3
H

b
(4
=300
0..

rd
. -
3

Wi

.]:i ELILEAED B
fazo02¢ /°
0: 2
koq.z:s.zx%

23T 203.220.12¢

T

£230..10

i
;A\',:&

072057

7

sur{

PG L
aés.zs

>
Vi

[

“

\earnimg e
objech’ves

system software

+ learn what graphs are in mathematical terms
+ learn how to represent graphs n computers

+ learn about typical grapln a\gor'rﬂnms

vuhxl graphs?
intuitively, a graph is formed by
vertices and edges between vertices

——

graphs are used in numerous fields to model
relationships (edges) between elements (vertices)

hidden layers @__ STRATEGIC HUMAN
STRATEGIC W, T RRALN DATA
NOUSE uu’llh u.p;\ N
.‘. NN ‘__.z‘//.‘.s., |
- A

{ b g /N \
CDGHIYI\'F' AT N\ S A
A :‘CHP*E ot mr ‘ 'MR“”qAL
| - i 4 HrIJIEGASCINNCC
Sl I L P, |
— Y ' | \
,_.‘..f»L,'_\ aAm, \

- Qté’_‘fu[x.lns("-‘rﬂ_:nt: MATICS

Ny :s5:
s R \ \ |

o% * \ ,'i J £ ; b

ks ' e il ‘: R

input layers

what's a gmph?

formally, a graph is a tuple G =(V,E) of sets,
where V is a set of vertices (or nodes or points)
and £ is a set of eclges such that:

E_ng‘V

examP\e-.

V =1{1,2,3,4,56,7)
E={{1,2},{1,4},{2},{2,3},{2,4},{2,5},{4,7}}

T Jpes of gmphs

undirected:

vV =1{1,2,3,4,5,6,7} :
E={{1,2},{1,4},{2},{2,3},{2,4},{2,5},{4,7}} 6o 3

oriented: | %
B = 101,2),(1,4),2,2),2.), (4,2), (9. (5.2, (7,4)

notations & metrics

let G be graph, G.V denotes its set of vertices and G.E its set of edges

the edge between vertices x and y is noted {x,y}, (x,y) or simply xy

the order of G, written |G|, is the number of its
vertices, whereas |G| denotes its number of edges

graph G is sparse ¥ |G « G and i is dense ¥ |Gl = |G

two vertices x and y are adjacent or neighbors i xy e G

i all the vertices of G are pairwise adjacent, then G is complete

notations & metrics

a path from vertex x to vertex yis a sequence (v, vy, ..., vr) of vertices
vieV where x =vy) and y =vr, such that Vic{l, ... kl : (vi1, vi) EE

Q graph is connected every pair of vertices is connected via a path

a path (v, v1, ..., vw is @ cycle f vertices v) = v

we can store attributes in vertices and edges using the dotted notation,
e.q., v.color stores a color attribute in vertex v, while c.weight and
(x,y).weight store a weight atfribute in edge ¢ and edge (x,y) respectively

notations & metrics

let G=(V,E) and G' =(V',E') be two graphs, ¥ V' C V and E' C E,
then G' is a subgraph of G, which we write G' C G

let G=(V.E) and G' =(V,E') be two graphs and G' C G,
i V' =V, G' is a spanning subgraph of G

the degree (or valency) of a vertex vis the
number of neighbors of vand is noted d(v)

we defined §(G) =min { d(v) | ve V} as the minimum degree of G

we defined A(G)=max {d(v) | ve V}as the maximum degree of G

1
we defined Jd(G) = — Z d(v) as the average deqgree of G

’V‘ veV

represen‘hng ng\ns

1 2 3 45 6 7 1] —» 2
01010 0 0 o | Ll 2 | Ll 3
01100 0 0 3
00000 0 0 o Lo bl
010000 1

5| ¥ 2
01000 0 0
00000 O0 O 6
0001000 7| > 4

an adjacenc\, list is best suited for representing a sparse graph

most grapln a\gor’rrhms rely on acljacenq lists

an acljacehc,s, matrix is best suited for representing a dense
graph or when the algorithm needs to know quickly i there
exists an edge connecﬁhg two vertices

hs

represenﬁng qrap

undirected

10
5
1
<
5
1
en D~
£
1 1
< | & o
Hrhpert -
[
N[—[| —[! S
e &
....GJ
— N M o © I~ S
Mo o O
o © O
o —~ O
S — o~ O
O — O
N — o~
O — O
— & o

