progmmming

basics

your software

‘earhihg —
. system software *

objechves

+ learn about variables, their types and their values
+ learn about different number representations
+ learn boolean a\gebra and conditional bmnching

+ learn about basic text input and output

what's a variable?

in a program, a variable is a symbolic name (also
called identifier) associated with a memory location
where the value of the variable will be stored

wallet ——
age ,
schmilblick ———

reference

yes but what
ype of value?

0010010100101011
1100110100111001
1111001101010011

I]
[#X) = [#K)

f g
C.
O PO | OO e e e Ef-f-f. PP
| | | I | I I | [| | |
= ——]

IIIIIIIIIIIIIII
lllllllllllllll

00100101001010110001001010100100
11001101001110011111001101010011

00100101
00101011
00010010
10100100
11001101
00111001
11110011
01010011

what's a type?

the type of a variable defines what will be
stored in the memory location, e.g., a boolean,
an integer, a character, etc., i.e., how the bits

in the memory location will be interpreted

python scala swift
d = 3.14 var d = 3.14 var d = 3.14
i=20 var 1 = 0 var i = 0
s = "hello" var s = "hello" var s = "hello"
00111110001000000000000000000000 < 0.15625 1000001 < 65

R —— . T—

L — T

1000001 < ‘A’ 0000000 < false

— E— S—— S—

exphcit t \,pihg &

ype inference

as a programmer, you can explicitly define the type of a variable
(explicit Hyping) or let the compiler (or the interpreter) try to infer

the type of the variable, typically through initialization (implicit Hyping)

however, there are cases where Hype inference
is not possible, e.g., in recursive functions

0 var

3.14 var

"hello" var
var

var
var

i
f
S

no static typing ar

var

0

3.14
3.14f
"hello"

: Int =0

: Double = 3.14

: Float = 3.14f

: String = "hello"

var
var
var

var
var
var
var

i
d
S

0V —h —h -

0

3.14

"hello"
: Int = 0
: Double = 3.14
: Float = 3.14

: String = "hello"

stathc h,ping vs
djhamic “’1Pih9

the static type designates the type of

the variable known at compilation time var 1@ Int =0
var f = 3.14f
var s = “hello”

this allows the compiler to catch a certain
f : Float = d

number of errors before the execution i = ¢
S

the dyrnamic type designa’res the ype of the
value contained b1 a variable at run time

T
=
=3
o
=

< < <
m unu

this allows the runtime to catch errors
during the execution

T Jpe carﬁhg

when Jou want to assign a value to a variable
but the static type and the dynamic type do
not match, Jou can perform an explicit
conversion, also known as a type casting

python scala S
d = math.pil var d : Double = math.Pi1i var d : Double.pi
i = int(d) IRy var i o var i = 0
f = float(d) var s = "hello" var s = "hello"
s = str(d) var f = 3.14f var f : Float = 3.14
11: = d.toFloat m var i = Int(d)
i = d.toInt var f = Float(d)
s = d.toString var s = String(d)

number Q
represewrahon

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
8710 = O0x27 + 1x26 + Ox25 + 1x24 4+ 0x23 + 1x22 + 1x21 + 1x20
8710 = 0x128 + 1x64 + ©Ox32 + 1x16 + ©Ox8 + 1x4 + 1x2 + 1x1
8710 = 0 1) 1 0 1 1 1
8710 = 01010111, range = [02,11111111,] = [010,25510]

L ————— I

signed integers with signed magnitude

Bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit @
8710 = 0 1x26 + O@x2> + 1x24 + 0x23 + 1x22 + 1x21 + 1x20
8710 = 0 1 0 1 0 1 1 1
—-8710 = 1 1x64 + 0x32 + 1x16 + ©Ox8 + 1x4 + 1x2 + 1x1
—8710 = 1 1 0 1 0 1 1 1
8710 = 01010111> Bit 7 is the sign bit range = [-12710,+12710]
—8710 = 11010111> 0 < + two ways to represent zero:
— — 1 & - +010 = 00000000>
—010 = 10000000>

