
programming
basics

learning
objectives

learn about variables, their types and their values

learn about different number representations

learn boolean algebra and conditional branching

learn about basic text input and output

hardware

your software

algorithms

system software

what’s a variable?
in a program, a variable is a symbolic name (also

called identifier) associated with a memory location
where the value of the variable will be stored

101101100000

000100100001

101101100010

000000000011

Memory
wallet

age
schmilblick
reference

xn + yn = zn

0010010100101011
1100110100111001
1111001101010011

1111001101010011

00100101
00101011
00010010
10100100
11001101
00111001
11110011
01010011

c
c

Prelude No. 4
F. ChopinLargo.

Sheet Music from www.mfiles.co.uk

°

¢
&#

p

espressivo

œ. œ ˙. œ ˙. œ ˙. œ ˙. œ#
?# Œ

p sempre molto tenuto

œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ# œœœ œœœ œœœ œœœ#n œœœ œœœ œœœ œœœn œœœ œœœ# œœœ œœœ# œœœ œœœ œœœ œœœn œœœ œœœ# œœœ
6°

¢
&# ˙n . œ ˙. œ ˙. œ. œ >̇. œ>#
?# œœœn œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ# œœœ œœœ œœœ œœœn œœœ œœœ œœœ

cresc.œœœ œœœ œœœ œœœ œœœn œœœ œœœ œœœ œœœ œœœ œœœ œœœ
10°

¢
&# œ œ œ

dim.

œ œ œ œ ˙. œ ˙. fiœjœ œ œ œ œ œ# œ
3œ œ œ

?# œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ# œœœ œœœ œœœ œœœ œœœ
pœœœ# œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ# Œ Ó dim.

14°

¢
&# ˙. œ ˙. œ ˙. œ œ. œ# œ œœ œ‹ œ

œn
cresc.

strettoœ. œ

?#pœœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ#n œœœ œœœ œœœ œœœ##n œœœ œœœn œœœ œœœ œœœ œœœ œœœ œœœn œœœ œœœ# œœœ œœœ## œœœ œœœnn œœœ
18°

¢
&# œ œ# œ œ œ œ œ œ œn œ

3œ œ œ œ. œj ˙.
p

fiœjœ ˙. œ. œ
?#

f

œœ
j
œœœœ œœœœ œœœœ œœœœ# œœœ œœœ œœœ œœœ œœœ œj

œœœJ
dim.œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ# œœœ œœœ œœœ

22°

¢
&#

>̇. œ ˙. œ ˙ ÓU
pp

?
˙̇̇̇∏∏∏∏ ˙̇̇̇##

∏∏∏∏∏∏∏∏∏∏∏∏∏∏∏∏∏∏ ∏∏∏

wwww
U

?# œœœ œœœ œœœ œœœ
smorz.œœœb œœœ œœœ œœœ œœœ œœœ œœœ# œœœ œœœn œœœ œœœ œœœ ˙̇̇n# ÓU

˙̇
˙

˙̇̇ ww
U

© Jim Paterson www.mfiles.co.uk

00100101001010110001001010100100
11001101001110011111001101010011

yes but what
type of value?

what’s a type?
the type of a variable defines what will be

stored in the memory location, e.g., a boolean,
an integer, a character, etc., i.e., how the bits
in the memory location will be interpreted

python scala swift
d = 3.14  
i = 0  
s = "hello"

var d = 3.14
var i = 0  
var s = "hello"

var d = 3.14
var i = 0  
var s = "hello" 

00111110001000000000000000000000 ⇔ 0.15625

1000001 ⇔ ‘A’

1000001 ⇔ 65

0000000 ⇔ false

as a programmer, you can explicitly define the type of a variable
(explicit typing) or let the compiler (or the interpreter) try to infer

the type of the variable, typically through initialization (implicit typing)

explicit typing & 
type inference

python scala swift
i = 0  
f = 3.14  
s = "hello"

var i = 0 
var d = 3.14 
var f = 3.14f 
var s = "hello"

var i = 0 
var d = 3.14 
var s = "hello"

no static typing
var i : Int = 0
var f : Double = 3.14 
var f : Float = 3.14f 
var s : String = "hello"

var i : Int = 0
var f : Double = 3.14 
var f : Float = 3.14 
var s : String = "hello"

im
pl
ic
it

ex
pl
ic
it

however, there are cases where type inference
is not possible, e.g., in recursive functions

