searc\nimg
a\gori‘ﬂnms

\earnimg e
objecﬁves

system software

+ learn what the searc\nimg problem is about
+ learn two a\goriﬂ\ms for solving this problem

+ learn the importance of data structures

the problem
the searchihg problems comes in two variants:

& does a collection contain a given element?

JdJeec C CN|e=10

& what is the value associated with some ke1
n a given associative arvay ?

let ve (kv)| (kbv) eNXR A E=7

sequential search

the simplest searching a\gori'thm
based on brute-force approach

also called linear search

SEQUENTIAL SEARCH of key in A[1. . n]
fori— 1ton
if Ali] =key
return true
return false

worst case: O(n)
best case: O(1)

R —

def sequentialSearch(theKey : Int, theArray: Array[Int]) : Boolean = {

for (key <- theArray)
if (key == theKey)
return true
return false

}

dichotomic search

a dichotomic search consists in se\ecﬁng

between two Mu‘l’ua\\\, exclusive alternatives
(dichotomies) at each step of the a\goriﬂnm

international morse code
A o - Ue o mm
Ot aS Comeoeeoe Veeomm
Commeomme We mm sum
Cumeoe A omm e o mm
lllllllllll "'l \\ - - - e W - E. Y smm o mmm mmm
" ‘.~ Feoomme Lo
l." ~~ G e
- 1

-— -
ooooo
-~ L J
@ @] » o -
" -~ . -~ - - Ty " r K
* ~ L - Lowmeoe 20 ¢« mm mm
o ! - , - M - - EXREY N
> ‘\ v’ ‘\ N o Jecoeoemm
s mmamm Hessses
Feoms e Cammeeoss
l-——o- Tommammeoee
o-o Comm oum mmm o o
see LT L
— 0o e o e -

O ®® O&® ©Q-
BO0L CLOQ PHOP POV

O:) '%) :j‘;;“ﬁg) C O 6):)"“ @li”ﬂ Oi)

binar1 search

this algorithm requires a sorted collection

also called half-interval search or \ogariﬂnmic search

BINARY SEARCH of key in A[1. . n]

at each step, it reduces

low =1
high = n the search space by hal
while low < high do by excluding the half
| low+ high :
mzd{ oW . 'S J that cannot contain the
if A[mid]> key then searched keq
high = mid — 1
else if A[mid] < key then
low = mid + 1 worst case: O(log n)
else return rrue best case: O(1)

return false

def binarySearch(theKey : Int, theArray: Arrayl[Int]) : Boolean = {
var low = 0
var high = theArray.size - 1

while (low <= high) {
val mid = (low + high)/2;
if (theKey < theArray(mid)) {
high = mid - 1
} else if (theKey > theArray(mid))
low = mid + 1
else

return true
I3
return false; ’
Iy
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]
3 3 13 17 | 25 | 34 | 41 46 | 55 | 63 | 74 | /8 | 81 82 | 93 | 99
mtd
74 > 46
3 3 13 17 | 25 | 34 | 41 46 | 55 | 63 | 74 | 78 | 81 82 | 93 | 99
mtd
74 <78
3 3 13 17 | 25 | 34 | 41 46 | 55 | 63 | 74 | /8 | 81 32 | 93 | 99
mfid
74 > 63
3 3 13 17 | 25 | 34 | 41 6 | 55 | 63 | 74 | /8 | 81 82 | 93 | 99
1
mid

74=74

) QGYCM P erf oymance p
‘ O(log n)
sequential search
p=1.0 p=0.5 p=0.25 p=0.0
n p=1.0 p=05 p=0.25 p=0.0
800'000 ns
4'096 17'130 ns 18'306 ns 23'912 ns 24'645 ns
600'000 ns
8'192 20'962 ns 31'311 ns 42'125 ns 46'303 ns
400'000 ns 16'384 43'458 ns 98'216 ns 135'982 ns 100311 ns
32'768 189'951 ns 382'093 ns 237106 ns 266'952 ns
200'000 ns
65'536 264'791 ns 377'919 ns 395'050 ns 460'229 ns
Ons
1096 g19 1094 S2Te8 B5R36 1STOT2 - 131'072 465'458 ns 621'136 ns 763112 ns 780'680 ns
binary search
p=1.0 p=0.5 p=0.25 p=0.0
n p=1.0 p=0.5 p=0.25 p=0.0 260 s
4'096 206 ns 191 ns 77 ns 78 ns
195 ns
8'192 108 ns 92 ns 79 ns 75 ns
16'384 129 ns 98 ns 79 ns 93 ns 130 ns
32'768 251 ns 186 ns 128 ns 111 ns
65 ns
65'536 216 ns 142 ns 119 ns 81 ns
131'072 219 ns 174 ns 134 ns 164 ns 0ns

