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learn what the searching problem is about 

learn two algorithms for solving this problem 

learn the importance of data structures
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the problem
the searching problems comes in two variants: 

does a collection contain a given element? 

what is the value associated with some key 
in a given associative array ?
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SEQUENTIAL SEARCH of key in A[1. . n]
for i ← 1 to n

if  A[i] = key
return true

return false

the simplest searching algorithm  
based on brute-force approach

sequential search

also called linear search

def sequentialSearch(theKey : Int, theArray: Array[Int]) : Boolean = { 
  for (key <- theArray)  
    if (key == theKey)  
      return true 
  return false 
}

worst case: O(n)
best case: O(1)



dichotomic search
a dichotomic search consists in selecting 

between two mutually exclusive alternatives 
(dichotomies) at each step of the algorithm

international morse code



this algorithm requires a sorted collection

also called half-interval search or logarithmic search

at each step, it reduces 
the search space by half 
by excluding the half 

that cannot contain the 
searched key

BINARY SEARCH of key in A[1. . n]
low = 1
high = n
while low ≤ high do

mid = low + high

if  A[mid] > key  then
high = mid – 1

else if  A[mid] < key  then
low = mid + 1

else return true
return false

�
low+high

2

⌫

worst case: O(log n)
best case: O(1)

binary search



[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

3 8 13 17 25 34 41 46 55 63 74 78 81 82 93 99
⬆ 

mid
74 > 46

3 8 13 17 25 34 41 46 55 63 74 78 81 82 93 99
⬆ 

mid
74 < 78

3 8 13 17 25 34 41 46 55 63 74 78 81 82 93 99
⬆ 

mid
74 > 63

3 8 13 17 25 34 41 46 55 63 74 78 81 82 93 99
⬆ 
mid

74 = 74

def binarySearch(theKey : Int, theArray: Array[Int]) : Boolean = { 
  var low = 0 
  var high = theArray.size - 1 
 
  while (low <= high) { 
    val mid = (low + high)/2; 
    if (theKey < theArray(mid)) { 
      high = mid - 1 
    } else if (theKey > theArray(mid))  
      low = mid + 1 
    else 
      return true 
  } 
  return false; 
}

binary 
search



sequential search

n p = 1.0 p = 0.5 p = 0.25 p = 0.0

4'096 17'130 ns 18'306 ns 23'912 ns 24'645 ns

8'192 20'962 ns 31'311 ns 42'125 ns 46'303 ns

16'384 43'458 ns 98'216 ns 135'982 ns 100'311 ns

32'768 189'951 ns 382'093 ns 237'106 ns 266'952 ns

65'536 264'791 ns 377'919 ns 395'050 ns 460'229 ns

131'072 465'458 ns 621'136 ns 763'112 ns 780'680 ns

binary search

n p = 1.0 p = 0.5 p = 0.25 p = 0.0

4'096 206 ns 191 ns 77 ns 78 ns

8'192 108 ns 92 ns 79 ns 75 ns

16'384 129 ns 98 ns 79 ns 93 ns

32'768 251 ns 186 ns 128 ns 111 ns

65'536 216 ns 142 ns 119 ns 81 ns

131'072 219 ns 174 ns 134 ns 164 ns

0 ns

200'000 ns

400'000 ns

600'000 ns

800'000 ns

4'096 8'192 16'384 32'768 65'536 131'072

p = 1.0 p = 0.5 p = 0.25 p = 0.0

search performance
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4'096 8'192 16'384 32'768 65'536 131'072

p = 1.0 p = 0.5 p = 0.25 p = 0.0

O(n)

O(log n)
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where does the 
“magic” come from?



linked list
3 8 13 17 25 34 41 46 null

⤻ ⤻ ⤻ ⤻ ⤻ ⤻ ⤻
several complex operations to follow links until the searched element

array

[0] [1] [2] [3] [4] [5] [6] [7]

3 8 13 17 25 34 41 46

memory for an Int

single operation 

&A + 7 × memory for an Int

data structures
the performance of an algorithm often 

also depends on the data structure

the binary search requires a sorted collection, so 
part of the cost is goes into sorting the collection

accessing a particular element 
in a collection, say A[7]



data structures

3 8 13 17 34 41 46 null

3 8 13 17 25 34 41 46 null

[0] [1] [2] [3] [4] [5] [6] [7]

