Distributed
Algorithms

Benoit Garbinato

M’ ‘ HEC ‘ dopl a b distributed object programming lab

Distributed systems

distributed
networkRs 2277
“As long as there were no wemrehorees,'p roamwwm 0? was no problem
networks Lstribute
at all; when we had a few weak eowsmweeers programming became a
networks

mild problem and now that we have gigantic eomepstssrs,

distribycted P e graan

“programming has become an equally gigantic problem. n this
sense the electronic industry has not solved a single problem, it has
only created thewm - it has created the problem of using its products.”

Edgster Dijkstra, The Humbel Programmeer.
Communication of the ACM, vol. 15, no. 10.
October 1972. Turing Award Lecture.

Distributed Algorithms © Benoit Garbinato d 0] p |

Our approach

O Thepra ctitloner needs the theoretical perspec’c'we to
understand the 'LVWPL'Lth assump’ciows hidden Ln the
technologies, and thetr consequences

O The theoretician needs the practical perspective to validate
that theoretical models, problems § solutions work in
accordance to existing technologies

O To achieve this, we approachea distributed systems
through four complementary views:

< The model view >
O The tnteraction view
O The architecture view

QL The algorithm view>

Distributed Algorithms © Benoit Garbinato d 0] p | i
a

The big picture

When tmplementing a distributed program, you will
always end up writing some algorithm. n doing so,
you will have to answer the following questions:

O what problem am (trying to solve?
what architecture do t follow?

what model do | assume?

what tnteractlon do | use?

ggao

assumes

solves

/pr&’m
_,/

Distributed Algorithms © Benoit Garbinato d 0] p | .
a

Atomic commitment

Two-Phase Commit (2PC)

qy"‘ .1nvocatJ.ons ol N)
client / N AN]
\ > g'
"QQ votes o° LN
transaction manager s
T lo
newTransactlon §
data managerA y Y B3
g
data managerB \ A i \ x\ / / > g
s
data managerC \ 4 - E'_
’ 4 \ J
Problem: atomie commitment Y
nteraction: reliable message passing Here are the actual
Model: sywchronous crash-recovery two phases
Algorithm: 2-phase commit protocol
Distributed Algorithms © Benoit Garbinato d 0] p | i

A few observations

O Most atomle commitment protocols guarantee that
safety will always hold, but not necessarily liveness

O Liveness Ls compromised when faiLuures prevent the
Termination property from holding; tn such a case,
we say that the protocol is blocking

O twthe crash-recovery model, a blocking protocol cannot
terminate until crashed processes have recovereo

O upow recovery, a failed process reads it Log file from
stable storage and acts according to its last operation

O (n atomlec commitment terms, this meues that the
recovering process shoulol be able to decioe commit or
abort from what it finds in its Log file

Distributed Algorithms © Benoit Garbinato d 0] p |

Agreement problems

O The atomic commitment Ls an Lnstance
of a more general agreement problem,
also knowwn as the consensus ProbLem

O There exists many variants of the
consensus problem, whtch are not
weoessaril,g equivalent to each other

Distributed Algorithms © Benoit Garbinato d 0] p | i
a

Problem specification

The atomic commitment problem corresponds to the following consensus
variant, with the transaction manager and data managers being processes,
value 1 corresponding to commit and value o corresponding to abort

\
Agreement (safety property)
No two processes decioe on different values

validity (safety property)
o If any process starts with o, thew 0 Ls the only posstble decision
e (fall processes start with 1 and there are no failures, then 1 is

the only possible decision

Termination (liveness property)

weak: if there are no failures, thew all processes eventually decide
Strong: all nown faulty processes eventually dectde

\, J/

Distributed Algorithms © Benoit Garbinato d 0] p | .

Two-phase commit (2PC)

[Premises:

o synchronous model, reliable channels

o crash-recovery failures of data managers B

o transaction mawnager T acts as coordinator but also votes

Phase 1:
o each D process sends its tnitial value to process T
o any process By whole tnittal value ts o dectoes o
o ifprocess T times out waiting for some initial value, it
decides 0; otherwise it decides for the minimum of all values

Phase 2:
o process T broadcasts tts dectston to all D processes
o any process that has not yet dectded adopts this dectston

what Termuination property Ls ensured?