R — m—

numbeyr Q
represewtahovu

signed integers with one complement

Bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit @
8710 = 0 1x26 + O@x25 + 1x24 + 0Ox23 + 1x22 + 1x21 + 1x20
8710 = 0 1 0 1 0 1 1 1
not not not not not not not not
2 4 2 2 4 2 2 2
—8710 = 1 0 1 0 1 0 0 0
8710 = 01010111>
—8710 = 10101000, Bit 7 is the sign bit
0 <+ range = [-12710,+12710]
1 <= two ways to represent zero:
e —_ +010 = 00000000>
-010 = 11111111;

e —

numbeyr

represewtaﬁovu

signed integers with two complement

8710
8710

—-8710 =

—8710

8710
—8710

I
=

_1)(27
-1x128

01010111,
10101001,

T—

bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
1x26 + O@x25 + 1x24 + 0Ox23 + 1x22 + 1x21 + 1x20
1 0 1] 1 1 1
not not not not not not not
: 2 2 2 : 2 : 2 2 2 2 2 : 2
] 1] 1 0 0)

+1

: 2

] 1] 1 0] 1
Ox26 4+ 1x25 + 0Ox24 + 1x23 + 0x22 + 0Ox21 + 1x20
+ 1x32 + 1x8 + 1x1

Bit 7 is the sign bit

0 & +
1 o _ range = [-12810,+12710]

only one way to represent zero:
010 = 00000000

—

number
representation
only a small subset of the infinite set of real

numbers can be represented in a computer, which
has a finite memory space

ﬂoaﬁhg point principle

Sigl’l X mantissa X baseexponent

3 3 3
-3.14159 = -1 X 314159 x 10

n a computer, the base is 2

hu"“ber floating point
represewtqﬁoy. single precision

sign exponent (8 bits) mantissa (23 bits)

20111110001 000000000000000000000®0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 b5 4 3 2 1 0

sign =b31 =0 = (—1)¥8" = (-1)" = +1 € {1, +1}

7
e =byobyg...bos = Y bysi2™ =124 €{1,...,(2° —1) -1} ={1,...,254}
1=0

2(6—127) — 2124—127 — 2—3 c {2—126, e 2127}

23
Lbopbar...bp =1+) by 2 =1+1-22=125€{1,1+27%,...,2-27%} c [1;2-27%] C [1;2)
1=1

value = (+1) x 1.25 x 27° = 4-0.15625

constant

a constant s simPN Q
variable that cannot... vary (&

python scala swift

val d : Double = math.Pi 1let d : Double.pil
val 1 = 0 let 1 =0
val s = "hello" let s = "hello"

no constant

S
S

Z

o
<
m-

z

o
<
m-

w H-Q
(T
nw H-Q
(T

\ogic

the intellectual

® tool for reasomng

- about the truth
/\ and falsity of
J o
statements

\/) 4

\Ogic 3 programmihg 4‘;@

J O

most programming lanquages, support boolean
variables, which can take values c {true,false}

n some low-level lanquages, integer numbers are

used for the same purpose, e.g,. with:
p = false < p =20

q = true < g =1 (sometimes q = true © q # 0)
when combined with operators A, Vv where: D not
. . & or
and — , boolean variables constitute an A < and

a\gebra used in conditiornal branching

—————

boolean algebra ;@

J O

assume that p , g and r are boolean variables (or
statements) and that 7' =true, F = false, we have:

p p P g4 pAg P q¢ pVg
F T F F F F F F
T F F T F F T T
T F F T F T _ o not
T T T T T T V < or
A < and
a = False var a = false var a = false
b = True var b = true var b = true
c =aandb var c = a & b var c = a & b
c=aorb c=a || Db c=a || b
Cc = not a c = !a c = !a

some rules "

Associative Rules:
Distributive Rules:
Idempotent Rules:
Double Negation:
DeMorgan’s Rules:

Commutative Rules:

Absorption Rules:
Bound Rules:
Negation Rules:

(PAg) AT = DpA(gAT)
pA(gVr)& (A V(pAT)
PAD S D

——p & p
~(pAq) & —pV—q

PAGE qAD
pV(pAq) <p

pANF&F pANTSp
pA(—p) & F

(pVg)VrepV(gVvr)
pV(gAT)E (PVa A(pVr)
pVp&p

—(pVq) & pA—q
pVqgEqVp
pA(PVq) & p

pVT T pVEFEF&SDp
pV(-p) =T

from boolean a\gebra ‘o
condirhional branching

write a function that checks whether a given
Jear (passed as parameter) is a or not

