
Concurrent
Programming

Benoît Garbinato

Concurrent Programming © Benoît Garbinato

Processes & threads
A process is a unit of execution managed at
the level of the operating system

Each process has its own address space,
i.e., no other process can access it

A thread is a sequential flow of control
executing within a process

All threads within a process share the same
address space, i.e., they share memory

Concurrent Programming © Benoît Garbinato

Concurrency & parallelism

operating system

hardware (CPUs)

concurrent
applications

concurrent
operating system

parallel
computer

Concurrent Programming © Benoît Garbinato

Pseudo vs. Quasi Parallelism
With pseudo-parallelism, a thread can be
interrupted by the system at any time (we
say that the system is preemptive)

With quasi-parallelism, a thread can
only be interrupted voluntarily, either
explicitly or when it performs a input/
output system call

Concurrent Programming © Benoît Garbinato

Liveness & safety
Safety : nothing bad ever happens

In object-oriented terms, this means that the
state of no object will ever be corrupted

Liveness : something good eventually happens

In object-oriented terms, this means that the
state of some object will eventually change

Concurrent Programming © Benoît Garbinato

Creating threads in java

public class PrimeThread extends Thread {
 long minPrime;

 public PrimeThread(long minPrime) {
 this.minPrime= minPrime;
 }

 public void run() {
 // Compute prime larger than minPrime
 ...
 }

 public static void main(String[] args) {
 PrimeThread pt= new PrimeThread(7);
 pt.start();
 }
}

public class PrimeRun implements Runnable {
 long minPrime;

 public PrimeRun(long minPrime) {
 this.minPrime= minPrime;
 }

 public void run() {
 // Compute prime larger than minPrime
 ...
 }

 public static void main(String[] args) {
 PrimeRun pr= new PrimeRun(7);
 new Thread(pr).start();
 }
}

Extending Thread Implementing Runnable

Concurrent Programming © Benoît Garbinato

Mutual exclusion
The readers/writers problem is a typical
mutual exclusion problem:

no reader should be allowed to read
while a writer is writing

no writer should be allowed to write
while either another writer is writing or
a reader is reading

Concurrent Programming © Benoît Garbinato

critical resources

critical
section

critical
section

public class Reader extends Thread {
 private Data data;

 public Reader(Data data) {
 this.data= data;
 }
 public void run() {
 while (true) {
 System.out.print(data.getName());
 System.out.println(data.getPhone());
 }
 }
}

public class Data {
 private String name;
 private String phone;
 public void setName(String name) { this.name= name; }
 public String getName() { return name;}
 public void setPhone(String phone) { this.phone= phone; }
 public String getPhone() { return phone; }
}

data= new Data();
w1= new Writer(data, "James", "007");
w2= new Writer(data, "Devil", "666");
r1= new Reader(data);
r1.start(); w1.start(); w2.start();

Readers/Writers

public class Writer extends Thread {
 private Data data;
 private String name;
 private String phone;

 public Writer(Data data, String name,
 String phone) {
 this.data= data;
 this.name= name; this.phone= phone;
 }
 public void run() {
 while (true) {
 data.setName(name);
 data.setPhone(phone);
 }
 }
}

Concurrent Programming © Benoît Garbinato

The concept of monitor
A monitor is associated with an object to...

...implicitly ensure mutual exclusion of its methods

...explicitly suspend or wake up threads using that object

In Java, each object has an associated monitor
You have two ways to express mutual
exclusion in Java:

synchronized
public void setData(String name, String phone) {
 this.name= name;
 this.phone= phone;
}

synchronized (data) {
 name= data.getName();
 phone= data.getPhone();
}

At the method level At the object level

Concurrent Programming © Benoît Garbinato

Readers/Writers revisited

public class Writer extends Thread {
 private Data data;
 private String name;
 private String phone;

 public Writer(Data data, String name,
 String phone) {
 this.data= data; this.name= name;
 this.phone= phone;
 }
 public void run() {
 while (true)
 data.setData(name,phone);
 }
}

public class Reader extends Thread {
 private Data data;

 public Reader(Data data) {
 this.data= data;
 }
 public void run() {
 while (true) {
 synchronized (data) {
 System.out.print(data.getName());
 System.out.print(data.getPhone());
 }
 }
 }
}

data= new Data();
w1= new Writer(data, "James", "007");
w2= new Writer(data, "Devil", "666");
r1= new Reader(data);
r1.start(); w1.start(); w2.start();

public class Data {
 private String name;
 private String phone;
 public String getName() { return name;}
 public String getPhone() { return phone; }
 synchronized
 public void setData(String name, String phone)
 { this.name= name; this.phone= phone;}
}