Distributed Algorithms © Benoit Garbinato d 0] p | i
a

Upon recovery (2PC)

Premises:
e operations are Loggeo onto stable storage before execution
o the logging of an operation and its execution are atomic

Recovery of a Dy process:

D reads tts log file from stable storage

p LUf it voted o or if it crashed before sending
Lts vote to T, it aborts

» otherwise, it asks T for the outcome of the
transaction and acts accordingly

Distributed Algorithms © Benoit Garbinato d 0] p | .

Limits of 2PC

Questions: what happens if the transaction manager crashes
before sending the final commit or abort message?
Two-Phase Commit (2PC)
Q,;;\ J.nvocatJ.ons sl A
client o? - N
“at !

transaction manag} \\\\

newTransactlon

data managerA

4
—e
AHAD

v

e

data managerB

v

\

data managerC

W)
v/

L"

Distributed Algorithms © Benoit Garbinato

dop; : ;

If process T crashed...

case A:

some process has dectded o

= it knows that T has etther not declded or that Lt has dectded o

=> it can inform all other D process that it is safe to decide o

case B:

all D; Pprocesses have voted 1

=> no decision is possible (blocking) :

1. T wmight have dectded o, so deciding 1 violates Agreement

2. T wmight have decided 1, so declding o violates Agreement

Distributed Algorithms © Benoit Garbinato

dop; :

Three-phase commit (3PC)

(eremises:
o synchronous model, reliable channels
o crash-recovery failures of any process
e transaction manager T acts as coordinator but also votes
Phase 1:
o each D process sewds its initial value to process T
o any process D; whose initial value is o decides 0
o ifprocess T times out waiting for some initial value or receives 0
from some process, it decides 0; otherwise it goes to ready state

Phase 2:
o if process T decided o, it broadeasts its decision to all D;processes,
so any process that has not yet decided adopts this decision
o ifprocess T is ready state, it broadeasts a pre-commit message,
so all processes go to ready state and send an ack message to T
o ifprocess T crashes, the other processes time out and decide o

Phase 3:

o ifprocess T receives ack messages from all processes, it decides 1 and broadeast its
dectston, so all processes decide 1 as well

o ifprocess T time out waiting for some ack message, it decides 0 and broadeast its
decision, so all processes dectde 0 as well

o ifprocess T crashes, the other processes time out and decide 1
§ J

Distributed Algorithms © Benoit Garbinato d 0] p | i
a

Upon recovery (3PC)

Premises: same as 2PC

Recovery of a D; process:

D; reads its Log file from stable storage
» if it voted o or if it crashed before acknowledging
the pre-commit message, it aborts
p otherwise, it asks T for the outcome of the transaction
and acts accordingly

Recovery of T

T reads its Log file from stable storage:
» if it crashed before sending pre-commit, it aborts
» otherwise, it commits

Distributed Algorithms © Benoit Garbinato d 0] p | .
a

Limits of 3PC

If T fail in Phase =, no other process is allowed to fail

Problemiatic scenario Ln Phase 3:

1. some D crashes before acknowledging pre-commit message
2. T decides 0 but crashes before broadeasting its decision
3. all other D time out waiting for the decision and deciode 1

(= Agreement is violated!]

why wot have all other B dectde 0 then?

Distributed Algorithms © Benoit Garbinato d 0] p | i
a

Further problems

unrealistie assump’ciows: synehronous processes
ano network, no network pmtitiows
= reliable failure detection

Drastic Limitation on failures: see previous slide

= T is a single point of failure/vulnera biLi’cg
Hidden assumptions: logging an action § executing
Lt must be atomic, dectding § broadeasting the
dectston must also be atomic

=> strong underlying atomic mechanisms

Distributed Algorithms © Benoit Garbinato d 0] p | .

