
iteration

recursion

&&

learning
objectives
learn about tuples, lists and maps

learn about immutability and literals

learn about iteration and recursion

hardware

your software

algorithms

system software

notion of tuple
a tuple is finite ordered set of elements
location = ("Museum of Mankind", 48.861166, 2.286826, 57)

var location = ("Museum of Mankind", 48.861166, 2.286826, 57)

var location = ("Museum of Mankind", 48.861166, 2.286826, 57)

a n-tuple is an ordered set of n elements
when n = 0 : we say it’s an empty tuple or unit
when n = 1 : we say it’s single or singleton
when n = 2 : we say it’s double or couple or pair
when n = 3 : we say it’s triple or triplet or triad
etc...

accessing tuple elements
print("latitude is {0}, longitude is {1}, altitude is {2}m".format(location[1],location[2],location[3]))

print(s"latitude is ${location._2}, longitude is ${location._3}, altitude is ${location._4}m")

print("latitude is \(location.1), longitude is \(location.2), altitude is \(location.3)m")

notion of tuple

0 "Museum of Mankind”

1 48.861166

2 2.286826

3 57

1 "Museum of Mankind”

2 48.861166

3 2.286826

4 57

0 "Museum of Mankind”

1 48.861166

2 2.286826

3 57

print("latitude is {0}, longitude is {1}, altitude is {2}m".format(location[1],location[2],location[3]))

print(s"latitude is ${location._2}, longitude is ${location._3}, altitude is ${location._4}m")

print("latitude is \(location.1), longitude is \(location.2), altitude is \(location.3)m")

in scala and in python,
tuples a immutable

location[1] = 3.14

location._2 = 3.14

location.1 = 3.14
in swift, tuples are mutable
� elements can be changedGO

notion of tuple
accessing tuple elements

notion of tuple
naming tuple elements

var location = (name:"Museum of Mankind", latitude:48.861166, longitude:2.286826, altitude:57)
print("latitude is \(location.latitude), longitude is \(location.longitude), altitude is \(location.altitude)m")

location.latitude = 3.14 GO

case class Location(name: String, latitude: Double, longitude: Double, altitude: Int) 
var location = Location("Museum of Mankind", 48.861166,2.286826, 57) 
print(s"latitude is ${location.latitude}, longitude is ${location.longitude}, altitude is ${location.altitude}m")

location.latitude = 3.14

named elements are not supported 
out-of-the box in Python tuples

an immutable object is an object whose state
cannot be modified after its initialization

immutability

location.latitude = 3.14

an mutable object is an object whose state  
can be modified after its initialization

location.latitude = 3.14 GO

immutable objects are easier to share across your  
code because they are immune to side effects

in addition, the compiler (or the interpreter) can
perform optimization on immutable objects

many programs rely on
collections of objects

collections

notes in a 
notebook

game
elements

library
catalog

the number of items stored in a
collection may vary over time

collections

items added items deleted

list creation 
& access

tour = ["Museum of Mankind", "Eiffel Tower", "Champs Elysée"]

var tour = List("Museum of Mankind", "Eiffel Tower", "Champs Elysée")

var tour = ["Museum of Mankind", "Eiffel Tower", "Champs Elysée"]

print(tour[1])

print(tour(1))

print(tour[1])

➞

➞

➞

Eiffel Tower

Eiffel Tower

Eiffel Tower

in a program, a literal is a notation for
representing a value directly in the source code

literals

python scala swift

string
"Museum of Mankind"

"Museum of Mankind"
'Museum of Mankind'

double 3.14

float 3.14f

integer 666

boolean True / False true / false true / false

tuple ("Museum of Mankind", 48.861166, 2.286826, 57)

list ["one", "two", "three"] List("one", "two", "three") ["one", "two", "three"]

adding & removing
elements from a list

tour.append("Triumphal Arch")

tour = tour ::: List("Triumphal Arch")

tour.append("Triumphal Arch")

tour.insert(0,"Triumphal Arc")

tour = "Triumphal Arc"::tour

tour.insert("Triumphal Arch”, at:0)

append prepend

del tour[0]

tour = tour.tail

tour.remove(at:0)

remove first element
tour.pop()

tour = tour.take(tour.size - 1)

tour.remove(at:tour.count - 1)

remove last element

tour = tour ::: List("Triumphal Arch") tour = "Triumphal Arc"::tour

tour = tour.tail tour = tour.take(tour.size - 1)

in scala, lists are immutable, so we have to
create a new list for each modification

adding & removing
elements from a list

if you need a mutable list, use a ListBuffer

import scala.collection.mutable.ListBuffer

var tour = ListBuffer("Museum of Mankind", "Eiffel Tower") ➡ ("Museum of Mankind", "Eiffel Tower")

