
functional
programming

learning
objectives

learn the problem with side effects

learn how functional programming solves it

learn about high-order functions

hardware

your software

algorithms

system software

source of this lesson
functional
programming  
in scala

by Paul Chiusano & 
 Rúnar Bjarnason

Manning, 2014

a function has a side effect if it
modifies something outside itself

class Cafe {
 def buyCoffee(cc: CreditCard): Coffee = {
 val cup = new Coffee()
 cc.charge(cup.price)
 return cup
 }
}

side effects

charging a credit card modifies
something outside buyCoffee,
i.e., it requires contacting  
the credit card company

this makes it difficult to
test function buyCoffee

6 CHAPTER 1 What is functional programming?

simple, but in other cases the logic we need to duplicate may be nontrivial, and we
should mourn the loss of code reuse and composition!

1.1.2 A functional solution: removing the side effects

The functional solution is to eliminate side effects and have buyCoffee return the
charge as a value in addition to returning the Coffee. The concerns of processing the
charge by sending it off to the credit card company, persisting a record of it, and so
on, will be handled elsewhere. Again, we’ll cover Scala’s syntax more in later chapters,
but here’s what a functional solution might look like:

class Cafe {
def buyCoffee(cc: CreditCard): (Coffee, Charge) = {

val cup = new Coffee()
(cup, Charge(cc, cup.price))

}
}

Here we’ve separated the concern of creating a charge from the processing or interpreta-
tion of that charge. The buyCoffee function now returns a Charge as a value along
with the Coffee. We’ll see shortly how this lets us reuse it more easily to purchase mul-
tiple coffees with a single transaction. But what is Charge? It’s a data type we just
invented containing a CreditCard and an amount, equipped with a handy function,
combine, for combining charges with the same CreditCard:

With a side effect

A call to buyCoffee

Can’t test buyCoffee
without credit card server.

Can’t combine two
transactions into one.

Side effect
Send transaction

Credit card Cup Credit card Cup

Credit card
server

buyCoffee

Without a side effect

Charge

buyCoffee

Charge

Coalesce

List (charge1,
charge2, ...)

If buyCoffee
returns a charge object

instead of performing a side
effect, a caller can easily combine

several charges into one transaction.
(and can easily test the buyCoffee function

without needing a payment processor).

buyCoffee now
returns a pair of a
Coffee and a Charge,
indicated with the type
(Coffee, Charge).
Whatever system
processes payments is
not involved at all here.To create a pair, we put the cup and Charge

in parentheses separated by a comma.

solution pure
functions

pure functions
only return values and have no side effects

class Cafe {
 def buyCoffee(cc: CreditCard): (Coffee, Charge) = {
 val cup = new Coffee()
 return (cup,Charge(cc, cup.price))
 }
}

case class Charge(cc: CreditCard, amount: Double) { 
 def combine(other: Charge): Charge = 
 if (cc == other.cc) 
 return Charge(cc, amount + other.amount) 
 else throw new Exception("Charges on different credit cards cannot be combined") 
}

now buyCoffee simply returns a tuple
consisting of a Coffee and a Charge

class Charge reifies the action 
of charging the credit card
and returns it as an object

6 CHAPTER 1 What is functional programming?

simple, but in other cases the logic we need to duplicate may be nontrivial, and we
should mourn the loss of code reuse and composition!

1.1.2 A functional solution: removing the side effects

The functional solution is to eliminate side effects and have buyCoffee return the
charge as a value in addition to returning the Coffee. The concerns of processing the
charge by sending it off to the credit card company, persisting a record of it, and so
on, will be handled elsewhere. Again, we’ll cover Scala’s syntax more in later chapters,
but here’s what a functional solution might look like:

class Cafe {
def buyCoffee(cc: CreditCard): (Coffee, Charge) = {

val cup = new Coffee()
(cup, Charge(cc, cup.price))

}
}

Here we’ve separated the concern of creating a charge from the processing or interpreta-
tion of that charge. The buyCoffee function now returns a Charge as a value along
with the Coffee. We’ll see shortly how this lets us reuse it more easily to purchase mul-
tiple coffees with a single transaction. But what is Charge? It’s a data type we just
invented containing a CreditCard and an amount, equipped with a handy function,
combine, for combining charges with the same CreditCard:

With a side effect

A call to buyCoffee

Can’t test buyCoffee
without credit card server.