Back to consensus

O f we express the atomic commitment protocol tn
terms of some consensus module, we can benefit
from all the algorithmic work done on the subject

Q}O invocations
client % —

transaction managl \\\\

newTransact ion“::"iz_.,.
data managerA Vi

data managerB V

data managerC y

Distributed Algorithms © Benoit Garbinato

[consensus mooule]

O\

Op\ob

Consensus & asynchrony

O Cownsensus cannot be solved tn asywehronous systems; this Ls
the famous F'Lsher—t,gwch—?atersow (FLP) meossiloiLLtg result

O For atomic commitment, the FLP result vaPLLes that we cannot
answer the question “how long should we wait before aborting?”

p if we do not wait long enough, safety is at stake

» if we wait forever, Liveness is at stake

O Real distributed systems are partially synchronous, L.e., they
are mostLg sgwchrowous but theg c)q:eriewce asgwohrowous
periods every now and thew. So, if we can solve a given problem
during a synehronous period, that’s all we need.

Distributed Algorithms © Benoit Garbinato

dop; : ;

Failure detectors

O A failure detector is a module that provides each process with
hints about possible crashes of other processes

O A failure detector encapsulates time assumptions and turns
them into Logical properties: completeness § accuracy. For

example, the eventually strong failure detector (O8S) ensures:

Strong CompLe’cewess. eventually, every process that
crashes is perma nently suspected by every corvect process.
Bventual weak Accuracy. Bventually, there exists a correct
process that is never suspected by any correct process

O The actual implementability of a given failure detector
depends on the underlying timing assumption

Distributed Algorithms © Benoit Garbinato d 0] p | i
a

Failure detectors & consensus

O The OS failure detector was proven to be the weakest

failure detector to solve consensus, provided that there are
Less thaw half incorrect processes

O The algorithm relies on the rotating coordinator
paradigm, where a different process has the opportunity
to become the next coordinator each time the current
coordinator is suspected to have crashed

O The Strong Completeness of OS ensures that wo process
will watt forever for the decision of a crashed coordinator

O The Bventual weak Accuracy of OS ensures that at least
one of the coordinators will be able to decide

Distributed Algorithms © Benoit Garbinato d 0] p | .

Fault-tolerant broadcasts

0O The abLLL’cH to broadcast messages with some dependable
guarantees is a key issue when building fault-tolerant
distributed systems

O ‘Besides the reliable delivery of messages, their ordering is
another aspect of this Lssue

O For example, Lf messages represent updates sent to the replicas
of a database, reliable delivery and total ordering are necessary

AppLLcatiow or other system layer
broadcast (m) ‘ T deliver(m)

Some fault-tolerant broadcast

Distributed Algorithms © Benoit Garbinato d 0] p | i
a

Reliable broadcast (basis)

n the following, we assume that each message m includes (1) the identity of
the sender, written sender(m) , and (2) a sequence number, denoted seq#(m).
These two fields are what makes each message unigue.

va Liolitg

(f & correct process broadeasts a message m, thew it eventually delivers m

Agreement
Standard: f a corvect process delivers a message m, thew all correct
processes eventually deliver m

uniform: tf a process delivers a message wm, thew all correct
processes eventually deliver m

Integ ritg

For any message wm, every correct process delivers me at most once, and only f
m was pre\/ioung broadcasted by sender (m)

\, J/

Distributed Algorithms © Benoit Garbinato d 0] p | .
a

Fifo broadcast

To obtain the specification of fifo broadeast, we simply add
the following fifo order property to the aforementioned
vaLLdi’cg, agreement and Lw’cegri’cg properties. That is,

fifo broadcast © rellable broadcast + fifo order

Fifo order

If a process broadcasts a message m before it broadeasts a
message m’, then no correct process delivers m’ unless it has
prev'wung delivered m

Distributed Algorithms © Benoit Garbinato d 0] p | i
a

Atomic broadcast (total order)

To obtain the specification of atomic broadeast, we simply add
the following total order property to the aforementioned
validity, agreement and integrity properties. That s,

atomic broadcast < reliable broadceast + total order

Total order

If corvect processes p and g both deliver messages wm ano w,
then p delivers wm before m if and only if q delivers wm before m’

J

Ruestion: does this meL5 Fifo Ovder ?