Concurrent Programming © Benoît Garbinato

Waiting & notifying
A monitor is associated to an object to
explicitly suspend or wake up threads
using that object.

public class Object {
 ...
 public final void wait() {...}
 public final void notify() {...}
 public final void notifyAll() {...}
 ...
}

Concurrent Programming © Benoît Garbinato

Using wait() and notify()
 public static void main(String[] args) {
 final Object wham= new Object();
 Runnable singer= new Runnable() {
 public void run() {
 try {
 for (int i= 1; i<=100; i++)
 synchronized (wham) { wham.wait(); }
 } catch (InterruptedException e) {}
 }
 };
 Thread george= new Thread(singer, "George");
 Thread andrew= new Thread(singer, "Andrew");
 george.start(); andrew.start();

 int i= 0;
 while (george.isAlive() || andrew.isAlive()) {
 synchronized (wham) {wham.notify();}
 i++;
 }
 System.out.println("\nI had to send " + i + " notifications.");
 }

Question: how many times was notify() called ?

Concurrent Programming © Benoît Garbinato

Lifecycle of a thread

start()

created

ready

run()

terminates

running

chosen

by scheduler

dead

waiting blockedo.wait()

interrupted by

scheduler or

call to yield()

o.notify()

or o.notifyAll()

called by another thread

blocked for i/o

or waiting for lock

(synchronized)

data received or

lock obtained

i/o stream closed

by another thread

sleeping sleep()

sleep time is over

Concurrent Programming © Benoît Garbinato

Synchronization
The producers/consumers problem is a
typical synchronization problem:

Let S be a bounded buffer

A producer should only be allowed to
produce as long as S is not full

A consumer should only be allowed to
consume as long as S is not empty

Concurrent Programming © Benoît Garbinato

Producer/Consumer
public class Stack {
 private int[] data;
 private int i;
 public Stack(int size) {
 data= new int[size];
 i= 0;
 }
 synchronized
 public void push(int d) {
 if (i == data.length) wait();
 data[i]= d;
 i++;
 notify();
 }
 synchronized
 public int pop() {
 if (i == 0) wait();
 i--;
 int d= data[i];
 notify();
 return d;
 }
}

public class Producer extends Thread {
 private Stack shared;
 public Producer(Stack shared)
 { this.shared= shared;}

 public void run() {
 while (true) {
 int d= ...;
 shared.push(d);
 }
 }
}

public class Consumer extends Thread {
 private Stack shared;
 public Consumer(Stack shared)
 { this.shared= shared; }

 public void run() {
 while (true) {
 int d= shared.pop();
 ...
 }
 }
}

Concurrent Programming © Benoît Garbinato

Producers/Consumers
synchronized
public void push(int d) {
 while (i == data.length) { wait();}
 data[i]= d;
 i++;
 notifyAll();
}

synchronized
public int pop() {
 while (i == 0) {wait();}
 i--;
 int d= data[i];
 notifyAll();
 return d;
}

if → while transformation ensures safety

notify → notifyAll transformation ensures liveness

Concurrent Programming © Benoît Garbinato

General pattern
synchronized public void doSomething(...) {

 while (condition not true) wait();
 ...
 notifyAll();
}

A problematic
scenario with
while and notify
(not notifyAll)
assuming

S.size() == 1

ensures safety
ensures liveness

1 2 3 4 5

Stack S empty full empty full full

Consumer C1

state: ready [1]
do: wait

state: ready [2]
do: empty S
do: notify P1
do: wait

state: wait state: wait state: wait

Producer P1

state: ready [2]
do: fill S
do: notify C1
do: wait

state: wait state: ready
do: fill S
do: notify P2
do: wait

state: wait state: wait

Producer P2

state: blocked
[outside push]

state: ready [1]
do: wait

state: wait state: ready
do: wait

state: wait

Concurrent Programming © Benoît Garbinato

Limitations of monitors (1)
The monitor abstraction is somewhat too high-level.
In particular, it is impossible to:

acquire mutual exclusion if it is already granted,
or give it up after a timeout or an interrupt
acquire mutual exclusion in one method and
release it in another method
alter the semantics of mutual exclusion, e.g., with
respect to reentrancy, reads vs. writes, or fairness