3 8 13 17 25 34 41 46

3 8 13 17 34 41 46

3 8 13 17 34 41 46

3 8 13 17 34 41 46

☜
☜

[0] [1] [2] [3] [4] [5] [6] [7]

3 8 13 17 34 41 46

3 8 13 17 34 41 46

3 8 13 17 34 41 46

3 8 13 17 34 38 41 46

☞

☝︎

☟
38

☞

3 8 13 17 34 41 46 null

3 8 13 17 34 41 46 null

38

☟
38

remove element

add element

remove element add element
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binary search in a linked list

n p = 1.0 p = 0.5 p = 0.25 p = 0.0

4'096 89'863 ns 174'655 ns 200'748 ns 238'440 ns

8'192 193'307 ns 360'377 ns 457'862 ns 565'766 ns

16'384 482'478 ns 886'582 ns 1'038'265 ns 1'187'520 ns

32'768 1'098'888 ns 1'765'568 ns 2'146'730 ns 2'693'595 ns

65'536 2'593'438 ns 4'261'790 ns 5'019'401 ns 5'911'436 ns

131'072 5'265'582 ns 9'724'940 ns 11'840'437 ns 14'867'349 ns

sequential search in a linked list

n p = 1.0 p = 0.5 p = 0.25 p = 0.0

4'096 6'376 ns 9'951 ns 11'516 ns 16'447 ns

8'192 16'865 ns 25'425 ns 29'715 ns 34'780 ns

16'384 35'585 ns 53'881 ns 75'148 ns 87'058 ns

32'768 82'872 ns 122'246 ns 146'411 ns 164'986 ns

65'536 169'044 ns 244'068 ns 303'836 ns 330'198 ns

131'072 355'536 ns 520'393 ns 649'836 ns 662'913 ns

search performance O(n)

O(log n)
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a binary tree is a tree data structure where each 
node has at most two children links, which are 
referred to as the left child and the right child

binary search trees

a binary search tree is a rooted binary tree 
with the following properties:  

each node has a comparable key 
the key of any node is larger than the 
keys of all nodes in that node’s left subtree 
the key of any node is smaller than the keys of all  
nodes in that node's right subtree
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Figure12.2Queriesonabinarysearchtree.Tosearchforthekey13inthetree,wefollowthepath
15!6!7!13fromtheroot.Theminimumkeyinthetreeis2,whichisfoundbyfollowing
leftpointersfromtheroot.Themaximumkey20isfoundbyfollowingrightpointersfromtheroot.
Thesuccessorofthenodewithkey15isthenodewithkey17,sinceitistheminimumkeyinthe
rightsubtreeof15.Thenodewithkey13hasnorightsubtree,andthusitssuccessorisitslowest
ancestorwhoseleftchildisalsoanancestor.Inthiscase,thenodewithkey15isitssuccessor.

TREE-SEARCH.x;k/

1ifx==NILork==x:key
2returnx
3ifk<x:key
4returnTREE-SEARCH.x:left;k/
5elsereturnTREE-SEARCH.x:right;k/

Theprocedurebeginsitssearchattherootandtracesasimplepathdownwardin
thetree,asshowninFigure12.2.Foreachnodexitencounters,itcomparesthe
keykwithx:key.Ifthetwokeysareequal,thesearchterminates.Ifkissmaller
thanx:key,thesearchcontinuesintheleftsubtreeofx,sincethebinary-search-
treepropertyimpliesthatkcouldnotbestoredintherightsubtree.Symmetrically,
ifkislargerthanx:key,thesearchcontinuesintherightsubtree.Thenodes
encounteredduringtherecursionformasimplepathdownwardfromtherootof
thetree,andthustherunningtimeofTREE-SEARCHisO.h/,wherehistheheight
ofthetree.

Wecanrewritethisprocedureinaniterativefashionby“unrolling”therecursion
intoawhileloop.Onmostcomputers,theiterativeversionismoreefficient.
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root

a subtree is simply the tree 
that is a child of a node



the tree itself is usually noted T and 
has a root attribute, noted T.root  
pointing to the first node of T

these tuple elements are usually designed as 
x.key    x.value   x.left     x.right    x.p

in full generality, a node of the binary search tree is 
thus a tuple of the form ( key, value, left, right, p )
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in addition, each node might also have:  
a value (in the case of associative arrays) 
a link to its parent in the tree, often noted p

T.root

binary search trees



binary search trees
288 Chapter 12 Binary Search Trees

INORDER-TREE-WALK.x/

1 if x ¤ NIL
2 INORDER-TREE-WALK.x: left/
3 print x:key
4 INORDER-TREE-WALK.x:right/

As an example, the inorder tree walk prints the keys in each of the two binary
search trees from Figure 12.1 in the order 2; 5; 5; 6; 7; 8. The correctness of the
algorithm follows by induction directly from the binary-search-tree property.

