

your software

objectives ¢

\earhihg

+ understand the role of an oPeraﬁng system
+ understand the role of interpreters and compilers

* understand the role of runtime systems ¢ libraries

what's system software?

application software consists in programs that
help to solve a particular computing problem,
e.q., write documents, browse the web, etc.

system software consists in programs that sit
between application software and the hardware,
providing common services to application software

examP\es of
system software

+ operating systems, game engines
+ virtual machines and interpreters

* lanquage runtimes, standard libraries

bits of history

no system software - W ve
i >

-~/

batch systems

sharing era

multi-user £ time-sharing

= the

persona\ desld’oP comPud'ers gg personal era
A

— | —

dimibu'red SiS‘rQW\S -)& tckg)emmunica’[ion era

the digital
£/ transformation era

mobile systems °
ubiquitous systems

no sjrl’ems software

+ 19Y0s: programming based
on dials £ switches

+ [950s: single user, punched
cards, paper tape

..........5 FORTRAN STATEMENT lonuTIricATION
108000 700 (] i 700 700] TTTTTTT
'
1

s R N R N AN XN TR A ARV AN OUCOHCHON AR SDUBR A NRNTORSHANRRTDPURNTI AN R

qllll AR R R R R AR AR AR AR RN AR AR R AR RRER] RRRRRAN]
22p22222122
Al33aaf3la899939339322332933235833335233323329333333332333323333333333333333308333333

444llll04lllll4|l4ll4llll(4!(444“(44lllll4l(l0444lll(lllllllll4444‘40444!(‘44‘!
SIS 5 555/55/55555553

4&8655655585585BESGGSSBEESSEEGSSBSBSEGSS5EEEESGS565555655655555656655655655686‘3

VRRR I RRRE RN RERERREREERERERRRRRR RN ERESRARERRRRERERERRRARRERRRRRERRRRRRIIRRRRR R

4!3!508!llllllBB!BIIt!llllllllllll!lllllllllllll!!lIlllllltllll!(il!lllltlllllll

9198999/939 95!99!B!!i!!i!!!!!!!!3!9!!!!!!!999995!!!99!9!!!39!99!!!!!9!!29!3!!!9!
ealelinn

(ERY st BUNUNE R TUNEN D DNERDAANN DB U BRI RN AN COHSHTRARN N UMB ST IR ROHEETHRRNI IR U ATI RN
ausnnin?

s batch systems

Tape System a) put cards into reader

drive Input lape Quiput b) read cards to tape

(
Card — tape ¢ \ tape (
reader @ 8| S| H& o|()]| Printer (c) put input tape on computer
Ef O, | 1Sl HSl MS. 1S, (d) perform the computation
A AT A (e) put output tape on printer
iInput computer output (f) print output tape on paper

(@) (b) () (d) (e) (f)

* first uni—Programmed batch systems systemm

)))) program
m wait run wait Fun wait run wait |
» time

+ then muthi-proqrammed batch systems system

m > program A program A
wait m wait m wait run
» program B
wait it
run wel m_> program C
J run oot run frtnd ron IR RR] run run R program ¢
combined

program B

Eaal

1970 multi-user & time-sharing

Le “"‘l‘{\omso@,ioehhis Ritchie @ bell Labs’

+ 19¢60s: disasters... but great learning £ innovations
O 0S/360: years behind schedule, shipped with 1000 known bugs
O Multics: started in 1963, working in 1969, far too complex

+ 1970s: finally mastering complexity thanks to:
o higher level structured lanquages (Rigol, C, Pascal, etc.)
o portable operating systems code (C was invented for that)
o stacking layers (kernel, compilers, libraries, etc.)

1980 1990 2000 2010 Time

Y

| FreeBSD 91 |
. .
BSD family | NetBSD 6.0.1 |
L>| OpenBSD 5.3 |
~»{ BSD (Berkeley Software Distribution) 4.4 |
BillJoy \—w! sunos 414 |
Darwin
»| NextStep 3.3
Mac OS X 10.84 |
Xenix0s | Apple
Microsoft/SCO GNU/Hurd K16 _
--------- o | -
_ 1,
Richard Staliman | GNU/Linux 3.10.9)
’fMlnlx . Linus Torvalds 321
Andrew S. Tanenbaum .
Researc h UNIX 105 |
Bell Labs: Ken Thompson, > I ‘
Denn}'s R,’[ch,’e’ et al. | Commerc‘al UNlX Unlelre
AT&T L Univel/SCO
> Solaris 111111 |
Sun Microsystems
System Il & V family f»{ #p-ux 11iv3 |
= AIX 7171 |
IBM
> IRIX 6530 |