Can’t combine two
transactions into one.

Side effect
Send transaction

Credit card Cup Credit card Cup

Credit card
server

buyCoffee

Without a side effect

Charge

buyCoffee

Charge

Coalesce

List (charge1,
charge2, ...)

If buyCoffee
returns a charge object

instead of performing a side
effect, a caller can easily combine

several charges into one transaction.
(and can easily test the buyCoffee function

without needing a payment processor).

buyCoffee now
returns a pair of a
Coffee and a Charge,
indicated with the type
(Coffee, Charge).
Whatever system
processes payments is
not involved at all here.To create a pair, we put the cup and Charge

in parentheses separated by a comma.

a function f is pure if the expression f(x) is referentially
transparent for all referentially transparent x

an expression e is referentially transparent if, for all
programs p, all occurrences of e in p can be substituted by

the result of evaluating e without affecting the semantics of p

referential integrity

class Cafe {
 def buyCoffee(cc: CreditCard): Coffee = {
 val cup = new Coffee()
 cc.charge(cup.price)
 return cup
 }
}

...
val coffee = buyCoffee(myCreditCard)
...

...
val coffee = new Coffee()
...⇎

class Cafe {
 def buyCoffee(cc: CreditCard): (Coffee, Charge) = {
 val cup = new Coffee()
 return (cup,Charge(cc, cup.price))
 }
}

...
val (coffee, charge) = buyCoffee(myCreditCard)
...

...
var cup = new Coffee()
val (coffee, charge) = (cup, Charge(myCreditCard, cup.price)
...

⇔

class Cafe {
 def buyCoffee(cc: CreditCard): (Coffee, Charge) = { ... }

 def buyCoffees(cc: CreditCard, n: Int): (List[Coffee], Charge) = {
 val purchases: List[(Coffee, Charge)] = List.fill(n)(buyCoffee(cc))
 val (coffees, charges) = purchases.unzip
 return (coffees, charges.reduce((c1,c2) => c1.combine(c2)))
 }
}

pure functions contribute to code reuse
because they can be easily composed

functional reuse

assuming n = 3

what is this?

class Cafe {
 def buyCoffee(cc: CreditCard): Coffee = { ... }

 def buyCoffees(cc: CreditCard, n: Int): (List[Coffee], Charge) = {
 val purchases: List[(Coffee, Charge)] = List.fill(n)(buyCoffee(cc))
 val (coffees, charges) = purchases.unzip
 return (coffees, charges.reduce((c1,c2) => c1.combine(c2)))
 }
}

this is a parameter of type function 
(Charge,Charge) => Charge

high-order functions are also called functionals or functors

this concept comes from lambda calculus, a formal system  
in mathematical logic for expressing computation

take a function as parameter or
returns function as its results

high-order functions

class DenseMatrix(private val rows: Int, private val cols: Int) extends AbstractMatrix { 
 ... 
 
 private val matrix = Array.ofDim[Int](rows, cols) 
 
 def this(rows: Int, cols: Int, init: (Int,Int) => Int) { 
 this(rows,cols) 
 for (i <- 0 to rows - 1; j <- 0 to cols - 1) 
 this.matrix(i)(j) = init(i,j) 
 }
 ...
}

back to matrices

var m = new DenseMatrix(3, 3, (i,j) => i + j) 
m.print

m = new DenseMatrix(3, 3, (i,j) => (i + 1) * 2) 
m.print

m = new DenseMatrix(3, 3, (i,j) => (j + 1) * 2) 
m.print

m = new DenseMatrix(3, 3, (i,j) => 7) 
m.print

m = new DenseMatrix(3, 3, (i,j) => scala.util.Random.nextInt(5)) 
m.print

DenseMatrix
| 0 1 2 |
| 1 2 3 |
| 2 3 4 | DenseMatrix

| 2 2 2 |
| 4 4 4 |
| 6 6 6 |

DenseMatrix
| 2 4 6 |
| 2 4 6 |
| 2 4 6 |

DenseMatrix
| 1 3 3 |
| 2 2 3 |
| 2 1 2 |

DenseMatrix
| 7 7 7 |
| 7 7 7 |
| 7 7 7 |

