A a
WA E) S N

®

yecursion

\earhihg

system software

objechves

* learn about tuples, lists and maps
+ learn about imm‘ﬂ'abi\iﬂ and \iterals

+ learn about tteration and recursion

notion of t up\e

a tuple is finite ordered set of e\emenfs

. location = ("Museum of Mankind", 48.861166, 2.286826, 57)

!I var location = ("Museum of Mankind", 48.861166, 2.286826, 57)

33 var location = ("Museum of Mankind", 48.861166, 2.286826, 57)

a n-tuple is an ordered set of n elements

® ¢ ¢ ¢ O

when n
when n
when n
when n

etc...

W N = O

: We say it's an emP‘h, tuple or unit
: we say it's sing\e or sihg\e‘l‘ova

* we say it's double or couple or pair
: we say it's triple or triplet or triad

A
£

notion of t up\e

accessing fup\e elements

print("latitude is {0}, longitude is {1}, altitude is {2}m".format(location[1l],location[2],location[3]))

print(s"latitude is ${location._2}, longitude is ${location._3}, altitude is ${location._4}m")

A

"Museum of Mankind”
1 48.861166
y D 2.286826

cl 57

i "'"Museum of Mankind”
yM 48.861166
e 2.286826

CM 57

fj,‘ print(“latitude is \(location.l), longitude is \(location.2), altitude is \(location.3)m")

S

"Museum of Mankind”
1 48.861166
y 2.286826

cl 57

notion of t up\e

accessing fup\e elements

P print("latitude is {0}, longitude is {1}, altitude is {2}m".format(location[1l],location[2],location[3]))

’ print(s"latitude is ${location._2}, longitude is ${location._3}, altitude is ${location._4}m")

J print("latitude is \(location.l), longitude is \(location.2), altitude is \(location.3)m")

I
OV
=
AN

P location[1]

I —S

! location._2

e —

in scala and in python,
fuples a immutable

I
w
=
H

n swift, tuples are mutable
—— = elements can be changecl

J location.l = 3.14

notion of t up\e

naming fup\e elements
~ R

var location = (name:"Museum of Mankind", latitude:48.861166, longitude:2.286826, altitude:57)
print("latitude is \(location.latitude), longitude is \(location.longitude), altitude is \(location.altitude)m")

location. latitude = 3.14

case class Location(name: String, latitude: Double, longitude: Double, altitude: Int)
var location = Location("Museum of Mankind", 48.861166,2.286826, 57)
print(s"latitude is ${location.latitude}, longitude is ${location.longitude}, altitude is ${location.altitude}m")

—— e

location. latitude = 3.14

L —

ot supported

e named elements are r
out-of-the box in P1‘|’hon tuples

imv\nu’mbi\'rN

an immutable objecl’ s an objecr whose state
cannot be modified after its inthalization

s location. latitude = 3.14

an mutable objec:l' s an objecl’ whose state
can be modified after its inthalization

S location. latitude = 3.14

S —

immutable objecrs are easier to share across Jour
code because fhe1 are immune to side effects

n addition, the compiler (or the interpreter) can
perform optimization on immutable objed‘s

collections

many programs rely on e e
collections of objects

game library
elements cafa\og

. > " ol - "..,»" ; -\.

the number of items stored i
collecthon may vary over fime

items) added items \e\e‘fecl

= JETYVTV TN T
GhrAddd (T e
L L

a

list creathon
£ access

tour = ["Museum of Mankind", "Eiffel Tower", '"Champs Elysée"]

var tour = List("Museum of Mankind", "Eiffel Tower", '"Champs Elysée")

var tour = ["Museum of Mankind", "Eiffel Tower", "Champs Elysée"]

print(tour[1]) =) Eiffel Tower
print(tour(1)) =) Eiffel Tower
print(tour([1]) =) Eiffel Tower

L

\iterals

in a program, a literal is a notation for
representing a value directly in the source code

string

double
float

integer

boolean
tuple

list

' python

"Museum of Mankind"

'"Museum of Mankind'

"Museum of Mankind"

3.14

3.14f

666

True / False

true / false true / false

("Museum of Mankind", 48.861166, 2.286826, 57)

[IloneII’ "tWOII, Ilth I..eell]

List("one", "two", "three") ["one", "two", "three"]

addn removin

elements from a list
appehd PrePe"d

'g tour.append("Triumphal Arch") tour.insert(@,"Triumphal Arc")
’ tour = tour ::: List("Triumphal Arch") tour = "Triumphal Arc"::tour
& tour.append("Triumphal Arch") tour.insert("Triumphal Arch”, at:0)

remove first elemen

ﬁ del tour[0] tour.pop()
’ tour = tour.tail tour = tour.take(tour.size - 1)
& tour.remove(at:0) tour.remove(at:tour.count - 1)

| — P | — P

adding £ removing 2
elements from a list =5

in scala, lists are immutable, so we have to
create a new list for each modHication

tour = tour ::: List("Triumphal Arch") tour = "Triumphal Arc"::tour
tour = tour.tail tour = tour.take(tour.size - 1)

