

your software

®
learning
*® system software

objechves

<

+» understand the basics of how a computer works
+ understand the basics of binary computation

+ learn the basics of the von Neumann architecture

what's a computer?

"' f AI‘:‘_';:‘[’-'A .:.,-‘
(3 A _/.e’f_»"f r;’g

I./,‘I////
‘.:fgfi

=

°
=3
-

W

-
-

o
(=}
-]

-0

22328498

-

e et) s (D () -)
OOD

\

200

~R-2-% A
~-PoSSPScoe~as

see
OO~ O OO~ "= OO0 OO~ OO = OO m~000

CEtRssst

.o
prageaeasp——— 1 1 AT AR LT T R AR I R T

N il I
DO~ ~000 ~1

2 B2 I T E 2T ETII LT ETT ET 5
CO~=OD~OOAABBOOCO0~“0O N wuDOO~wwaDOoOaw=D

1
0
1
0
0
0
gl
0
1
0
0
"l
©
0
1
0

1

1

1

- - R Y L e e L L I I I I

AN NSEASSSATRAB/A T NRBA RSN

0

D) b b
e P

mathematics

a cdual origin

Associative Rules: (pAq) /\r@p/\(q/\r) (pV qVrepV (qVT) p 4 pVa
P q pNd v
Distributive Rules: pA(gVT) & (pANqQ)V (pAT) pV (@A r)e (pV NV T) Q /F 5 F F
Idempotent Rules: pAD<DP pVp<D P T 1; 1; F F qi; 1;?
Double Negation: ——p & D T F T F F 1;1 T
DeMorgan’s Rules: —(p A q) & P V g —(pV q) & P N—q T T T
Commutative Rules: pANq=4 AD pVq=d vV p /' ——
Absorption Rules: pV (pAG) =P pA(PVa) =P 9i
Bound Rules: pANF & F pANT <P pvT =T pVF&Dp 2\1 oo ;
2
Negation Rules: pA ("p) & F pV (—p) & T) = = i)) 7 15
=] 2) 4 5 8\’ Y
"" e——————— 16)
n
Qg1 _ (1) Lri e
n" (n+ 1! an P
n (n + 1)”""1 n! - | — n+ 1 n n n n n - 3 4
! n! (m+1)"*t n+1\n+1 :(<1 i=1] 1\’\ = 5
e‘em *° — n+1 . 2’374\’.

what's hardware?
ihpu‘l’

A S o i

mmmm@@m

disk

(stable rl’orage)

cpu = central processihg untt

what's software?

1 — 1+ 1

P — || ——

0
.i

S

+ 1

0010010100101011
0001001010100100
1111001101010011

we will come back to these
transformations in next module

base lo

3 J 3
)
b l b}
3 J 3
)
b} J b}

/
4 ‘ 4
/
4 ‘ 4

10°

10°

base 7

TR EN)

I

& 666 0

® 86 0

72

71

2

bivmrj computation

base 2

note that in a computer, binary words are
not only used to represent integer numbers

the “bombe” was an electromechanical
device designed bx, Alan T uring Yo
decipher German Enigma-encﬁpfed messages

wieiviv v v

the ENMIRC was the first general electronic computer
programs were hard-wired (dials £ switches)

the EDVRC is the first computer to rely on
programs stored in memory

John von Neumann describes the concept of
programs stored n memory W a report about
the EOVRC computer: the Von Neumann architecture

the von Neumarnn model

 Control AUhif N PC-: Program Counter
LI o011 B & wstruction Register
| s O llegirl’er

Memmﬂ

Processihg Untt ,
o001 PEIIRIY

Ay Go000o: |
o > T

| oon mommm
ALU: Rrithmetic £ Logic -

fetch instruction

Confrol Unit

1011011008

10110110

decode instruction

ol Unit

1011011008

10110110

execute nstruchon

ol Unit

1011011008

10110110

store result

ol Unit

lotor o8

instruchion sets

ADDSD—Add Scalar Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F2 OF 58 /r ADDSD xmm1, xmmZ2/m64 \alid Valid Add the low double-
precision floating-point
value from xmmZ2/m64 to
xmm1.
Description

Adds the low double-precision floating-point values from the source operand (second
operand) and the destination operand (first operand), and stores the double-preci-
sion floating-point result in the destination operand.

The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. The high quadword of the destination operand
remains unchanged. See Chapter 11 in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for an overview of a scalar double-precision
floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] « DEST[63:0] + SRC[63:0];
(* DEST[127:64] unchanged *)

Intel IA-064
[2007]

Motorola 68000
[1980]

ADD

ADD

Add
(M68000 Family)

Operation: Source + Destination — Destination
Assembler ADD <ea> ,Dn

Syntax: ADD Dn, <ea >

Attributes: Size = (Byte, Word, Long)

Description: Adds the source operand to the destination operand using binary addition and
stores the result in the destination location. The size of the operation may be specified
as byte, word, or long. The mode of the instruction indicates which operand is the
source and which is the destination, as well as the operand size.

Condition Codes:

X — Set the same as the carry bit.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Set if an overflow is generated; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

1 1 0 1 REGISTER OPMODE