It takes ‚.n/ time to walk an n-node binary search tree, since after the ini-
tial call, the procedure calls itself recursively exactly twice for each node in the
tree—once for its left child and once for its right child. The following theorem
gives a formal proof that it takes linear time to perform an inorder tree walk.

Theorem 12.1
If x is the root of an n-node subtree, then the call INORDER-TREE-WALK.x/
takes ‚.n/ time.

Proof Let T .n/ denote the time taken by INORDER-TREE-WALK when it is
called on the root of an n-node subtree. Since INORDER-TREE-WALK visits all n
nodes of the subtree, we have T .n/ D !.n/. It remains to show that T .n/ D O.n/.

Since INORDER-TREE-WALK takes a small, constant amount of time on an
empty subtree (for the test x ¤ NIL), we have T .0/ D c for some constant c > 0.

For n > 0, suppose that INORDER-TREE-WALK is called on a node x whose
left subtree has k nodes and whose right subtree has n ! k ! 1 nodes. The time to
perform INORDER-TREE-WALK.x/ is bounded by T .n/ " T .k/CT .n!k!1/Cd
for some constant d > 0 that reflects an upper bound on the time to execute the
body of INORDER-TREE-WALK.x/, exclusive of the time spent in recursive calls.

We use the substitution method to show that T .n/ D O.n/ by proving that
T .n/ " .cCd/nC c. For n D 0, we have .cCd/ #0C c D c D T .0/. For n > 0,
we have
T .n/ " T .k/C T .n ! k ! 1/C d

D ..c C d/k C c/C ..c C d/.n ! k ! 1/C c/C d

D .c C d/nC c ! .c C d/C c C d

D .c C d/nC c ;

which completes the proof.
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Figure 12.2 Queries on a binary search tree. To search for the key 13 in the tree, we follow the path
15 ! 6 ! 7 ! 13 from the root. The minimum key in the tree is 2, which is found by following
left pointers from the root. The maximum key 20 is found by following right pointers from the root.
The successor of the node with key 15 is the node with key 17, since it is the minimum key in the
right subtree of 15. The node with key 13 has no right subtree, and thus its successor is its lowest
ancestor whose left child is also an ancestor. In this case, the node with key 15 is its successor.

TREE-SEARCH.x; k/

1 if x == NIL or k == x:key
2 return x
3 if k < x:key
4 return TREE-SEARCH.x: left; k/
5 else return TREE-SEARCH.x:right; k/

The procedure begins its search at the root and traces a simple path downward in
the tree, as shown in Figure 12.2. For each node x it encounters, it compares the
key k with x:key. If the two keys are equal, the search terminates. If k is smaller
than x:key, the search continues in the left subtree of x, since the binary-search-
tree property implies that k could not be stored in the right subtree. Symmetrically,
if k is larger than x:key, the search continues in the right subtree. The nodes
encountered during the recursion form a simple path downward from the root of
the tree, and thus the running time of TREE-SEARCH is O.h/, where h is the height
of the tree.

We can rewrite this procedure in an iterative fashion by “unrolling” the recursion
into a while loop. On most computers, the iterative version is more efficient.

12.2 Querying a binary search tree 291

ITERATIVE-TREE-SEARCH.x; k/

1 while x ¤ NIL and k ¤ x:key
2 if k < x:key
3 x D x: left
4 else x D x:right
5 return x

Minimum and maximum
We can always find an element in a binary search tree whose key is a minimum by
following left child pointers from the root until we encounter a NIL, as shown in
Figure 12.2. The following procedure returns a pointer to the minimum element in
the subtree rooted at a given node x, which we assume to be non-NIL:

TREE-MINIMUM.x/

1 while x: left ¤ NIL
2 x D x: left
3 return x

The binary-search-tree property guarantees that TREE-MINIMUM is correct. If a
node x has no left subtree, then since every key in the right subtree of x is at least as
large as x:key, the minimum key in the subtree rooted at x is x:key. If node x has
a left subtree, then since no key in the right subtree is smaller than x:key and every
key in the left subtree is not larger than x:key, the minimum key in the subtree
rooted at x resides in the subtree rooted at x: left.