SGI

+ after the Multics “disaster”, Ken Thompson, Dennis Ritchie £ others decided
Yo redo the work on a much smaller scale at Bell Labs

* in 1972, Unix was rewritten from assembly lanquage to C programming
lanquage, resulting in the first portable operating system

+ in 1975, Ken Thompson was on sabbatical at Berkeley and worked with Bill
Joy, then a graduate student, which eventually lead to BSD Unix

+ in 1980, the DARPA project chose BSD Unix as basis for DARPANet

+ in 1982, Bill Joy joined Sun Microsystems six months after its creation as full
co-founder and extended BSD Unix to make it a networked operating system

W\ICYO \YOCQS SOYS

Q mmroProcessor s a comPufer processor mfegrahng a\\
functions of a central processing unit on a smg\e chlp
~ | P -- N\
fhe number of 'hrannrl’ors in a dense mfegrafecl
circuit doub\es apProxlma‘he\xl ever1 ‘l’wo 1ears

+ this is unique across all engineering fields

+ transportation increased speed from 20 km/h (horse) to 2'oo0
km/h (concorde) in 200 yJears but the computer industry has
been doing this every decade for the past to yJears

+ the advent of the microprocessor ‘hriggered the decline of
mainframes and led to the personal computer revolution

wriﬁng system software is about
martering exponential comP\exH’s,

Rs long as there were no machines, programming was no problem at all; when
we had a few weak computers, programming became a mild problem and now
that we have gigantic computers, programming has become an equally gigantic
problem. in this sense the electronic industry has not solved a single problem, it
has only created them - it has created the problem of using its products.

Edgster Dijkstra, The Humble
Programmer. Communication of the
RCM, vol. Ig, no. lo. October 1972.
Turing Rward Lecture.

the ihdurl’rj \
is now gOihg | ‘ { ”'1 — - — - - — . - - . -

mulhicore

S

I

o

acceleration

1980s: one man, one computer
o workstation, personal computers 20005: My phone is my computer
o) graphica\ user interfaces o0 smartphones ¢ tablets as computers
o generalization of wireless networks

1990s: the network is the computer

0 the internet accessible to all 20los: eve\r\ﬂhihg s a compufer
o distributed operating systems o smart objects £ the internet of things
o personal networks connected to the cloud

OPQYa‘ﬁhg s~|rtem

%‘ﬁg’&ﬁ'&'ﬂﬂ

e ol e Sl S

g!ﬁﬁiﬁmiﬂ
R S b I

%‘*"ﬁ‘i"?‘*’?

controls the access to hardware resources (cpu,
memory, input/output devices, etc.) and acts
as an interface with application software

jstem

{ libraries | runtimes | interpreters }

oPer Q.

system calls

kernel

-
-5 —
-, ":f

=
hardware

application
software

s~|rtem

processor modes

+ kernel mode (system)
+ user mode (application)

{ libraries | runtimes | interpreters }

system calls ' . i;%q ww:mtzg

P e o Bt 8 .'- "\5—41 23l '2("

kernel

iE;

‘ ‘g -
L eB D

B
hardware

user space
accessed in

application | user mode
software y . E

accessed in
kernel mode

oPeraﬁng s1rtem

resources managed b\| 0pera‘|’ihg sjrl'ems

)

2 4

) 4

Cpu: process managemewl’
memor1-. memoﬁ managemevd’

input/output: /o managemewl’ i
storage: storage and file management

rea\iﬂ

(p\rqsica\ resources)

n parallel cores

—
+ keyboard, mouse, display
+ fouch screen, haptic interface, network
+ printer, audio device, connectors (usb, dvi, etc.)
+ compass, accelerometer, global positioning system
+ eftc...

abstracthion

(virtual resources)

m concurrent threads, with m > n

subset of 2k addressable memory
on a k bits machine, e .g., for k = 64,
this is typically 8 to 32 gigabytes

full 2% addressable memory

for k = 64, this is 16 exabytes
= 16 x 10° terabytes = 16 x 10 gigabytes

in addition, each thread can access the full 2k addressable memory as if it was for its exclusive use

hard disk drive (hdd), solid state drive (ssd), usb keys, etc... file system offering persistency

i network interfaces, e.g., wifi, ethernet

J network connections, with with j > i

execuhions and interpreters

concepf examP\es

PYOQYGW\P\ / \i<—i+1/ an addfho \l<—l+1/
g written n

written in | :
_ 1‘“1073 sCaAW |(var i = 0;
\ahguageL L 1;9+1 P or i =1 + 1
swift