Concurrent Programming © Benoît Garbinato

Limitations of monitors (2)

The monitor abstraction is somewhat too low-level.
In particular, it provides no direct support for:

Atomic variables (thread-safe single variables)

Reader/writer and producer/consumer

Highly concurrent collection classes

Concurrent Programming © Benoît Garbinato

Concurrency utilities (JSE5)
Design goals

Reduced programming effort
Increased performance & reliability
Improved maintainability & productivity

Features
Task scheduling framework
Concurrent collections & atomic variables
Synchronizers & locks
Nanosecond-granularity

Packages
java.util.concurrent, java.util.concurrent.atomic,
java.util.concurrent.locks

Concurrent Programming © Benoît Garbinato

Locks & condition variables
public class BoundedBuffer {
 final Lock lock = new ReentrantLock();
 final Condition notFull = lock.newCondition();
 final Condition notEmpty = lock.newCondition();
 final Object[] items = new Object[100];
 int putptr, takeptr, count;

 public void put(Object x)
 throws InterruptedException {
 lock.lock();
 try {
 while (count == items.length)
 notFull.await();
 items[putptr] = x;
 if (++putptr == items.length)
 putptr = 0;
 ++count;
 notEmpty.signal();
 } finally {
 lock.unlock();
 }
 }
 ...

 public Object take() throws InterruptedException {
 lock.lock();
 try {
 while (count == 0)
 notEmpty.await();
 Object x = items[takeptr];
 if (++takeptr == items.length) takeptr = 0;
 --count;
 notFull.signal();
 return x;
 } finally {
 lock.unlock();
 }
 }
}

The await() call is equivalent to the wait() call

The signal() call is equivalent to the notify() call

Concurrent Programming © Benoît Garbinato

Atomic variables
Atomic variables lock-free & thread-safe
programming on single variables

public class Sequencer {
 private long unsafeSequenceNumber = 0;
 private AtomicLong safeSequenceNumber = new AtomicLong(0);
 public long unsafeNext() { return unsafeSequenceNumber++; }
 synchronized public long blockingNext() { return unsafeSequenceNumber++; }
 public long safeLockFreeNext() { return safeSequenceNumber.getAndIncrement(); }
}

Concurrent Programming © Benoît Garbinato

Reader/Writer support
Interface ReadWriteLock & class ReentrantReadWriteLock
support reader/writer solutions with the following properties:

multiple threads can read simultaneously
fairness policy can be enforced (arrival-order)

public class ReaderWriterDictionary {
 private final Map<String, String> m = new TreeMap<String, String>();
 private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock(true);
 private final Lock r = rwl.readLock();
 private final Lock w = rwl.writeLock();

 public String get(String key) {
 r.lock(); try { return m.get(key); } finally { r.unlock(); }
 }
 public String put(String key, String value) {
 w.lock(); try { return m.put(key, value); } finally { w.unlock(); }
 }
}

Concurrent Programming © Benoît Garbinato

Producer/Consumer support
Interface BlockingQueue & various implementation classes
support producers/consumers solutions in a direct manner

 class Producer implements Runnable {
 private final BlockingQueue queue;
 Producer(BlockingQueue q) { queue = q; }
 public void run() {
 try {
 while(true) { queue.put(produce()); }
 } catch (InterruptedException ex) { ... }
 }
 Object produce() { ... }
 }

 class Consumer implements Runnable {
 private final BlockingQueue queue;
 Consumer(BlockingQueue q) { queue = q; }
 public void run() {
 try {
 while(true) { consume(queue.take()); }
 } catch (InterruptedException ex) { ... }
 }
 void consume(Object x) { ... }
 }

 void main() {
 BlockingQueue q = new ArrayBlockingQueue(1000,true);
 Producer p = new Producer(q);
 Consumer c1 = new Consumer(q);
 Consumer c2 = new Consumer(q);
 new Thread(p).start();
 new Thread(c1).start();
 new Thread(c2).start();
 }

Concurrent Programming © Benoît Garbinato

Concurrent collections
The Hashtable is already thread-safe, so why
define a new class ConcurrentHashMap?
With a Hashtable, every method is synchronized,
so no two threads can access it concurrently
With a ConcurrentHashMap, multiple operations
can overlap each other without waiting, i.e.,

unbounded number of reads can overlap each other
up to 16 writes can overlap each other (by default)
reads can overlap writes

