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learning 
objectives

learn what graphs are in mathematical terms 

learn how to represent graphs in computers 

learn about typical graph algorithms

hardware

your software

algorithms

system software



intuitively, a graph is formed by 
vertices and edges between vertices

why graphs?

graphs are used in numerous fields to model 
relationships (edges) between elements (vertices)
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Figure12.2Queriesonabinarysearchtree.Tosearchforthekey13inthetree,wefollowthepath
15!6!7!13fromtheroot.Theminimumkeyinthetreeis2,whichisfoundbyfollowing
leftpointersfromtheroot.Themaximumkey20isfoundbyfollowingrightpointersfromtheroot.
Thesuccessorofthenodewithkey15isthenodewithkey17,sinceitistheminimumkeyinthe
rightsubtreeof15.Thenodewithkey13hasnorightsubtree,andthusitssuccessorisitslowest
ancestorwhoseleftchildisalsoanancestor.Inthiscase,thenodewithkey15isitssuccessor.

TREE-SEARCH.x;k/

1ifx==NILork==x:key
2returnx
3ifk<x:key
4returnTREE-SEARCH.x:left;k/
5elsereturnTREE-SEARCH.x:right;k/

Theprocedurebeginsitssearchattherootandtracesasimplepathdownwardin
thetree,asshowninFigure12.2.Foreachnodexitencounters,itcomparesthe
keykwithx:key.Ifthetwokeysareequal,thesearchterminates.Ifkissmaller
thanx:key,thesearchcontinuesintheleftsubtreeofx,sincethebinary-search-
treepropertyimpliesthatkcouldnotbestoredintherightsubtree.Symmetrically,
ifkislargerthanx:key,thesearchcontinuesintherightsubtree.Thenodes
encounteredduringtherecursionformasimplepathdownwardfromtherootof
thetree,andthustherunningtimeofTREE-SEARCHisO.h/,wherehistheheight
ofthetree.

Wecanrewritethisprocedureinaniterativefashionby“unrolling”therecursion
intoawhileloop.Onmostcomputers,theiterativeversionismoreefficient.
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E = {{1, 2}, {1, 4}, {2}, {2, 3}, {2, 4}, {2, 5}, {4, 7}}

V = {1, 2, 3, 4, 5, 6, 7}

formally, a graph is a tuple G = (V,E) of sets, 
where V is a set of vertices (or nodes or points) 

and E is a set of edges such that: 

what’s a graph?

E ✓ V ⇥ V 1
4

7

6
5

3

2example:



x

E = {{1, 2}, {1, 4}, {2}, {2, 3}, {2, 4}, {2, 5}, {4, 7}}
V = {1, 2, 3, 4, 5, 6, 7}

x

types of graphs
1

4

7

6
5

3

2undirected:

E = {(1, 2), (1, 4), (2, 2), (2, 3), (4, 2), (4, 7), (5, 2), (7, 4)}

directed:

2

1
4

7

6
5

3oriented:
E = {(1, 2), (1, 4), (2, 2), (2, 3), (4, 2), (4, 7), (5, 2), (7, 4)}



notations & metrics

the order of G, written 𝄀G𝄀, is the number of its 
vertices, whereas 𝄁G𝄁 denotes its number of edges

the edge between vertices x and y is noted {x,y}, (x,y) or simply xy

two vertices x and y are adjacent or neighbors if xy ∈ G

if all the vertices of G are pairwise adjacent, then G is complete

let G be graph, G.V denotes its set of vertices and G.E its set of edges

graph G  is sparse if 𝄁G𝄁 ≪ 𝄀G𝄀2 and it is dense if 𝄁G𝄁 ≈ 𝄀G𝄀2



notations & metrics

a path ⟨v0, v1, ... , vk⟩ is a cycle if vertices v0 = vk

we can store attributes in vertices and edges using the dotted notation, 
e.g., v.color stores a color attribute in vertex v, while e.weight and 