‘21 1 0 0.0 O 1
M0 1 0 0 0.0 O

80 0 00 0 0.0

(@0 0 01 0 O0 O

adjacenq matrix

typical problems

breadth-first search

minimum sPahhihg tree

sihg\e-source shortest paths

h-£irst search

given graph G and a source vertex s € G,
it discover every vertex reachable from s

it computes the distance from s to every vertex v € G

it produces a breadth-first tree rooted at s
that contains all reachable vertices from s

the search is said to be breadth-first because it
discovers all vertices at distance . from s before
discovering any vertices at distance % + 1

rst search

® O 0-0© o—©
@ ® ®
® ®
6 @ ° o—©
® ®

0 @0 (=) 11

r~first search

BFS(G, s)

for each vertex u € G.V — {s}

y 2 u.color = WHITE
3 u.d = oo
4 u.m = NIL
5 s.color = GRAY
O |r|t|x (d) O |t v 6 sd—=0
b2 2 2 2 7 s.m = NIL
8 0 =20
9 ENQUEUE(Q,s)
10 while O # 0
Q [x|v ® Q [v]uly 11 u = DEQUEUE(Q)
223 33 12 for each v € G.Adju]
13 if v.color == WHITE
d S ! u d 5 ! “ 14 v.color = GRAY
15 v.d =u.d+1
(2) Q |uly (h) 0 |y 16 VT = u
3 3 3 17 ENQUEUE(Q, v)
' v * g ' v) d 18 u.color = BLACK
r S t u
(1) 0 9
- - - y v.d distance from source s
white : undiscovered
from: Introduction to Algorithms v.color grey : discovered with some neighbors discovered
by T. H. Cormen et al. black : discovered with all neighbors discovered
3rd Edition T predecessor in bread-first three

MIT Press, 2009

minimum sPavmihg tree

a weighted graph Gu =(G,w) is a tuple composed of
a graph G =(V,E) and of a function w: E - R
associating a weight w, to each edge ¢ € E

a Minimum (wmghf) sPannmg hree of grapln Gw (G w)

is a connected subgraph (V'.E') such that:

1 V=V
2, —

(V,E') does not contain any cycles

Y weis minimal across all subgraphs fulfilling @ and @

ec F’

minimum sPavmihg tree

Q disjoimf-sef data structure maintains a collection § ={S;,Ss,...,S;}
of disjoiwt dyramic sets where each set is identified by a member
of the set known as its representative

Q disjoivd’-se‘l’ data structure supports the fo\\owing operations:

MAKE-SET(x) creates a new set whose only
member and its representative is x

UNION(x,y) merges the dynamic sets that contain x and y, say
S: and S,, into a new set that is the union of these two sets

FIND-SET(x) returns the representative of the set containing x

mMminimum sPavming tree
Kruskal's a\goriﬂnm

MST-KRUSKAL(G, w)

I A=90

2 for each vertex v € G.V

3 MAKE-SET (V)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u,v) € G.E, taken in nondecreasing order by weight
6 if FIND-SET (1) # FIND-SET(v)

7 A= AU{(u,v)}

8 UNION(u, v)

9 return A

from: Introduction to Algorithms
by T. H. Cormen et al.
3rd Edition
MIT Press, 2009

vsrkesco MAINIMAUM. Spanning tree

1 A=90 1 -

2 for each vertex v € G.V KruSka‘ S a‘gorr"hm
3 MAKE-SET(v)

4 sort the edges of G. E into nondecreasing order by weight w

5 for each edge (u,v) € G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) # FIND-SET(v)

7 A= AU{(u,v)}

8 UNION(u, v)

9 return A4

from: Introduction to Algorithms
by T. H. Cormen et al.
3rd Edition
MIT Press, 2009

vsrkesco MAINIMAUM. Spanning tree

1 A=90 1 -

2 for each vertex v € G.V KruSka‘ S a‘gor“rhm
3 MAKE-SET(v)

4 sort the edges of G. E into nondecreasing order by weight w

5 for each edge (u,v) € G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) # FIND-SET(v)

7 A= AU{(u,v)}

8 UNION(u, v)

9 return A4

the Kruskal's algorithm is greedy, i.e., it makes
locally optimal choice at each step

from: Introduction to Algorithms
by T. H. Cormen et al.
3rd Edition
MIT Press, 2009

