
system
software

learning
objectives

understand the role of an operating system

understand the role of interpreters and compilers

understand the role of runtime systems & libraries

hardware

your software

algorithms

system software

what’s system software?

application software consists in programs that
help to solve a particular computing problem, 
e.g., write documents, browse the web, etc.

system software consists in programs that sit
between application software and the hardware,
providing common services to application software

examples of 
system software

operating systems, game engines

virtual machines and interpreters

language runtimes, standard libraries

no system software
batch systems

multi-user & time-sharing

personal desktop computers

distributed systems

mobile systems
ubiquitous systems

bits of history

the 
personal era

198
0s

the 
communication era

199
0s

200
0s

201
0s

the digital
transformation era

the
waiting era

194
0s 

195
0s

196
0s

the 
sharing era

197
0s

no systems software
1940s: programming based  
on dials & switches

1950s: single user, punched
cards, paper tape

ENIAC: 30 tons, 200 kilowatts

batch systems

first uni-programmed batch systems

then multi-programmed batch systems

History of Systems
History of Systems

© 2008 Universität Karlsruhe (TH), System Architecture Group 7

� Early batch system
� bring cards to 1401
� read cards to tape
� put tape on 7094 which does computing
� put tape on 1401 which prints output

(a) put cards into reader

(b) read cards to tape

(c) put input tape on computer

(d) perform the computation

(e) put output tape on printer

(f) print output tape on paperinput computer output

time
run run run runwait wait wait wait

run run runwait

run run

run

wait

runwait

run run runwait

wait

wait wait

wait run

run run run run

program A

program B

program C

combined

run

system

program

system

program A

program B

program C

1960s

Ken Thompson &Dennis Ritchie @ Bell Labs

multi-user & time-sharing

1960s: disasters... but great learning & innovations
OS/360: years behind schedule, shipped with 1000 known bugs
Multics: started in 1963, working in 1969, far too complex

from Multics...

...to Unix

1970s: finally mastering complexity thanks to:
higher level structured languages (Algol, C, Pascal, etc.)
portable operating systems code (C was invented for that)
stacking layers (kernel, compilers, libraries, etc.)

1970s

Unix

after the Multics “disaster”, Ken Thompson, Dennis Ritchie & others decided
to redo the work on a much smaller scale at Bell Labs

in 1972, Unix was rewritten from assembly language to C programming
language, resulting in the first portable operating system

in 1975, Ken Thompson was on sabbatical at Berkeley and worked with Bill
Joy, then a graduate student, which eventually lead to BSD Unix

in 1980, the DARPA project chose BSD Unix as basis for DARPANet

in 1982, Bill Joy joined Sun Microsystems six months after its creation as full
co-founder and extended BSD Unix to make it a networked operating system

the number of transistors in a dense integrated  
circuit doubles approximately every two years

microprocessors 
& Moore’s law

this is unique across all engineering fields

transportation increased speed from 20 km/h (horse) to 2’000
km/h (concorde) in 200 years but the computer industry has
been doing this every decade for the past 60 years

the advent of the microprocessor triggered the decline of
mainframes and led to the personal computer revolution

a microprocessor is a computer processor integrating all
functions of a central processing unit on a single chip

writing system software is about
mastering exponential complexity
As long as there were no machines, programming was no problem at all; when
we had a few weak computers, programming became a mild problem and now
that we have gigantic computers, programming has become an equally gigantic
problem. In this sense the electronic industry has not solved a single problem, it
has only created them - it has created the problem of using its products.

Edgster Dijkstra, The Humble
Programmer. Communication of the

ACM, vol. 15, no. 10. October 1972.
Turing Award Lecture.

the industry 
is now going  
multicore

Apple A9 Intel i7

As long as there were no machines, programming was no problem at all; when
we had a few weak computers, programming became a mild problem and now
that we have gigantic computers, programming has become an equally gigantic
problem. In this sense the electronic industry has not solved a single problem, it
has only created them - it has created the problem of using its products.

Edgster Dijkstra, The Humble
Programmer. Communication of the

ACM, vol. 15, no. 10. October 1972.
Turing Award Lecture.

acceleration

1980s: one man, one computer
workstation, personal computers
graphical user interfaces

1990s: the network is the computer
the Internet accessible to all
distributed operating systems

2000s: my phone is my computer
smartphones & tablets as computers
generalization of wireless networks

2010s: everything is a computer
smart objects & the Internet of things
personal networks connected to the cloud

2000 201019901980

operating system

controls the access to hardware resources (cpu,
memory, input/output devices, etc.) and acts 
as an interface with application software

{ libraries | runtimes | interpreters }

system calls

kernel

hardware

application
software

operating system

{ libraries | runtimes | interpreters }

system calls

kernel

hardware

application
software

operating system
processor modes
kernel mode (system)
user mode (application)