(x,y).weight store a weight attribute in edge e and edge (x,y)  respectively

a path from vertex x to vertex y is a sequence ⟨v0, v1, ... , vk⟩ of vertices 
vi ∈ V  where x = v0  and y = vk , such that ∀i ∈ {1, ... , k} : (vi–1, vi) ∈ E

a graph is connected if every pair of vertices is connected via a path



let G = (V,E) and Gʹ = (Vʹ,Eʹ) be two graphs, if Vʹ ⊆ V and Eʹ ⊆ E,  
then Gʹ is a subgraph of G, which we write Gʹ ⊆ G

notations & metrics
let G = (V,E) and Gʹ = (Vʹ,Eʹ) be two graphs and Gʹ ⊆ G, 

if Vʹ = V, Gʹ is a spanning subgraph of G

the degree (or valency) of a vertex v is the 
number of neighbors of v and is noted d(v)

we defined !(G) = min { d(v) | v ∈ V } as the minimum degree of G

we defined Δ(G) = max { d(v) | v ∈ V } as the maximum degree of G

 
we defined d(G) =                      as the average degree of G  

  
d(G) =

1

|V |
X

v2V

d(v)



directed 1 2 3 4 5 6 7

1 0 1 0 1 0 0 0
2 0 1 1 0 0 0 0
3 0 0 0 0 0 0 0
4 0 1 0 0 0 0 1
5 0 1 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 1 0 0 0

2

1
4

7

6

5

3

representing graphs

adjacency matrix adjacency list

1

2

3

4

5

6

7

2

2

4

3

7

2

4

2

an adjacency list is best suited for representing a sparse graph

an adjacency matrix is best suited for representing a dense 
graph or when the algorithm needs to know quickly if there 

exists an edge connecting two vertices

most graph algorithms rely on adjacency lists



1 2 3 4 5 6 7

1 0 1 0 1 0 0 0
2 1 1 1 1 1 0 0
3 0 1 0 0 0 0 0
4 1 1 0 0 0 0 1
5 0 1 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 1 0 0 0

1
4

7

6

5

3

2

representing graphs
1

2

3

4

5

6

7

2

1

1

2 3 4

2

4

5

2 7

2

4

adjacency list

adjacency matrix

undirected

0 1 0 1 0 0 0
1 1 1 1 1 0 0
0 1 0 0 0 0 0
1 1 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0



typical problems
breadth-first search

minimum spanning tree

single-source shortest paths



breadth-first search
given graph G and a source vertex s ∈ G ,  
it discover every vertex reachable from s

it computes the distance from s to every vertex v ∈ G 

it produces a breadth-first tree rooted at s 
that contains all reachable vertices from s

the search is said to be breadth-first because it 
discovers all vertices at distance k from s before 

discovering any vertices at distance k + 1



breadth-first search

s



breadth-first search

s



breadth-first search

1
2
3
4
5

s



breadth-first search

22.2 Breadth-first search 595

The breadth-first-search procedure BFS below assumes that the input graph
G D .V; E/ is represented using adjacency lists. It attaches several additional
attributes to each vertex in the graph. We store the color of each vertex u 2 V
in the attribute u:color and the predecessor of u in the attribute u:! . If u has no
predecessor (for example, if u D s or u has not been discovered), then u:! D NIL.
The attribute u:d holds the distance from the source s to vertex u computed by the
algorithm. The algorithm also uses a first-in, first-out queue Q (see Section 10.1)
to manage the set of gray vertices.

BFS.G; s/

1 for each vertex u 2 G:V ! fsg
2 u:color D WHITE
3 u:d D 1
4 u:! D NIL
5 s:color D GRAY
6 s:d D 0
7 s:! D NIL
8 Q D ;
9 ENQUEUE.Q; s/

10 whileQ ¤ ;
11 u D DEQUEUE.Q/
12 for each " 2 G:AdjŒu#
13 if ":color == WHITE
14 ":color D GRAY
15 ":d D u:dC 1
16 ":! D u
17 ENQUEUE.Q; "/
18 u:color D BLACK

Figure 22.3 illustrates the progress of BFS on a sample graph.
The procedure BFS works as follows. With the exception of the source vertex s,

lines 1–4 paint every vertex white, set u:d to be infinity for each vertex u, and set
the parent of every vertex to be NIL. Line 5 paints s gray, since we consider it to be
discovered as the procedure begins. Line 6 initializes s:d to 0, and line 7 sets the
predecessor of the source to be NIL. Lines 8–9 initialize Q to the queue containing
just the vertex s.

The while loop of lines 10–18 iterates as long as there remain gray vertices,
which are discovered vertices that have not yet had their adjacency lists fully ex-
amined. This while loop maintains the following invariant:

At the test in line 10, the queue Q consists of the set of gray vertices.

Introduction to Algorithms
by T. H. Cormen et al.
3rd Edition
MIT Press, 2009

from:

v.d distance from source s 
 white : undiscovered 
v.color grey : discovered with some neighbors discovered 
 black :  discovered with all neighbors discovered 
v.π predecessor in bread-first three

596 Chapter 22 Elementary Graph Algorithms
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Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. The value of u:d appears within each vertex u. The queue Q is shown at the
beginning of each iteration of the while loop of lines 10–18. Vertex distances appear below vertices
in the queue.