4'096 8'192

16'384

32'768

65'536

131'072

) QGYCM P erf ormance P
‘ O(log n)
sequential search >
p=1.0 p=05 p=0.25 p=0.0
n p=1.0 p=05 p=0.25 p=0.0
800'000 ns
4'096 17'130 ns 18'306 ns 23'912 ns 24'645 ns
600'000 ns
8'192 20'962 ns 31'311 ns 42'125 ns 46'303 ns
400'000 ns 16'384 43'458 ns 98216 ns 135°982 ns 100'311 ns
32'768 189'951 ns 382'093 ns 237'106 ns 266'952 ns
200'000 ns
65'536 264791 ns 377'919 ns 395'050 ns 460229 ns
Ons
1096 g19 1094 S2Te8 B5R36 1STOT2 - 131'072 465'458 ns 621'136 ns 763112 ns 780'680 ns
binary search
p=1.0 p=0.5 p=0.25 p=0.0
n p=1.0 p=05 p=0.25 p=0.0
4'096 206 ns 191 ns 77 ns 78 ns
8'192 108 ns 92 ns 79 ns 75 ns 100 ns
16'384 129 ns 98 ns 79 ns 93 ns
32'768 251 ns 186 ns 128 ns 111 ns 10 ns
65'536 216 ns 142 ns 119 ns 81 ns
131'072 219 ns 174 ns 134 ns 164 ns 1ns
4'096 8'192 16'384 32'768 65536 131'072

seaych performance

sequential search >
p=1.0 p=0.5 p=0.25 p=0.0
n p=1.0 p=0.5 p =0.25 p=0.0
800'000 ns
4'096 17'130 ns 18'306 ns 23'912 ns 24'645 ns
600'000 ns
8'192 20'962 ns 31'311 ns 42'125 ns 46'303 ns
400'000 ns 16'384 42458 ns 98216 ns 5'982 ns 100'311 ns
768 3R093 ns 266'952 ns
200'000 ns
65'536 64791 ns 377'919 ns 395'050 ns 460'229 ns
0 ns Q ,
S92 ToSsh s2ves TRORE Tl 131'072 465'458 ns 621'136 ns 763'112 ns 780 68?
binary sm a e ' 0
p=0.5 p=0.25 p=0.0
n p=0.5 p=0.25 p=0.0
4'096 206 ns 191 ns 77 ns 78 ns
8'192 108 ns 92 ns 79 ns 75 ns 100 e
16'384 129 ns 98 ns 79 ns 93 ns
32'768 251 ns 186 ns 128 ns 111 ns 10 ns
65'536 216 ns 142 ns 119 ns 81 ns
131'072 219 ns 174 ns 134 ns 164 ns 1ns

4'096 8'192 16'384 32'768 65'536 131'072

data structures

the performance of an a\gor'rthm often
also depends on the data structure

the binary search requires a sorted collection, so
part of the cost is goes into sor‘hng the collection

arra sing\e oPeraﬁon

m « memory for \ accessing a particular element
] [1]

(01 111 [21 (31 (41 (51 (6 [7] in a collechion, say A[7]
13117 | 25 | 34 46
—
memory for an Int . .
linked list
3| o—p{ 8 | o 13| e 17| e—p{ 25 | e—»{ 34 | e—» 41 | e—» 46 | nul
\‘\Jz A A A A A \JZJ/
Y

several complex operations to follow links until the searched element

—p
S
)
S
S

:g
S
]

sorted linked i

remove element

[0]

[1]

[2]

[3]

[4]

[5] [6]

[7]

13

17

25

34 | 41

46

13

17

34

€141

46

13

17

34

41

W W W] W

Q| 0| |00 |

13

17

34

41

remove element

data structures

add element 38
[0] [1] [2] [3] [4]@ [5] [6] [7]
318 13|17 | 34| 41 | 46
318 13|17 |34 | 411> | 46
3|18 | 13|17 | 341 | 41| 46
318 |13|17 |34 |38 | 41 | 46