static typing vs 
dynamic typing

the static type designates the type of  
the variable known at compilation time

this allows the compiler to catch a certain
number of errors before the execution

the dynamic type designates the type of the
value contained by a variable at run time

this allows the runtime to catch errors
during the execution

scala

var i : Int = 0 
var d = 3.14
var f = 3.14f 
var s = “hello”

f : Float = d
i = d  
s = d

python

v = 0  
v = 3.14  
v = “hello”

type casting
when you want to assign a value to a variable
but the static type and the dynamic type do

not match, you can perform an explicit
conversion, also known as a type casting

python scala swift

d = math.pi
i = int(d)  
f = float(d) 
s = str(d)

var d : Double = math.Pi
var i = 0 
var s = "hello" 
var f = 3.14f 
 
f = d.toFloat 
i = d.toInt 
s = d.toString

var d : Double.pi
var i = 0 
var s = "hello" 
var f : Float = 3.14

var i = Int(d) 
var f = Float(d) 
var s = String(d)

3.141592653589793

3.1415927
3

"3.141592653589793"

unsigned integers
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

8710 = 0×27 + 1×26 + 0×25 + 1×24 + 0×23 + 1×22 + 1×21 + 1×20
8710 = 0×128 + 1×64 + 0×32 + 1×16 + 0×8 + 1×4 + 1×2 + 1×1
8710 = 0 1 0 1 0 1 1 1

8710 = 010101112 range = [02,111111112] = [010,25510]

signed integers with signed magnitude
Bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

 8710 = 0 1×26 + 0×25 + 1×24 + 0×23 + 1×22 + 1×21 + 1×20
 8710 = 0 1 0 1 0 1 1 1

-8710 = 1 1×64 + 0×32 + 1×16 + 0×8 + 1×4 + 1×2 + 1×1
-8710 = 1 1 0 1 0 1 1 1

 8710 = 010101112
-8710 = 110101112

range = [-12710,+12710]
two ways to represent zero:

+010 = 000000002
-010 = 100000002

Bit 7 is the sign bit
0 ⇔ +
1 ⇔ -

number 
representation

 8710 = 010101112
-8710 = 101010002

range = [-12710,+12710]
two ways to represent zero:

+010 = 000000002
-010 = 111111112

signed integers with one complement
Bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

 8710 = 0 1×26 + 0×25 + 1×24 + 0×23 + 1×22 + 1×21 + 1×20

 8710 = 0 1 0 1 0 1 1 1
not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

-8710 = 1 0 1 0 1 0 0 0

Bit 7 is the sign bit
0 ⇔ +
1 ⇔ -

number 
representation

signed integers with two complement
Bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

 8710 = 0 1×26 + 0×25 + 1×24 + 0×23 + 1×22 + 1×21 + 1×20
 8710 = 0 1 0 1 0 1 1 1

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

1 0 1 0 1 0 0 0
+1  
⬇

-8710 = 1 0 1 0 1 0 0 1
-1×27 0×26 + 1×25 + 0×24 + 1×23 + 0×22 + 0×21 + 1×20

-8710 = -1×128 + 1×32 + 1×8 + 1×1

 8710 = 010101112
-8710 = 101010012

range = [-12810,+12710]
only one way to represent zero:

010 = 000000002

Bit 7 is the sign bit
0 ⇔ +
1 ⇔ -

number 
representation

number 
representation

only a small subset of the infinite set of real
numbers can be represented in a computer, which

has a finite memory space

floating point principle
sign × mantissa × baseexponent

in a computer, the base is 2

–1 314159 10–5××–3.14159 =
⬇⬇⬇⬇

0 0 1 1 1 1 1 0 0 0 1 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sign mantissa (23 bits)exponent (8 bits)

number 
representation

floating point 
single precision

⇒

2 –3

2sign e2b23�i
b23�i

constant
a constant is simply a 

variable that cannot... vary !

python scala swift

no constant

val d : Double = math.Pi
val i = 0  
val s = "hello" 
 
d = 1.0  
i = 1
s = "bye"

let d : Double.pi
let i = 0  
let s = "hello"

d = 1.0  
i = 1
s = "bye"

logic
the intellectual
tool for reasoning
about the truth
and falsity of
statements

in some low-level languages, integer numbers are
used for the same purpose, e.g,. with:
p = false ⇔ p = 0
q = true ⇔ q = 1 (sometimes q = true ⇔ q ≠ 0)

most programming languages, support boolean
variables, which can take values ∈ {true,false}

when combined with operators ⋀ , ⋁
and ¬ , boolean variables constitute an
algebra used in conditional branching

⇥ � or
⇥ � and

¬� notwhere:

logic & programming

assume that p , q and r are boolean variables (or
statements) and that T = true, F = false, we have:

boolean algebra

⇥ � or
⇥ � and

¬� not

Logic

• A function can be written in many ways. For example, xy + x, x + yx, x(y + 1) and
(x + z)y + x − yz are all ways of writing the same function. Logicians refer to the
particular way a function is written as a statement form.