Although we won’t use this loop invariant to prove correctness, it is easy to see
that it holds prior to the first iteration and that each iteration of the loop maintains
the invariant. Prior to the first iteration, the only gray vertex, and the only vertex
in Q, is the source vertex s. Line 11 determines the gray vertex u at the head of
the queue Q and removes it from Q. The for loop of lines 12–17 considers each
vertex ! in the adjacency list of u. If ! is white, then it has not yet been discovered,
and the procedure discovers it by executing lines 14–17. The procedure paints
vertex ! gray, sets its distance !:d to u:dC1, records u as its parent !:" , and places
it at the tail of the queue Q. Once the procedure has examined all the vertices on u’s



is minimal across all subgraphs fulfilling 1  and 2 
X

e2E0

we ❶ ❷

minimum spanning tree
a weighted graph Gw = (G,w) is a tuple composed of 

a graph G = (V,E) and of a function w : E → ℝ 
associating a weight we to each edge e ∈  E

1
4

7
6

5
3

2
10

5

8
9

7 4

a minimum (weight) spanning tree of graph Gw = (G,w) 
is a connected subgraph (Vʹ,Eʹ) such that:

(Vʹ,Eʹ) does not contain any cycles

Vʹ = V❶
❷

❸



minimum spanning tree
a disjoint-set data structure maintains a collection " = {S1,S2,...,Sk} 
of disjoint dynamic sets where each set is identified by a member 

of the set known as its representative

a disjoint-set data structure supports the following operations:

MAKE-SET(x) creates a new set whose only 
member and its representative is x

UNION(x,y) merges the dynamic sets that contain x and y, say 
Sx and Sy, into a new set that is the union of these two sets

FIND-SET(x) returns the representative of the set containing x



23.2 The algorithms of Kruskal and Prim 631

23.2 The algorithms of Kruskal and Prim

The two minimum-spanning-tree algorithms described in this section elaborate on
the generic method. They each use a specific rule to determine a safe edge in line 3
of GENERIC-MST. In Kruskal’s algorithm, the set A is a forest whose vertices are
all those of the given graph. The safe edge added to A is always a least-weight
edge in the graph that connects two distinct components. In Prim’s algorithm, the
set A forms a single tree. The safe edge added to A is always a least-weight edge
connecting the tree to a vertex not in the tree.

Kruskal’s algorithm
Kruskal’s algorithm finds a safe edge to add to the growing forest by finding, of all
the edges that connect any two trees in the forest, an edge .u; !/ of least weight.
Let C1 and C2 denote the two trees that are connected by .u; !/. Since .u; !/ must
be a light edge connecting C1 to some other tree, Corollary 23.2 implies that .u; !/
is a safe edge for C1. Kruskal’s algorithm qualifies as a greedy algorithm because
at each step it adds to the forest an edge of least possible weight.

Our implementation of Kruskal’s algorithm is like the algorithm to compute
connected components from Section 21.1. It uses a disjoint-set data structure to
maintain several disjoint sets of elements. Each set contains the vertices in one tree
of the current forest. The operation FIND-SET.u/ returns a representative element
from the set that contains u. Thus, we can determine whether two vertices u and !
belong to the same tree by testing whether FIND-SET.u/ equals FIND-SET.!/. To
combine trees, Kruskal’s algorithm calls the UNION procedure.

MST-KRUSKAL.G; w/

1 A D ;
2 for each vertex ! 2 G:V
3 MAKE-SET.!/
4 sort the edges of G:E into nondecreasing order by weight w
5 for each edge .u; !/ 2 G:E, taken in nondecreasing order by weight
6 if FIND-SET.u/ ¤ FIND-SET.!/
7 A D A [ f.u; !/g
8 UNION.u; !/
9 return A

Figure 23.4 shows how Kruskal’s algorithm works. Lines 1–3 initialize the set A
to the empty set and create jV j trees, one containing each vertex. The for loop in
lines 5–8 examines edges in order of weight, from lowest to highest. The loop

minimum spanning tree 
Kruskal’s algorithm 632 Chapter 23 Minimum Spanning Trees
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Figure 23.4 The execution of Kruskal’s algorithm on the graph from Figure 23.1. Shaded edges
belong to the forest A being grown. The algorithm considers each edge in sorted order by weight.
An arrow points to the edge under consideration at each step of the algorithm. If the edge joins two
distinct trees in the forest, it is added to the forest, thereby merging the two trees.

