)1/(n+1). Consider

the real function f(x) = x1/x when x ≥ 1. We can compute the derivative, f ′(x) =

x1/x(1−lnx)/x2, and note that when x ≥ 3 this is negative. Since the function has negative

slope, n1/n > (n+ 1)1/(n+1) when n ≥ 3. Since all terms of the sequence are positive, the

sequence is decreasing and bounded when n ≥ 3, and so the sequence converges. (As it

happens, we can compute the limit in this case, but we know it converges even without

knowing the limit; see exercise 1.)

EXAMPLE 11.1.15 Show that {n!/nn} converges.

Again we show that the sequence is decreasing, and since each term is positive the sequence

converges. We can’t take the derivative this time, as x! doesn’t make sense for x real. But

we note that if an+1/an < 1 then an+1 < an, which is what we want to know. So we look

at an+1/an:

an+1

an
=

(n+ 1)!

(n+ 1)n+1

nn

n!
=

(n+ 1)!

n!

nn

(n+ 1)n+1
=

n+ 1

n+ 1

(

n

n+ 1

)n

=

(

n

n+ 1

)n

< 1.
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electronics



what’s hardware?
input

output

disk 
(stable storage)

ram 
(volatile storage)

cpu

cpu = central processing unit



what’s software?
i ⟵ i + 1

i = 0 
i = i + 1

0010010100101011 
0001001010100100 
1111001101010011

we will come back to these 
transformations in next module



binary computation
base 10 base 7 base 2base 3

102 101 100

1 4

72 71 70

2 0

32 31 30

1 1 2

23 22 21 20

1 1 1 0

note that in a computer, binary words are 
not only used to represent integer numbers

1 4 2 0 1 1 2 1 1 1 0



1939-40

the “bombe” was an electromechanical 
device designed by Alan Turing to 

decipher German Enigma-encrypted messages



the ENIAC was the first general electronic computer 
programs were hard-wired (dials & switches)

1943 



the EDVAC is the first computer to rely on 
programs stored in memory

1944 



John von Neumann describes the concept of  
programs stored in memory in a report about 
the EDVAC computer: the Von Neumann architecture

1945 



the von Neumann model 

Fetch

Decode

Execute

Store

PC: Program Counter

ALU: Arithmetic & Logic Unit

IR: Instruction Register
R1-Rn: Register

0001

0010

0011

0100

Memory
10110110

10110110

10110110

...

Processing Unit
R1
R2
R3
...

0000001
0000001
0000000
...

ALU

Control Unit
PC
IR 10110110

0011



fetch instruction
F

D

E

S

Control Unit
PC
IR 10110110

0011

Processing Unit
R1 0000001

0000001
0000000

...

R2
R3
...

ALU

101101100001

101101100010

101101100011

...0100

Memory
❶

PC � PC + 1❸

❷



0001

0010

0011

0100

Memory
10110110

10110110

10110110

...

Control Unit
PC
IR 10110110

0100

Processing Unit
R1
R2
R3
...

0000001
0000001
0000000

...

ALU

decode instruction
10  11  01  10

ADD  R3  R1  R2

op dst src1 src2

F

D

E

S



execute instruction

0001

0010

0011

0100

Memory
10110110

10110110

10110110

...

Control Unit
PC
IR 10110110

0100

Processing Unit
R1
R2
R3
...

0000001
0000001
0000000

...

ALU

10  11  01  10

ADD  R3  R1  R2

op dst src1 src2

F

D

E

S



store result

0001

0010

0011

0100

Memory
10110110

10110110

10110110

...

Control Unit
PC
IR 10110110

0100

10  11  01  10

ADD  R3  R1  R2

op dst src1 src2

Processing Unit
R1
R2
R3
...

0000001

...

ALU 0000010

0000001

F

D

E

S
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INSTRUCTION SET REFERENCE, A-M

ADDSD—Add Scalar Double-Precision Floating-Point Values

Description

Adds the low double-precision floating-point values from the source operand (second 

operand) and the destination operand (first operand), and stores the double-preci-

sion floating-point result in the destination operand. 

The source operand can be an XMM register or a 64-bit memory location. The desti-

nation operand is an XMM register. The high quadword of the destination operand 

remains unchanged. See Chapter 11 in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 1, for an overview of a scalar double-precision 

floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 

access additional registers (XMM8-XMM15).

Operation

DEST[63:0] ! DEST[63:0] + SRC[63:0];

(* DEST[127:64] unchanged *)

Intel C/C"" Compiler Intrinsic Equivalent

ADDSD __m128d _mm_add_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, 

ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1. 

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-

MEXCPT[bit 10] = 1. 

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

F2 0F 58 /r ADDSD xmm1, xmm2/m64 Valid Valid Add the low double-

precision floating-point 

value from xmm2/m64 to 

xmm1.
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Integer Instructions
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M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

 

MOTOROLA

 

ADD

 

Add

 

ADD 

 

(M68000 Family) 

Operation:

 

Source + Destination 

 

→

 

 Destination 

 

Assembler

 

ADD < ea > ,Dn 

 

Syntax:

 

ADD Dn, < ea > 

 

Attributes:

 

Size = (Byte, Word, Long) 

 

Description: 

 

Adds the source operand to the destination operand using binary addition and
stores the result in the destination location. The size of the operation may be specified
as byte, word, or long. The mode of the instruction indicates which operand is the
source and which is the destination, as well as the operand size. 

 

Condition Codes: 

 

X — Set the same as the carry bit. 
N — Set if the result is negative; cleared otherwise. 
Z — Set if the result is zero; cleared otherwise. 
V — Set if an overflow is generated; cleared otherwise. 
C — Set if a carry is generated; cleared otherwise. 

 

Instruction Format: 

 

X N Z V C 

 

∗ ∗ ∗ ∗ ∗ 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 REGISTER OPMODE
EFFECTIVE ADDRESS 

MODE REGISTER 

Motorola 68000 
[1980]

Intel IA-64 
[2007]