You may wonder why we’re concerned with statement forms since we’re not concerned
with function forms in other areas of mathematics but just their values. That is a miscon-
ception. We are concerned with function forms in algebra. It’s just that you’re so used
to the equality of different forms that you’ve forgotten that. Knowing that certain forms
represent the same function allow us to manipulate formulas. For example, the commu-
tative (ab = ba and a + b = b + a) and distributive (a(b + c) = ab + ac) laws allow us to
manipulate the function forms xy + x, x + yx and x(y + 1) to show that they all have the
same value; that is, they all represent the same function. As soon as the equality of the
function forms is less familiar, you’re aware of their importance. For example (au)v = auv,
sin(2x) = 2 sinx cosx and d(ex)/dx = ex.

Since some of you may still be confused, let’s restate this. For our purposes, we shall
say that two statement forms are different as statement forms, or simply different if they
“look different.” They are the same if they “look the same.” This is not very precise, but is
good enough. Thus, for example, p∨q and q∨p look different and so are different statement
forms. We say that two statement forms are logically equivalent (or simply equivalent) if
they have the same truth table. The statement forms p ∨ q and q ∨ p are equivalent (have
same truth table). Likewise, (p ∧ q) ∨ r and (p ∨ r) ∧ (q ∨ r) are different statement forms
that are equivalent, as may be seen by doing a truth table for each form and comparing
them. We are familiar with these ideas from high school algebra. For example, x(y + z)
and xy + xz look different but are equivalent functions.

Sometimes we’ll let our logic hat slip and use Boolean function terminology. In par-
ticular, we’ll often use 0 instead of “false” and 1 instead of “true.”

The constant functions are particularly important and are given special names.

Definition 1 (Tautology, contradiction) A statement form that represents the con-
stant 1 function is called a tautology. In other words, the statement form is true for all
truth values of the statement variables. A statement form that represents the constant 0
function is called a contradiction. In other words, the statement form is false for all truth
values of the statement variables.

Recall the some of the basic functions studied in Unit BF: not, and and or, denoted
by ∼, ∧ and ∨, respectively. We defined these three functions by giving their values in
tabular form, which is called a truth table just as it is for Boolean functions in Unit BF.
In that unit, definitions were as follows, where we have replaced 0 and 1 by F and T to
emphasize “false” and “true;” however, we’ll usually use 0 and 1.

p ∼p

F T
T F

p q p ∧ q

F F F
F T F
T F F
T T T

p q p ∨ q

F F F
F T T
T F T
T T T

p q p “equals” q

F F T
F T F
T F F
T T T

We said there were three functions, but there is a fourth table. Besides, p “equals” q isn’t a
function—is it? What happened? The statement p “equals” q is either true of false. Thus,

Lo-2

¬p

Logic

• A function can be written in many ways. For example, xy + x, x + yx, x(y + 1) and
(x + z)y + x − yz are all ways of writing the same function. Logicians refer to the
particular way a function is written as a statement form.

You may wonder why we’re concerned with statement forms since we’re not concerned
with function forms in other areas of mathematics but just their values. That is a miscon-
ception. We are concerned with function forms in algebra. It’s just that you’re so used
to the equality of different forms that you’ve forgotten that. Knowing that certain forms
represent the same function allow us to manipulate formulas. For example, the commu-
tative (ab = ba and a + b = b + a) and distributive (a(b + c) = ab + ac) laws allow us to
manipulate the function forms xy + x, x + yx and x(y + 1) to show that they all have the
same value; that is, they all represent the same function. As soon as the equality of the
function forms is less familiar, you’re aware of their importance. For example (au)v = auv,
sin(2x) = 2 sinx cosx and d(ex)/dx = ex.