H Jou need a mutable list, use a ListBuffer

import scala.collection.mutable.ListBuffer
var tour = ListBuffer("Museum of Mankind", "Eiffel Tower") "Museum of Mankind", "Eiffel Tower")
"Museum of Mankind", "Eiffel Tower", "Triumphal Arch")

(
tour.append("Triumphal Arch") (
("Eiffel Tower", "Triumphal Arch")
(
(

tour.remove(0)

tour.prepend("Champs Elysée") 'Champs Elysée", "Eiffel Tower", "Triumphal Arch")

11181

tour.trimEnd(1) "Champs Elysée", "Eiffel Tower")

adding £ removing o
elements from a list

K s
v 3
Y=
Wi
\4 VU

in swift, a lists is mutable, ¥ and only #
we are accessing it via a variable

var tour = ["Museum of Mankind", "Eiffel Tower", "Champs Elysée"]
tour.append("Triumphal Arch")
tour.remove(at:0)

2

8

let tour = ["Museum of Mankind", "Eiffel Tower", '"Champs Elysée"]
tour.append("Triumphal Arch")
tour. remove(at:0)

var myTour = ["Museum of Mankind", "Eiffel Tower", "Champs Elysée"]
myTour.append("Triumphal Arch")
myTour.remove(at:0)

let yourTour = myTour
yourTour.append("Triumphal Arch")
yourTour.remove(at:0)

associathive
arrajs

in a program, an associative array (also called a dictionary or

simply a map) is a collection composed of a set of (key, value) pairs,

A

where each ke1 appears at most once in the collection

mountains = {"jungfrau": 4158, "eiger": 0} {'eiger" 0, 'jungfrau’: 4158}

0

{'eiger": 3950, 'jungfrau’. 4158}

{'eiger": 3950, 'jungfrau’: 4158, 'moench': 4099}
{

‘eiger”: 3950, 'moench': 4099}

height = mountains["eiger"]
mountains["eiger"] = 3950
mountains["moench"] = 4099

11841

mountains.pop("jungfrau")

var mountains = scala.collection.mutable.Map("jungfrau" —> 4158, "eiger" —> 0)

Map(jungfrau -> 4158, eiger -> 0)

0

Map(jungfrau -> 4158, eiger -> 3950)

Map(jungfrau -> 4158, eiger -> 3950, moench -> 4099)
Map(eiger -> 3950, moench -> 4099)

var height = mountains("eiger")
mountains("eiger") = 3950
mountains("moench") = 4099
mountains.remove("jungfrau")

var mountains = ["jungfrau": 4158, "eiger": 0] ["eiger": 0, "jungfrau": 4158]

0

["eiger": 3950, "jungfrau”: 4158]

["moench"; 4099, "eiger": 3930, "jungfrau”: 4158]

["eiger”: 3950, "moench™: 4099]

height = mountains["eiger"]
mountains["eiger"] = 3950
mountains["moench"] = 4099

NN NN

mountains.removeValue(forKey:"jungfrau")

we offen want to perform some actions
an arbitrary number of times e.q.,

convert the height of a \""?b’ois /
mountains from meters to feet | compute the list of loo first

prime numbers in sequence

with collections in particular, we often want to
repeat a sequence of actions once for each
object in a given collection

programming \anguages include loop statements for this

for each loop

a for-each loop
repeats the \oop
body for each and
every objed’ n a
collecthion

A

iterating
through
a list

iterating
through
a map

python

iterating
through
a list

iterating
through
a map

iterating
through
a list

iterating
through
a map

mountains = { "jungfrau", "eiger", "moench"}

for summit in mountains:
print("I will climb to the summit of the {0}".format(summit))

mountains = { "jungfrau":4158, "eiger":3950, "moench":4099}
height = 0

for summit in mountains.keys():

print("I will climb to the summit of the {0} at {1} meters".format(summit,mountains[summit]))
height = height + mountains[summit]

print("In total, I will climb {0} meters".format(height))

var mountains = List("jungfrau", "eiger", '"moench")

for(summit <— mountains)
println(s"I will climb to the summit of the $summit")

var mountains = Map("jungfrau"->4158, "eiger"->3950, "moench'"->4099)
var height = 0

for (summit <- mountains.keys) {
println(s"I will climb to the summit of the $summit at ${mountains(summit)} meters");
height = height + mountains(summit)

I3
println(s"In total, I will climb $height meters")

var mountains = ["jungfrau", "eiger", "moench"]

for summit in mountains {
print("I will climb to the summit of the \(summit)")

var mountains = ["jungfrau'":4158, "eiger":3950, '"moench":4099]
var height = 0

for summit in mountains.keys {
print("I will climb to the summit of the \(summit) at \(mountains[summit]!) meters")
height = height + mountains[summit]!