The pseudocode for TREE-MAXIMUM is symmetric:

TREE-MAXIMUM.x/

1 while x:right ¤ NIL
2 x D x:right
3 return x

Both of these procedures run in O.h/ time on a tree of height h since, as in TREE-
SEARCH, the sequence of nodes encountered forms a simple path downward from
the root.

Successor and predecessor
Given a node in a binary search tree, sometimes we need to find its successor in
the sorted order determined by an inorder tree walk. If all keys are distinct, the
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12.2-8
Prove that no matter what node we start at in a height-h binary search tree, k
successive calls to TREE-SUCCESSOR take O.k C h/ time.
12.2-9
Let T be a binary search tree whose keys are distinct, let x be a leaf node, and let y
be its parent. Show that y:key is either the smallest key in T larger than x:key or
the largest key in T smaller than x:key.

12.3 Insertion and deletion

The operations of insertion and deletion cause the dynamic set represented by a
binary search tree to change. The data structure must be modified to reflect this
change, but in such a way that the binary-search-tree property continues to hold.
As we shall see, modifying the tree to insert a new element is relatively straight-
forward, but handling deletion is somewhat more intricate.

Insertion
To insert a new value ! into a binary search tree T , we use the procedure TREE-
INSERT. The procedure takes a node ´ for which ´:key D !, ´: left D NIL,
and ´:right D NIL. It modifies T and some of the attributes of ´ in such a way that
it inserts ´ into an appropriate position in the tree.

TREE-INSERT.T; ´/

1 y D NIL
2 x D T:root
3 while x ¤ NIL
4 y D x
5 if ´:key < x:key
6 x D x: left
7 else x D x:right
8 ´:p D y
9 if y == NIL

10 T:root D ´ // tree T was empty
11 elseif ´:key < y:key
12 y: left D ´
13 else y:right D ´
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successor of a node x is the node with the smallest key greater than x:key. The
structure of a binary search tree allows us to determine the successor of a node
without ever comparing keys. The following procedure returns the successor of a
node x in a binary search tree if it exists, and NIL if x has the largest key in the
tree:

TREE-SUCCESSOR.x/

1 if x:right ¤ NIL
2 return TREE-MINIMUM.x:right/
3 y D x:p
4 while y ¤ NIL and x == y:right
5 x D y
6 y D y:p
7 return y

We break the code for TREE-SUCCESSOR into two cases. If the right subtree
of node x is nonempty, then the successor of x is just the leftmost node in x’s
right subtree, which we find in line 2 by calling TREE-MINIMUM.x:right/. For
example, the successor of the node with key 15 in Figure 12.2 is the node with
key 17.

On the other hand, as Exercise 12.2-6 asks you to show, if the right subtree of
node x is empty and x has a successor y, then y is the lowest ancestor of x whose
left child is also an ancestor of x. In Figure 12.2, the successor of the node with
key 13 is the node with key 15. To find y, we simply go up the tree from x until we
encounter a node that is the left child of its parent; lines 3–7 of TREE-SUCCESSOR
handle this case.

The running time of TREE-SUCCESSOR on a tree of height h is O.h/, since we
either follow a simple path up the tree or follow a simple path down the tree. The
procedure TREE-PREDECESSOR, which is symmetric to TREE-SUCCESSOR, also
runs in time O.h/.

Even if keys are not distinct, we define the successor and predecessor of any
node x as the node returned by calls made to TREE-SUCCESSOR.x/ and TREE-
PREDECESSOR.x/, respectively.

In summary, we have proved the following theorem.

Theorem 12.2
We can implement the dynamic-set operations SEARCH, MINIMUM, MAXIMUM,
SUCCESSOR, and PREDECESSOR so that each one runs in O.h/ time on a binary
search tree of height h.

some algorithms

Introduction to Algorithms
by T. H. Cormen et al.
3rd Edition
MIT Press, 2009

from:

tree was 
empty

no need to compare keys!



balanced trees
the height of a tree is the maximum 
distance of any node from the root

a height-balanced (or simply balanced) tree is a 
tree whose subtrees have the following properties: 

they differ in height by no more than one  
they are height-balanced as well

he
ig
ht

why is it interesting to use a 
balanced binary search tree?