3 | &= 8 | & 13| & 1/ | &= 25 | &—p| 34 | &—» 41 | &—» 46 | null
3| e 8 | o 13| e 17 | o > 34 | e— 41 | e—» 46 | nul
38
add element 7
3| e 8 | e 13| e 17| o 34 | e—» 41 | e—» 46 | nul
3| e 8 | e 13| e 17| {34 | ¢ || 41| e 46 | nul
38| o

search P erformance p
‘ O(log n)
5210 —p=05 - p=025 — p=00 sequential search in a linked list >
700'000 ns n p=1.0 p=05 p=0.25 p=0.0
4'096 6'376 ns 9'951 ns 11'516 ns 16'447 ns
525'000 ns
8'192 16'865 ns 25'425 ns 29'715 ns 34780 ns
350'000 ns 16'384 35'685 ns 53'881 ns 75'148 ns 87'058 ns
32'768 82'872 ns 122'246 ns 146'411 ns 164'986 ns
175'000 ns
65'536 169'044 ns 244'068 ns 303'836 ns 330'198 ns
0ns 131'072 355'536 ns 520'393 ns 649'836 ns 662'913 ns
4'096 8'192 16'384 32768 65536 131072
binary search in a linked list =10 =05 0=0.25 5=0.0
n p=1.0 p=0.5 p=0.25 p=0.0 700'000 ns
4'096 89'863 ns 174'655 ns 200748 ns 238'440 ns
525'000 ns
8'192 193'307 ns 360'377 ns 457'862 ns 565'766 ns
16'384 482'478 ns 886'582 ns 1'038'265 ns 1'187'520 ns 350'000 ns
32'768 1'098'888 ns 1'765'568 ns 2'146'730 ns 2'693'595 ns
175'000 ns
65'536 2'593'438 ns 4'261'790 ns 5'019'401 ns 5'911'436 ns
131'072 5'265'582 ns 9'724'940 ns 11'840'437 ns 14'867'349 ns 0 ns
4'096 8'192 16'384 32768 65536 131072

binar1 search trees

a binary tree is a tree data structure where each /0/>\'
node has at most two children links, which are S

referred to as the left child and the righ‘r child

Q binarsl searchh tree is a rooted bimarﬂ tree
with the fo\\ovuing properties:

4 each node has a comparable kesl

® the ke1 of any node is larger than the
ke1s of all nodes in that node's left subtree

o the kexl of any node is smaller than the kesls of all

nodes in that node's righ‘r subtree
a subtree is simP\s, the tree

that is a child of a node

binmq search trees

in addition, each node might also have:

€ a value (in the case of associative armqs)
® a link fo its parent in the tree, often noted p

in full generality, a node of the binary search tree is
thus a tuple of the form (key, value, left, right, p)

these tuple elements are usually designed as
x.key x.value x.left x.right x.p

the free itself is usually noted 7 and 7
has a root attribute, noted 7.roor
pointing to the first node of T

bina\q search trees

some a\gori‘thms

INORDER-TREE-WALK (x) ITERATIVE-TREE-SEARCH (X, k)
1 ifx 75 NIL TREE—SEARCH(X, k) 1 while x 75 NIL and k 75 x.key
2 INORDER-TREE-WALK (x. left) I ifx == NIL or k == x. key 2 if £k < x.key
3 print x. key) return x 3 X = x.le.ft
- INORDER-TREE-WALK (x.right) 3 ifk < x.key - else x = x.right
4 return TREE-SEARCH (x. left, k) > return x
5 else return TREE-SEARCH (x.right, k)
TREE-MINIMUM (X)
I while x.left 7 NIL '« no need to Ccompare kexls‘. TREE-INSERT(7, 2)

2 X = x.left

3 return x Iy =NL

2 x = T.root

3 while x # NIL
4 y =X
TREE-MAXIMUM (x) TREE-SUCCESSOR (x) 2 if z.key < xékey
1 while x.right # NIL 1 if x.right # NIL - elsejcc _ ;C'rf?h t
2 X = x.right 2 return TREE-MINIMUM (x.right) 8 p=y '
3 return x 3 y=x.p 9 if.y _- NIL € tree was
R 4 while y # NIL and x == y.right 10 T root — z emPf1
2 o i Y 11 elseif z.key < y.key
from: Introduction to Algorithms y =y .r 12 y_leﬁ =7
by T. H. Cormen et al. 7 returny 13 else y.right =z

3rd Edition
MIT Press, 2009

balanced trees,

the heigwr of a tree is the maximum / N\
distance of any node from the root NEAN

heigh‘l'

Q \neighf-ba\anced (or simply balanced) tree is a
tree whose subtrees have the fo\\ovuing properties:

. ‘ﬂr\ei differ in heig\nf by no more than ore
> ﬂnej are \neighrl'-ba\anced as well

A A N
N S AVANEEY A -\
/N N N N\

vuh1 is it iwrererh'ng to use a
balanced binmﬂ search tree?