Since some of you may still be confused, let’s restate this. For our purposes, we shall
say that two statement forms are different as statement forms, or simply different if they
“look different.” They are the same if they “look the same.” This is not very precise, but is
good enough. Thus, for example, p∨q and q∨p look different and so are different statement
forms. We say that two statement forms are logically equivalent (or simply equivalent) if
they have the same truth table. The statement forms p ∨ q and q ∨ p are equivalent (have
same truth table). Likewise, (p ∧ q) ∨ r and (p ∨ r) ∧ (q ∨ r) are different statement forms
that are equivalent, as may be seen by doing a truth table for each form and comparing
them. We are familiar with these ideas from high school algebra. For example, x(y + z)
and xy + xz look different but are equivalent functions.

Sometimes we’ll let our logic hat slip and use Boolean function terminology. In par-
ticular, we’ll often use 0 instead of “false” and 1 instead of “true.”

The constant functions are particularly important and are given special names.

Definition 1 (Tautology, contradiction) A statement form that represents the con-
stant 1 function is called a tautology. In other words, the statement form is true for all
truth values of the statement variables. A statement form that represents the constant 0
function is called a contradiction. In other words, the statement form is false for all truth
values of the statement variables.

Recall the some of the basic functions studied in Unit BF: not, and and or, denoted
by ∼, ∧ and ∨, respectively. We defined these three functions by giving their values in
tabular form, which is called a truth table just as it is for Boolean functions in Unit BF.
In that unit, definitions were as follows, where we have replaced 0 and 1 by F and T to
emphasize “false” and “true;” however, we’ll usually use 0 and 1.

p ∼p

F T
T F

p q p ∧ q

F F F
F T F
T F F
T T T

p q p ∨ q

F F F
F T T
T F T
T T T

p q p “equals” q

F F T
F T F
T F F
T T T

We said there were three functions, but there is a fourth table. Besides, p “equals” q isn’t a
function—is it? What happened? The statement p “equals” q is either true of false. Thus,

Lo-2

python scala swift
a = False 
b = True
 
c = a and b  
c = a or b  
c = not a 

var a = false 
var b = true
 
var c = a && b 
c = a || b  
c = !a  

var a = false 
var b = true
 
var c = a && b 
c = a || b  
c = !a  

Section 1: Propositional Logic

we can think of “equals” as a function with domain {F, T}2 and range {F, T}. In symbols,
“equals” : {F, T}2 → {F, T}. In what follows, we’ll replace “equals” with the symbol “⇔”
(equivalence) which is usually used in logic. We use the more familiar “=” for assigning
meaning and values. Thus

• q = “the sky is blue” assigns an English meaning to q.

• q = p∨ r says that q “means” p∨ r; that is, we should replace q by the statement form
p ∨ r.

• p = 1 means we are assigning the value 1 (true) to p.

Since propositional logic can be viewed as the study of Boolean functions, the tech-
niques we developed for proving results about Boolean functions (Venn diagrams, truth
tables and algebraic) can also be used in propositional logic. For convenience, we recall the
theorem for manipulating Boolean statements:

Theorem 1 (Algebraic rules for statement forms) Each rule states that two different
statement forms are equivalent. That is, they look different but have the same truth table.

Associative Rules: (p ∧ q) ∧ r ⇔ p ∧ (q ∧ r) (p ∨ q) ∨ r ⇔ p ∨ (q ∨ r)

Distributive Rules: p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)

Idempotent Rules: p ∧ p ⇔ p p ∨ p ⇔ p

Double Negation: ∼∼p ⇔ p

DeMorgan’s Rules: ∼(p ∧ q) ⇔ ∼p ∨ ∼q ∼(p ∨ q) ⇔ ∼p ∧ ∼q

Commutative Rules: p ∧ q ⇔ q ∧ p p ∨ q ⇔ q ∨ p

Absorption Rules: p ∨ (p ∧ q) ⇔ p p ∧ (p ∨ q) ⇔ p

Bound Rules: p ∧ 0 ⇔ 0 p ∧ 1 ⇔ p p ∨ 1 ⇔ 1 p ∨ 0 ⇔ p

Negation Rules: p ∧ (∼p) ⇔ 0 p ∨ (∼p) ⇔ 1

Truth tables and algebraic rules are practically the same as the tabular method and
algebraic rules for sets discussed in Section 1 of Unit SF. The next example explains why
this is so. You may want to read the first four pages of Unit SF now.

Example 1 (Logic and Sets) We’ve already pointed out that propositional logic and
Boolean arithmetic can be viewed as different aspects of the same thing. In this example,
we show that basic manipulation of sets are also related.