I
print("In total, I will climb \(height) meters")

while loop

a while loop uses a
boolean condihion to

decide whether or not
Yo continue the loop

while loop

numbers = [1,2,4,8,16,32,64, 128,256]
sum = 0
1=20
while sum < 512 and i < len(numbers):
sum = sum + numbers[il]
i=1+1

print("the sum is {0}".format(sum))

var numbers = List(1, 2, 4, 8, 16, 32, 64, 128, 256)
var sum = 0
var 1 =0

while (sum < 512 && i < numbers.length) {
sum = sum + numbers(i)
1i=1+1

¥

print(s'"the sum is $sum")

var numbers = [1, 2, 4, 8, 16, 32, 64, 128, 256]
var sum = 0
var i1 = 0

while (sum < 512 && i < numbers.count) {
sum = sum + numbers[il]
i=1i+1

¥

print("the sum is \(sum)")

teration

for-each
simpler: 1t 15 easier to write
safer: it is guaranfeed to stop

while

efficient: can process part of a collection
versatile: can be used for other purposes
be careful: could be an infinite loop

yecuyrsion

a classical way fo solve a problem is to divide
nto smaller and easier subproblems

¥ one of the subproblems is a less complex
instance of the original problem, Jyou might
want to consider using recursion

for example, the factorial of n can be defined as
Nzl xX2%X3% . Xn-l) x n
but it can also be defined as:

nN=zn-MNxn

recursion
£ibornacci numbers

4)
0 ifn=20
F,_ 1+ F, o iftn>1

\ J

3 4 5 6 7 8 9 10 | 11 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19
F nl| 0 1 1 2 3 5 8 13 | 21 | 34 | 55 | 89 | 144 | 233 | 377 | 610 | 987 | 1397 | 2584 | 4181

Fn

18

19

13

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2 3 5 8 13 21 34 55 89 144 233 | 377 | 610 987 | 159
Y
N

ifn=20

what's a funchion?

we a\reacN (quie‘l’\j) introduced the notion
of function in the previous lesson

function isLeap(year : integer)
isLeapYear < ((year mod 4 =0) A (year mod 100 #0)) V (year mod 400)

def isLeap(year): e
return (year % 4 == 0) and (year % 100 '= @) or (year % 400 == 0)
def islLeap(year : Int) : Boolean = !l

o?°

(year % 4 == 0) && (year % 100 '= 0) || (year % 400 == 0)

> Bool { - |
0) && (year % 100 != @) || (year % 400 == 0)

func isLeap(year:Int) -
return (year % 4 =
I3

what's a funchion?

in a program, a function iIs a sequence
of instructions performing a spectfic
task, packaged as a reusable unit

depending on the context, a function is
also sometimes called a subroutine, a
procedure or a method

fibonacci numbers

\

(o
0 ifn=20
F, = 1 ifn=1
\ J
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
F n 0 1 1 2 3 5 8 13 21 34 55 89 144 | 233 | 377 | 610 | 987 | 1597 | 2584 | 4181
def fibonacci(n : Int) : Int = { def fibonacci(n : Int) : Int = {
if (n==0 || n==1) if (n==0 || n==1)
n n
else { else
fibonacci(n - 1) + fibonacci(n - 2)

var oldFib = 1;
var newFib = 1;

for (i <=2 ton-1) {

val temp = newFib;
newFib = oldFib + newFib;

oldFib = temp;
+
newFib;
s
Iy

iterative version

recursive version

examples aiven in scala
pi€s 9

import scala.io.StdIn.readLine

object LeapYear extends App {

def islLeap(year : Int) : Boolean = (year % 4 == 0) && (year

def reportLeapYear(year : Int) = {
I3

print(s"Is $year a leap year? ${if (isLeap(year))

val year = readlLine("Give us a year! ").tolnt
reportLeapYear(year)

}

the call stack contains
a stack frame for
each funchion call
currewl'N achve

a stack frame contains all the

local variables and parameters
of the function being called

function calls

100 '= 0)

breakpoint here

vers

(year % 400 == 0)

"Yes, it is!" else "No, it's not!"}")

year

year

input

2000

true

2000

2000

"2000"

stack frame of
> isLeap

J L

stack frame of
reportLeapYear

stack frame of
>’ main program

J

T returned value for the caller

& return address in the caller

recursive function calls

def factorial(n: Int) : Int = {
if (n==0 || n==1) {

1
}
else {

‘“‘IQTQ must be factorial(n-1) *x n
. 1

Q rfoP condition)

for the recursion

after calling factorial(3), we have
the fo\\owing execution stack when
the stop condition is reached:

questi

what happens ¥ we pass n

t) — S t) — S

T 5 s

G

G

stack frame of
factorial(1l)

stack frame of
factorial(2)

stack frame of
factorial(3)

T returned value for the caller

& return address in the caller