tour.append("Triumphal Arch") ➡ ("Museum of Mankind", "Eiffel Tower", "Triumphal Arch")

tour.remove(0) ➡ ("Eiffel Tower", "Triumphal Arch")

tour.prepend("Champs Elysée") ➡ ("Champs Elysée", "Eiffel Tower", "Triumphal Arch")

tour.trimEnd(1) ➡ ("Champs Elysée", "Eiffel Tower")

in swift, a lists is mutable, if and only if  
we are accessing it via a variable

adding & removing
elements from a list

var tour = ["Museum of Mankind", "Eiffel Tower", "Champs Elysée"]
tour.append("Triumphal Arch")
tour.remove(at:0) GO

let tour = ["Museum of Mankind", "Eiffel Tower", "Champs Elysée"]
tour.append("Triumphal Arch")
tour.remove(at:0)

var myTour = ["Museum of Mankind", "Eiffel Tower", "Champs Elysée"]
myTour.append("Triumphal Arch")
myTour.remove(at:0)

let yourTour = myTour
yourTour.append("Triumphal Arch")
yourTour.remove(at:0)

GO

in a program, an associative array (also called a dictionary or
simply a map) is a collection composed of a set of (key, value) pairs,

where each key appears at most once in the collection

associative
arrays

mountains = {"jungfrau": 4158, "eiger": 0} ➡ {'eiger': 0, 'jungfrau': 4158}
height = mountains["eiger"] ➡ 0
mountains["eiger"] = 3950 ➡ {'eiger': 3950, 'jungfrau': 4158}
mountains["moench"] = 4099 ➡ {'eiger': 3950, 'jungfrau': 4158, 'moench': 4099}
mountains.pop("jungfrau") ➡ {'eiger': 3950, 'moench': 4099}

var mountains = scala.collection.mutable.Map("jungfrau" -> 4158, "eiger" -> 0) 
➥ Map(jungfrau -> 4158, eiger -> 0)

var height = mountains("eiger") ➡ 0
mountains("eiger") = 3950 ➡ Map(jungfrau -> 4158, eiger -> 3950)
mountains("moench") = 4099 ➡ Map(jungfrau -> 4158, eiger -> 3950, moench -> 4099)
mountains.remove("jungfrau") ➡ Map(eiger -> 3950, moench -> 4099)

var mountains = ["jungfrau": 4158, "eiger": 0] ➡ ["eiger": 0, "jungfrau": 4158]
height = mountains["eiger"] ➡ 0
mountains["eiger"] = 3950 ➡ ["eiger": 3950, "jungfrau": 4158]
mountains["moench"] = 4099 ➡ ["moench": 4099, "eiger": 3950, "jungfrau": 4158]
mountains.removeValue(forKey:"jungfrau") ➡ ["eiger": 3950, "moench": 4099]

compute the list of 100 first
prime numbers in sequence

iteration
we often want to perform some actions

an arbitrary number of times e.g., print all the notes in a notebookconvert the height of a
mountains from meters to feet

programming languages include loop statements for this

with collections in particular, we often want to
repeat a sequence of actions once for each

object in a given collection

iteration

for each

while

loop

loop

for each loop

a for-each loop
repeats the loop

body for each and
every object in a

collection

 python

iterating
through 

a list

mountains = { "jungfrau", "eiger", "moench"}
for summit in mountains: 
 print("I will climb to the summit of the {0}".format(summit))

iterating
through 
a map

mountains = { "jungfrau":4158, "eiger":3950, "moench":4099} 
height = 0
for summit in mountains.keys(): 
 print("I will climb to the summit of the {0} at {1} meters".format(summit,mountains[summit])) 
 height = height + mountains[summit]
print("In total, I will climb {0} meters".format(height))

 scala

iterating
through 

a list

var mountains = List("jungfrau", "eiger", "moench")
for(summit <- mountains) 
 println(s"I will climb to the summit of the $summit")

iterating
through 
a map

var mountains = Map("jungfrau"->4158, "eiger"->3950, "moench"->4099) 
var height = 0
for (summit <- mountains.keys) { 
 println(s"I will climb to the summit of the $summit at ${mountains(summit)} meters"); 
 height = height + mountains(summit) 
}
println(s"In total, I will climb $height meters")

 swift

iterating
through 

a list

var mountains = ["jungfrau", "eiger", "moench"]
for summit in mountains { 
 print("I will climb to the summit of the \(summit)") 
}

iterating
through 
a map

var mountains = ["jungfrau":4158, "eiger":3950, "moench":4099] 
var height = 0
for summit in mountains.keys { 
 print("I will climb to the summit of the \(summit) at \(mountains[summit]!) meters") 
 height = height + mountains[summit]! 
}
print("In total, I will climb \(height) meters")