, oPerahng s1r|’em OS
con‘hro\\mg machine
execuﬁng \anguage M

soLaris

ARM (inteD SPARC
()Y
Samsung S7 Mackook Pro Oracle Server

M] rumning Android running oS X runhing Solaris
\/ ; on ARM on \ntel on SPARC

machine \anguage M = instruction set & bxrfe code

execuhons and wnterpreters

concepf examP\es
PYOQYGW\P\ / \z<—z+1/ an add\‘ho \l<—l+1/
; wrrl‘l'en n
written n ‘
: sCa\q |var i = 0;
\ahguage L L 1 _ (1) + 1 P\,{hoy‘ | or i=1 + g:
running on swift

machine L

L

N

SOLArIS

program \anguage must ARM @ SPARC
match machine language
| Samsung S7 Mac®ook Pro Oracle Server
| running RAndroid runhing 0S X running Solaris
we forget about the ' on RRM on \ntel on SPRARC

oPeraﬁng system for rnow

execuhons and wnterpreters

concepf examP\es
program P \ / an “ddﬂw \u— i+ 1 /
written in
written n F ‘
language L L python ‘ scala |var i - o;
rumhing on

machine L

program \anguage must
match machine \anguage

we forgel’ about the
oPeraﬁng system for rnow

execuhions and interpreters

concept ‘ examP\es
PYOQYGW\P\ / \i<—i+1/ an addrho \z<—z+1/
| written in
written in |
\ahguage L L i 1 - (1) » PWOH scala var 1 - ({,
rumning on L @
interpreter L
M SPARC

ruvming on
machine M M

an interpreter d\,hﬂlhica“\, translates
\anguage L into \anguage ™M

solution!

execuhions and interpreters

concepf ‘ examP\es
PYOQYGW\P\ / \z<—z+1/ an addrho \l<—l+1/
wrrﬂ'en n
written in ‘
language L L | [129., "’3‘”‘ ’;“ var 19
running on L ﬁ
interpreter L
M (nteD
\@ED/

running on
machine M M

an interpreter d\,hﬂlhica“\, translates
\anguage L into \anguage ™M

execuhions and interpreters

concepf examP\es

A —

PYOgYQW\P\ P / \i<—i+1/ an addrho \l<—l+1/
| - written in

written in F ‘
scala i = 0
lanquage L L Pi:‘:o" ’ yar i s 9
rumning on L ’
in‘l'erprel’er L /(
M Java bytecode
. java
running on virtual J /(
machine M M machine Java bytecode
, SPARC
.
an interpreter d\,hﬂlhica“\, translates interpreter & emulator

\anguage L info \anguage M & virtual machine SPARC

A — S

what's a compiler

a program that translates
p— human-understandable source code to
machine-understandable bx,fe code

0J010010100101011000100101011001101001110011111001101010...

swift compiler

wve \—g\- 2

Vi

ViV

scala compiler

i80011101100010010101100110100111001110011010....

what's a compiler

concept examples
compiler 'hrans\a‘ﬁng ’ & 4 (intel>
source to fargef ‘ /‘7
lanquage > - - language | @tﬁl ’ - bnyZf;‘de
M ~ intel)
|m|>\emew|’e d " M this is a cross—comPt\er
q

qulck uick
sort sort

intel)

=1

(intel) {t;)
@ compk:?;: :i):'e;uhon

what's a compiler

the example of scala

quick quick quick

sort sort
4 4 5
g 3|
bytecode bytecode
7| (inteD) .

the scalac the scala o

bytecode

command intel) command e

N (mtel)

stahic vs. djhamic

RANSLATION

the translation occurs at compile time, before
the execution, while the program is static

———— e —————— e e ——— = —— ————— — R — - = =

NTERPRETATION

the interpretation occurs at run tfime, during
the execution, while the program is dynamic

» what are runtime
. systems & libraries?

a library contains predefined bricks (functions,
objects, etc.) that help create software, e.q.,
strings, dates, lists, input/output functions, etc.

a runtime system is the mortar that g\ues the
various parts of software during execution

where is args stored? }'—"“*

object HelloWorld

ere docs . def rTImn at:gs Array Strl*w:ng where do Array ¢
orintlnC..) —— println("Hello, world! String come from ?

\

how is “Hello, world!”
passed to printin(..)?

come from?