Distributed Algorithms © Benoit Garbinato d 0] p | .

Causal broadcast

O Vvery often, perfectly synchronized clocks are
not available, due to drifts, impreciseness, ete.

O However, physiceal time of not necessarily
what we need: only ca usality relationships
between events often need to be preserved

O (n this context, an event Ls tgpicaLLH the
sending or the reception of some message

Distributed Algorithms © Benoit Garbinato d 0] p | i
a

Causality relationship (1)

O (n order to specify the causal broadceast, we must
first ntroduce a partial order velationship

O Let —; be a partial order on the set of events
expressing orireot depenoencies such that:
o Lete, and e, be two events occurring at the same process p:
e. =>4 ey if and only if e, happened before e, at process p
e nparticular, we have that for each message wm.:
send (m) — 2 recetve (m)

Distributed Algorithms © Benoit Garbinato d O] p | .

Causality relationship (2)

O we now define the causal ordering relationship,
noted —c, as the transitive closure of —

0O Note that —c also defines a partial order and Ls
sometimes called the happened-before relationship

O Lete, and e, be two events occurring anywhere L
the system, L.e., possibtg at two distinct processes,
we say that e, causally precedes e, if and only if
we have e, —cC e,

Distributed Algorithms © Benoit Garbinato d 0] p | i
a

lllustration of causality

€1 €>
Pi—O Q >

\ g
\% 3
P q -
€o \65
~ A~

Pk O O >

O Herewe have e, —>c es, via e, , es and e,

0O However, e, and e, are concurrent, L.e., they are
not ordered (hewce —c is a partial order)

Distributed Algorithms © Benoit Garbinato d 0] p | .

Causal broadcast (partial order)

We now specify causal broadeast by simply adding the
causal order property givew hereafter (based on the happened-
before partial oroler) to the reliable broadcast properties

causal order

(f the broadcast of a message m causally precedes the broadeast
of a message m, them no correct processvoleLL\/ers m unless Lt has
previoung delivered m

So: causal broadecast & veliable broadcast + causal order

Distributed Algorithms © Benoit Garbinato d 0] p | i
a

Causal broadcast (alternative)

we cawn also see causal order as a generalization of fifo order.
n this case, we define causal broadeast by adding the local
order property given hereafter to the fifo broadeast properties

Local order

If a process broadcasts a message m anol a process delivers m
before broadceasting wm’, thewm no correct process delivers m’
unless it has previously delivered m.

So: causal broadceast & fifo broadcast + Local order

Distributed Algorithms © Benoit Garbinato d 0] p | .

Relationship among broadcasts

Reliable total order R Atomie

Broadcast Broaocast
N 1 fifo order fifo order 1 S
= IS
3 F'Lfo total order . F'Lfo Atomie _,:
s | TBroadcast Broadcast Y
A S
3 1 Local order Local order 1 °

causal total order | causal Atomle

Broadcast Broaocast

Distributed Algorithms © Benoit Garbinato d (O] p S

Implementing broadcasts

O There exists numerous algorithms solving the various
broadcast primitives we presenteo

O The algorithms we are presenting hereafter are taken
from two major papers:

[Hadzilacos93] Hadzilacos, V. and Toueg, S. 1993. Fault-tolerant broadcasts and related problems. In

Distributed Systems (2nd Ed.), S. Mullender, Ed. Acm Press Frontier Series. ACM Press/Addison-
Wesley Publishing Co., New York, NY, 97-145.

[Chandra96] Chandra, T. D. and Toueg, S. 1996. Unreliable failure detectors for reliable distributed
systems. J. ACM 43, 2 (Mar. 1996), 225-267.