Leap years are multiples of 4, and they
can only be multiples of loo ﬂnexl are
also multtiples of Yoo

function isLeap(year : integer) "(\@ A SA //v
A

if year mod 400 =0 | &V o
isLeap < true JL

else if year mod 100=0 B————
isLeap < false

else if year mod 4 =0 whdiﬁ‘)ha‘

1sLeap < true

else isLeap < false bY’ﬂhChihg

function isLeap(year : integer)

if ((year mod 4 =0) A (year mod 100 #0)) V (year mod 400)
isLeap «— true

else
isLeap < false

function isLeap(year : integer)
isLeapYear «— ((year mod 4 =0) A (year mod 100 # 0)) V (year mod 400)

~ %
¢ & 5 Sl

) " 4
J O ,

I

def isLeap(year):
1f year % 400 ==
elif year % 100 ==
elif year % 4 ==
return False

return True
return False
return True

conditional
branching

def islLeap(year):
if (year % 4 == 0) and (year % 100 != Q) or (year % 400 == Q) : return True
return False

def islLeap(year):
return (year % 4 == 0) and (year % 100 '= @) or (year % 400 == 0)

DY@ e conditional
LS s Y= branching

[) 4&i>////’——a’
IL LA scala

def isLeap(year : Int) : Boolean = {
if (year % 400 == 0) true
else if (year % 100 == 0) false
else if (year % 4 == 0) true
else false

¥

e ——— R

def isLeap(year : Int) : Boolean = {
if ((year % 4 == 0) && (year % 100 '= 0) || (year % 400 == 0)) true
else false

}

def isLeap(year : Int) : Boolean =
(year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0)

% o condrhoral
’\\ ‘&> b« e
"@ n == branchmg
V)

i -

func islLeap(year:Int) —> Bool {
if year % 400 == 0 { return true }
else if year % 100 == 0 { return false }
else if year % 4 == 0 { return true }
else { return false }

func isLeap(year:Int) —> Bool {
if (year % 4 == 0) && (year % 100 '= 0) || (year % 400 == @) { return true }

else { return false }

func islLeap(year:Int) —> Bool {
return (year % 4 == 0) && (year % 100 '= @) || (year % 400 == 0)
I3

Qe ®

i match {

case
case
case
case
case
case
case

© 00 NN O U B WIN -
]
\

println("January")
println("February")
println("March")

println("April") whdiﬁ‘)ha‘

println("May")

printin("June") brahCMihg

println("July")

case => println("August")
case => println("September")
case 10 => println("October")
case 11 => println("November")
case 12 => println("December")
case whoa => println("Unexpected: " + whoa.toString) ES\A/rFt
+
let someCharacter: Character = "Zz"
switch someCharacter {
case "a":
print("The first letter of the alphabet")
case "z":
print("The last letter of the alphabet")
default:
fa”baCk case - print("Some other character")
I3

reserved kejvuorcls

in a programming language, identifiers are lexical
tokens chosen by the programmer fo name various
kinds of entities, e.g., variables, functions, types, etc.

in contrast, reserved keywords are words that cannot
be chosen by the programmer to name entities and
that has a predefined meaning, if, else, switch, etc.

command line
arquments
object HelloWorld extends App {
if (args.length == 0) { Sead
println("Hello world")
} else {

println("Hello " + args(0))

} & @ Args-Scala — -bash — ttys000
wallace-palace:Args—-Scala garbi$ scalac HelloWorld.scala
wallace-palace:Args—-Scala garbi$ scala HelloWorld
Hello world

wallace-palace:Args—-Scala garbi$ scala HelloWorld Donald
Hello Donald

wallace-palace:Args—-Scala garbi$

text ihpu‘fl output on
the command lire

when a program is launched on the command
line, it can ask the user for fext input and
provide text output on the terminal

year = input("Give us a year: “) print("Is {0} a leap year? {1}".format(year,
year = int(year) isLeap(year)))

import scala.io.StdIn.readLine

val year = readLine("Choose a year: ").toInt print(s"Is $year a leap year? ${islLeap(year)}")

var year = Int(readLine()!) print("Year \(year!) is leap: \(isLeap(year:year!))")

