functional
progmmming

\earhihg S
objecﬁves

system software

+ learn the problem with side effects
+ learn how funchiornal programming solves it

+ learn about high—order functions

source of this lesson

FUNCTIONAL
PROGRAMMING
IN SCALA

BY PAUL CHIUGANO &
RUNAR BJARNASON

MANNING, 2014

side effects

a function has a side effect f tt
modifies someﬂnimg outside ttself

, charging a credit card modifies | def buyCoffee(cc: CreditCard): Coffee = {
someﬂnimg oufside buyCoffee, L. val cup = new Coffee()
) . . . e CC.Charge(cup.price)
‘.e., |‘|’ quulres COh“'aC‘hhg return cup
the credit card company \ }
Credit card Cup

G

this makes it difficult o —
test ‘FuhCﬁ()h bu y Coffee Side effect

Credit card
server

Send transaction

pure
- functions

pure functions

only return values and have no side effects

class Cafe {
def buyCoffee(cc: CreditCard): (Coffee, Charge) = {
val cup = new Coffeel() “

, return (cup,Charge(cc, cup.price)) = ,' now buyCoffee “"‘PN re‘l’urns Q fup\e |
} connrhng of Q Coffee and Q Charge

case class Charge(cc: CreditCard, amount: Double) {
def combine(other: Charge): Charge =
if (cc == other.cc)
return Charge(cc, amount + other.amount)
else throw new Exception("Charges on different credit cards cannot be combined")

class Charge reifies the action Cred'“id Cup
of charging the credit card
Charge

and returns it as an objecl’ _

}

referential inteqrity
an expression e is referentially transparent i, for all

programs p, all occurrences of ¢ in p can be substituted by
the result of evaluating e without affecting the semantics of p

a function [is pure H the expression f(x) is referentially
transparent for all referentially transparent x

class Cafe {
def buyCoffee(cc: CreditCard): Coffee = {
val cup = new Coffee()
cc.charge(cup.price)
return cup

1 val coffee = buyCoffee(myCreditCard) <i> val coffee = new Coffeel()

class Cafe { val (coffee, charge) = buyCoffee(myCreditCard)
def buyCoffee(cc: CreditCard): (Coffee, Charge) = { ...
val cup = new Coffeel() @ — —
return (cup,Charge(cc, cup.price)) o
} var cup = new Coffee(

I3 val (coffee, charge) (cup, Charge(myCreditCard, cup.price)

| — — [|

L — ————

functional reuse

pure functions contribute to code reuse

because th can be easily composed

class Cafe {

def buyCoffee(cc:

CreditCard):

—

assumihg n

(Coffee, Charge) = { ... } J—

def buyCoffees(cc: CreditCard, n: Int): (List[Coffee], Charge) = {
val purchases: List[(Coffee, Charge)] = List.fill(n) (buyCoffee(cc))————p

val (coffees, charges) = purchases.unzip
return (coffees, charges.reduce((cl,c2) => cl.combine(c2)))

}
}

what is this?

\nigh-order functions

take a function as parameter or
returns function as tts results

class Cafe {
def buyCoffee(cc: CreditCard): Coffee = { ... }

def buyCoffees(cc: CreditCard, n: Int): (List[Coffeel]l, Charge) = {
val purchases: List[(Coffee, Charge)] = List.fill(n) (buyCoffee(cc))
val (coffees, charges) = purchases.unzip
return (coffees, charges.reduce((cl,c2) => cl.combine(c2)))
}
}

this is a parameter of +ype function
(Charge,Charge) => Charge

high-order funchions are also called funchtionals or functors

this concept comes from lambda calculus, a formal system
in mathematical logic for expressing computation

back to matrices

class DenseMatrix(private val rows: Int, private val cols: Int) extends AbstractMatrix {

private val matrix = Array.ofDim[Int](rows, cols)

def this(rows: Int, cols: Int, init: (Int,Int) => Int) {
this(rows,cols)
for (i <- 0 to rows - 1; j <— 0 to cols - 1)
this.matrix(i)(j) = init(i,j)

}
}
var m = new DenseMatrix(3, 3, (i,j) => i + j) [DenseMatri
m.print | 0 1 2 |
| 1 2 3 ||,
| 2 3 4 | DenseMatrix
. . . ’ 2 2 2
m = new DenseMatrix(3, 3, (i,j) => (i + 1) % 2) I 4 4 4
m.print | 6 6 6
DenseMatrix
| 2 4 6 |
m = new DenseMatrix(3, 3, (i,j) => (j + 1) % 2) | 2 4 6 |
m.print | 2 4 6 | |,
“| DenseMatrix
| 7 7 7
_ - Ly | 7 7 7
m = new DenseMatrix(3, 3, (i,j) => 7) 7 7 7
m.print
DenseMatrix
| 1 3 3 |
m = new DenseMatrix(3, 3, (i,j) => scala.util.Random.nextInt(5))— | 2 2 3 |
m.print | 2 1 2