O These algorithms all asswme a partiaLLg sywehronous

system and might not be optimal

causal broadcast

Atomte broadcast

Fifo broadcast

Reliable broadcast

Distributed Algorithms © Benoit Garbinato d 0] p | .
a

Reliable broadcast

Algorithm for process p:
To execute broadcast(R,m):
send(m) to p

deliver(R,m) occurs as follows:
upon receive(m) do
if p has not previously executed deliver(R,m)
then
send(m) to all neighbors
deliver(R,m)

Every process p executes the following:

To execute R-broadcast(m):
send m to all (including p)

R-deliver(m) occurs as follows:
when receive m for the first time
if sender(m) # p then send m to all
R-deliver(m)

[Hadzilacos93]

[Chandra96]

Comment: This is typically a flooding algorithm

Distributed Algorithms © Benoit Garbinato

dop; : ;

Fifo broadcast

Algorithm for process p:

Initialization:
msgSet :=
nezt[s] := 1, for each process s

To execute broadcast(F,m):
broadcast(R,m)

deliver(F,—) occurs as follows:
upon deliver(R,m’) do

s := sender(m')
if next(s] = seq#(m')
then
deliver(F,m’)
nezt(s| := nezt(s] + 1
while (Im € msgSet : sender(m) = s
and nezt[s] = seq#(m)) do
deliver(F,m)
nezt[s] := next[s] + 1
else
msgSet := msgSet U {m'}

[Hadzilacos93]

Distributed Algorithms © Benoit Garbinato

dop; : ;

Causal broadcast

Algorithm for process p: deliver(C,—) occurs as follows:
Initialization: upon deliver(F,(my, ma,...,m;)) for some | do
rentDlvrs := L for i :=1..1do
if p has not previously executed deliver(C,m;)
then

To execute broadcast(C,m):

broadcast(F, (rentDlurs || m)) deliver(C,m;)
rentDlvrs := L rentDlyrs := rentDlvrs || m;

[Hadzilacos93]

comments:

O rentbelvrs is the sequence of messages that p delivered since
Lt previous causal broadcast

O || Ls the concatenation operator on sequences of messages

Distributed Algorithms © Benoit Garbinato d 0] p | i
a

Back to consensus...

The atowmic broadcast can be reduced to the consensus problem. Note however
that this version of consensus is different from the version we used when
discussing atomic commitment. This second version is defined in terms of
two primitives, propose(v) and decide(v), with v some value. When some
process executes propose (V), we say that it proposes value v, and when it
executes decides (v), we say it decides value v.

Terminatlon. Bvery correct process eventually dectoes on some value.

Untform tntegrity. Bvery process dectdes at most once.

Agreement. No two corvect processes decide differently.

uniform validity. (f a process decioes v, then v was proposed bg SOVLE PrOCESS.
L ~ J

Distributed Algorithms © Benoit Garbinato d 0] p | .
a

Atomic broadcast

Initialization:
R_delivered := 0
Adelivered =0
k:=0

To execute broadcast(A,m):
broadcast(R,m)
deliver(A,—) occurs as follows:

upon deliver(R,m) do
R_delivered := R_delivered U {m}

do forever

A_undelivered := R_delivered — A_delivered

if A_undelivered # 0 then
k=k+1
propose(k, A_undelivered)
wait for decide(k,msgSet)
bateh(k) == msgSet — A_delivered
A-deliver all messages in batch(k) in some deterministic order
A_delivered := A_delivered U batch(k)

Initialisation:

To execute A-broadcast(m):

A-deliver(—) occurs as follows:

R_delivered « 0
Adelivered «— 0
k0

R-broadcast(m)

when R-deliver(m)
R_delivered «— R_delivered U {m}

when R_delivered — A_delivered # 0
k—k+1
A_undelivered « R_delivered — A_delivered
propose(k, A_undelivered)
wait until decide(k, msgSet*)
Adeliver® «— msgSet* — Adelivered
atomically deliver all messages in A.deliver® in some deterministic order
Adelivered — A_delivered U A deliver®

[Hadzilacos93]

[Chandra96]

Comment: consensus execution are numbered and ordered (R)

Distributed Algorithms © Benoit Garbinato

dop; : ;