}
}

user space
accessed in 
user mode

kernel space
accessed in 
kernel mode

memory protection

operating system
resources managed by operating systems

cpu: process management
memory: memory management
input/output: i/0 management
storage: storage and file management

keyboard, mouse, display
touch screen, haptic interface, network
printer, audio device, connectors (usb, dvi, etc.)
compass, accelerometer, global positioning system
etc...

reality
(physical resources)

abstraction 
(virtual resources)

CPU n parallel cores m concurrent threads, with m ≫ n

memory

subset of 2k addressable memory 
on a k bits machine, e.g., for k = 64,  

this is typically 8 to 32 gigabytes

 full 2k addressable memory 
 for k = 64, this is 16 exabytes 

≅ 16 × 106 terabytes ≅ 16 × 109 gigabytes

in addition, each thread can access the full 2k addressable memory as if it was for its exclusive use

storage hard disk drive (hdd), solid state drive (ssd), usb keys, etc... file system offering persistency

network i network interfaces, e.g., wifi, ethernet j network connections, with with j ≫ i

scala 
 

an addition
written in

 
or  

swift

machine language M ����instruction set ����byte code

executions and interpreters

operating system OS
controlling machine

executing language M

Llanguage L

Pprogram P

written in

i ⟵ i + 1

i = 0
i = i + 1

i ⟵ i + 1

var i = 0;
i = i + 1;

concept examples

python

Samsung S7 
running Android  

on ARM

OS
MacBook Pro 
running OS X  

on Intel

Oracle Server 
running Solaris  

on SPARCM

scala 
 

an addition
written in

 
or  

swift

executions and interpreters

i ⟵ i + 1

i = 0
i = i + 1

i ⟵ i + 1

var i = 0;
i = i + 1;

concept examples

python

Samsung S7 
running Android  

on ARM

MacBook Pro 
running OS X  

on Intel

Oracle Server 
running Solaris  

on SPARC

program language must
match machine language

Llanguage L

Pprogram P

written in

L

we forget about the
operating system for now

machine L
running on

an addition
written in

executions and interpreters

program language must
match machine language

Llanguage L

Pprogram P

written in

i ⟵ i + 1

i = 0
i = i + 1

i ⟵ i + 1

var i = 0;
i = i + 1;

concept examples

python

L

we forget about the
operating system for now

machine L
running on

scala 
 

? ?

problem!

an addition
written in

executions and interpreters

Llanguage L

Pprogram P

written in

i ⟵ i + 1

i = 0
i = i + 1

i ⟵ i + 1

var i = 0;
i = i + 1;

concept examples

python

machine L
running on

scala 
 

? ?

solution!

L

M

MM

interpreter L
running on

an interpreter dynamically translates
language L into language M

an addition
written in

executions and interpreters

Llanguage L

Pprogram P

written in

i ⟵ i + 1

i = 0
i = i + 1

i ⟵ i + 1

var i = 0;
i = i + 1;

concept examples

python

machine L
running on

scala 
 

?L

M

MM

interpreter L
running on

an interpreter dynamically translates
language L into language M

an addition
written in

executions and interpreters

Llanguage L

Pprogram P

written in

i ⟵ i + 1

i = 0
i = i + 1

i ⟵ i + 1

var i = 0;
i = i + 1;

concept examples

python

machine L
running on

scala 
 

L

M

MM

interpreter L
running on

an interpreter dynamically translates
language L into language M

Java bytecode

Java bytecode

java
virtual
machine

interpreter � emulator 
���virtual machine

swift compiler

a program that translates 
human-understandable source code to
machine-understandable byte code

what’s a compiler

0010010100101011000100101011001101001110011111001101010...

scala compiler

10011101100010010101100110100111001110011010...

LDR R3 R1

ADD R3 R1 R2

STR R3 R1

S L

M

�

what’s a compiler
concept

compiler translating

source
language

to target
language

implemented in M

� Java
bytecode

�

examples

this is a cross-compiler

quick
sort

�

quick
sort

compilation  
time

quick
sort

execution 
time

what’s a compiler
the example of scala

quick
sort

�

quick
sort

quick
sort

Java
bytecode

Java
bytecode

Java
bytecode

Java
bytecode

the scalac
command

the scala
command

static vs. dynamic
RANSLATION

NTERPRETATION

the translation occurs at compile time, before
the execution, while the program is static

the interpretation occurs at run time, during
the execution, while the program is dynamic

what are runtime
systems & libraries?

a runtime system is the mortar that glues the
various parts of software during execution

a library contains predefined bricks (functions,
objects, etc.) that help create software, e.g.,

strings, dates, lists, input/output functions, etc.

object HelloWorld {
 def main(args: Array[String]) {
3 println("Hello, world!")
4}

}

where do Array &
String come from ?

where does
println(...) 
come from? how is “Hello, world!”

passed to println(...)?

where is args stored?