Suppose we are studying some sets, say P , Q and R. Let the corresponding lower case
letters p, q and r stand for the statement that x belongs to the set. For example p is the
statement “x ∈ P”.

Consider the distributive rule for sets:

P ∩ (Q ∪ R) = (P ∩ Q) ∪ (P ∩ R).

It is equivalent to saying that

x ∈ P ∩ (Q ∪ R) if and only if x ∈ (P ∩ Q) ∪ (P ∩ R)

Lo-3

¬¬p� p

¬(p ⇤ q)� ¬p ⌅ ¬q ¬(p ⌅ q)� ¬p ⇤ ¬q

p ⇥ F � F p ⇥ T � p p ⇥ T � T p ⇥ F � p

p ⇤ (¬p)� F p ⇤ (¬p)� T

some rules

from boolean algebra to
conditional branching 

example

write a function that checks whether a given
year (passed as parameter) is a leap year or not

Leap years are multiples of 4, and they
can only be multiples of 100 if they are

also multiples of 400

From Logic to Algorithms

function isLeap(year : integer)
if  
 isLeap ← true 
else 
 isLeap ← false

((year mod 4 = 0) ⇥ (year mod 100 �= 0)) ⇤ (year mod 400)

function isLeap(year : integer)
isLeapYear ← ((year mod 4 = 0) ⇥ (year mod 100 �= 0)) ⇤ (year mod 400)

function isLeap(year : integer)
if year mod 400 = 0 
 isLeap ← true 
else if year mod 100 = 0 
 isLeap ← false 
else if year mod 4 = 0 
 isLeap ← true 
else isLeap ← false

conditional
branching

def isLeap(year): 
 if year % 400 == 0 : return True 
 elif year % 100 == 0 : return False 
 elif year % 4 == 0 : return True 
 return False

conditional
branching
python

def isLeap(year): 
 if (year % 4 == 0) and (year % 100 != 0) or (year % 400 == 0) : return True 
 return False

def isLeap(year): 
 return (year % 4 == 0) and (year % 100 != 0) or (year % 400 == 0)

def isLeap(year : Int) : Boolean = { 
 if (year % 400 == 0) true 
 else if (year % 100 == 0) false 
 else if (year % 4 == 0) true 
 else false  
}

conditional
branching

scala

def isLeap(year : Int) : Boolean = { 
 if ((year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0)) true 
 else false  
}

def isLeap(year : Int) : Boolean =
(year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0)

func isLeap(year:Int) -> Bool {
 if year % 400 == 0 { return true }
 else if year % 100 == 0 { return false }
 else if year % 4 == 0 { return true }
 else { return false }
}

conditional
branching

swift

func isLeap(year:Int) -> Bool {
 if (year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0) { return true }
 else { return false }
}

func isLeap(year:Int) -> Bool {
 return (year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0)
}

i match {
 case 1 => println("January")
 case 2 => println("February")
 case 3 => println("March")
 case 4 => println("April")
 case 5 => println("May")
 case 6 => println("June")
 case 7 => println("July")
 case 8 => println("August")
 case 9 => println("September")
 case 10 => println("October")
 case 11 => println("November")
 case 12 => println("December")
 case whoa => println("Unexpected: " + whoa.toString)
}

conditional
branching

switch / match

let someCharacter: Character = "z"
switch someCharacter {
case "a":
 print("The first letter of the alphabet")
case "z":
 print("The last letter of the alphabet")
default:
 print("Some other character")
}

swift

scala

fallback case

reserved keywords
in a programming language, identifiers are lexical
tokens chosen by the programmer to name various
kinds of entities, e.g., variables, functions, types, etc.

in contrast, reserved keywords are words that cannot
be chosen by the programmer to name entities and
that has a predefined meaning, if, else, switch, etc.

object HelloWorld extends App {
 if (args.length == 0) {
 println("Hello world")
 } else {
 println("Hello " + args(0))
 }
}

scala

command line  
arguments

text input/output on 
the command line

when a program is launched on the command
line, it can ask the user for text input and

provide text output on the terminal

input output

year = input("Give us a year: “)
year = int(year)

print("Is {0} a leap year? {1}".format(year,
isLeap(year))) 

import scala.io.StdIn.readLine 

val year = readLine("Choose a year: ").toInt print(s"Is $year a leap year? ${isLeap(year)}")

var year = Int(readLine()!) print("Year \(year!) is leap: \(isLeap(year:year!))")

py
th

on
sc

al
a

sw
ift