for each loop

while loop

a while loop uses a
boolean condition to

decide whether or not
to continue the loop

 scala

var numbers = List(1, 2, 4, 8, 16, 32, 64, 128, 256) 
var sum = 0 
var i = 0
while (sum < 512 && i < numbers.length) { 
 sum = sum + numbers(i) 
 i = i + 1 
}
print(s"the sum is $sum")

 python

numbers = [1,2,4,8,16,32,64, 128,256] 
sum = 0 
i = 0
while sum < 512 and i < len(numbers): 
 sum = sum + numbers[i] 
 i = i + 1
print("the sum is {0}".format(sum))

while loop

 swift

var numbers = [1, 2, 4, 8, 16, 32, 64, 128, 256] 
var sum = 0 
var i = 0
while (sum < 512 && i < numbers.count) { 
 sum = sum + numbers[i] 
 i = i + 1 
}
print("the sum is \(sum)")

iteration
for-each
simpler: it is easier to write
safer: it is guaranteed to stop

while
efficient: can process part of a collection
versatile: can be used for other purposes
be careful: could be an infinite loop

a classical way to solve a problem is to divide it
into smaller and easier subproblems

recursion

if one of the subproblems is a less complex
instance of the original problem, you might

want to consider using recursion

for example, the factorial of n can be defined as
n! = 1 x 2 x 3 x x (n-1) x n

but it can also be defined as:
n! = (n - 1)! x n

fibonacci numbers

Fn =

�
⇤

⇥

0 if n = 0
1 if n = 1
Fn�1 + Fn�2 if n > 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 ...Fn

n

recursion

1
1

2

3
5

8
13

21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 ...Fn

n

Fn =

�
⇤

⇥

0 if n = 0
1 if n = 1
Fn�1 + Fn�2 if n > 1

what’s a function?
we already (quietly) introduced the notion 

of function in the previous lesson
function isLeap(year : integer)
isLeapYear ← ((year mod 4 = 0) ⇥ (year mod 100 �= 0)) ⇤ (year mod 400)

def isLeap(year): 
 return (year % 4 == 0) and (year % 100 != 0) or (year % 400 == 0)

def isLeap(year : Int) : Boolean =
(year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0)

func isLeap(year:Int) -> Bool {
 return (year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0)
}

what’s a function?
in a program, a function is a sequence
of instructions performing a specific
task, packaged as a reusable unit

depending on the context, a function is
also sometimes called a subroutine, a

procedure or a method

fibonacci numbers
Fn =

�
⇤

⇥

0 if n = 0
1 if n = 1
Fn�1 + Fn�2 if n > 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 ...Fn

n

def fibonacci(n : Int) : Int = { 
 if (n == 0 || n == 1) 
 n 
 else { 
 var oldFib = 1; 
 var newFib = 1; 
 
 for (i <- 2 to n - 1) { 
 val temp = newFib; 
 newFib = oldFib + newFib; 
 oldFib = temp; 
 } 
 newFib; 
 } 
}

iterative version

def fibonacci(n : Int) : Int = { 
 if (n == 0 || n == 1) 
 n 
 else 
 fibonacci(n - 1) + fibonacci(n - 2) 
}

recursive version

examples given in scala

import scala.io.StdIn.readLine 
 
object LeapYear extends App { 
 
 def isLeap(year : Int) : Boolean = (year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0)  
 
 def reportLeapYear(year : Int) = { 
 print(s"Is $year a leap year? ${if (isLeap(year)) "Yes, it is!" else "No, it's not!"}")  
 } 
 
 val year = readLine("Give us a year! ").toInt 
 reportLeapYear(year)  
}

function calls

↩︎
↑

year 2000
stack frame of 

reportLeapYear

↩︎
↑

year

input "2000"

2000

stack frame of 
main program

↩︎
↑ true

2000year
stack frame of 

isLeap

breakpoint here

the call stack contains
a stack frame for
each function call
currently active

a stack frame contains all the
local variables and parameters
of the function being called

↑ returned value for the caller

↩︎ return address in the caller

↑ returned value for the caller

↩︎ return address in the caller

recursive
def factorial(n: Int) : Int = { 
 if (n == 0 || n == 1) { 
 1 
 } 
 else { 
 factorial(n-1) * n  
 } 
}

↩︎
↑
n 3

stack frame of 
factorial(3)

↩︎
↑
n 2

stack frame of 
factorial(2)

↩︎
↑
n

1

1
stack frame of 
factorial(1)

there must be 
a stop condition
for the recursion

function calls

after calling factorial(3), we have
the following execution stack when

the stop condition is reached:

what happens if we pass n = -1 ?

question