checks, for each edge .u; !/, whether the endpoints u and ! belong to the same
tree. If they do, then the edge .u; !/ cannot be added to the forest without creating
a cycle, and the edge is discarded. Otherwise, the two vertices belong to different
trees. In this case, line 7 adds the edge .u; !/ to A, and line 8 merges the vertices
in the two trees.
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Figure 23.4 The execution of Kruskal’s algorithm on the graph from Figure 23.1. Shaded edges
belong to the forest A being grown. The algorithm considers each edge in sorted order by weight.
An arrow points to the edge under consideration at each step of the algorithm. If the edge joins two
distinct trees in the forest, it is added to the forest, thereby merging the two trees.

checks, for each edge .u; !/, whether the endpoints u and ! belong to the same
tree. If they do, then the edge .u; !/ cannot be added to the forest without creating
a cycle, and the edge is discarded. Otherwise, the two vertices belong to different
trees. In this case, line 7 adds the edge .u; !/ to A, and line 8 merges the vertices
in the two trees.
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Figure 23.4 The execution of Kruskal’s algorithm on the graph from Figure 23.1. Shaded edges
belong to the forest A being grown. The algorithm considers each edge in sorted order by weight.
An arrow points to the edge under consideration at each step of the algorithm. If the edge joins two
distinct trees in the forest, it is added to the forest, thereby merging the two trees.

checks, for each edge .u; !/, whether the endpoints u and ! belong to the same
tree. If they do, then the edge .u; !/ cannot be added to the forest without creating
a cycle, and the edge is discarded. Otherwise, the two vertices belong to different
trees. In this case, line 7 adds the edge .u; !/ to A, and line 8 merges the vertices
in the two trees.
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Figure 23.4 The execution of Kruskal’s algorithm on the graph from Figure 23.1. Shaded edges
belong to the forest A being grown. The algorithm considers each edge in sorted order by weight.
An arrow points to the edge under consideration at each step of the algorithm. If the edge joins two
distinct trees in the forest, it is added to the forest, thereby merging the two trees.

checks, for each edge .u; !/, whether the endpoints u and ! belong to the same
tree. If they do, then the edge .u; !/ cannot be added to the forest without creating
a cycle, and the edge is discarded. Otherwise, the two vertices belong to different
trees. In this case, line 7 adds the edge .u; !/ to A, and line 8 merges the vertices
in the two trees.
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Figure 23.4 The execution of Kruskal’s algorithm on the graph from Figure 23.1. Shaded edges
belong to the forest A being grown. The algorithm considers each edge in sorted order by weight.
An arrow points to the edge under consideration at each step of the algorithm. If the edge joins two
distinct trees in the forest, it is added to the forest, thereby merging the two trees.

checks, for each edge .u; !/, whether the endpoints u and ! belong to the same
tree. If they do, then the edge .u; !/ cannot be added to the forest without creating
a cycle, and the edge is discarded. Otherwise, the two vertices belong to different
trees. In this case, line 7 adds the edge .u; !/ to A, and line 8 merges the vertices
in the two trees.

632 Chapter 23 Minimum Spanning Trees

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

2
7 6

(a) (b)

(c) (d)

(e)

(g)

(f)

(h)

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

Figure 23.4 The execution of Kruskal’s algorithm on the graph from Figure 23.1. Shaded edges
belong to the forest A being grown. The algorithm considers each edge in sorted order by weight.
An arrow points to the edge under consideration at each step of the algorithm. If the edge joins two
distinct trees in the forest, it is added to the forest, thereby merging the two trees.

checks, for each edge .u; !/, whether the endpoints u and ! belong to the same
tree. If they do, then the edge .u; !/ cannot be added to the forest without creating
a cycle, and the edge is discarded. Otherwise, the two vertices belong to different
trees. In this case, line 7 adds the edge .u; !/ to A, and line 8 merges the vertices
in the two trees.
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Figure 23.4 The execution of Kruskal’s algorithm on the graph from Figure 23.1. Shaded edges
belong to the forest A being grown. The algorithm considers each edge in sorted order by weight.
An arrow points to the edge under consideration at each step of the algorithm. If the edge joins two
distinct trees in the forest, it is added to the forest, thereby merging the two trees.

checks, for each edge .u; !/, whether the endpoints u and ! belong to the same
tree. If they do, then the edge .u; !/ cannot be added to the forest without creating
a cycle, and the edge is discarded. Otherwise, the two vertices belong to different
trees. In this case, line 7 adds the edge .u; !/ to A, and line 8 merges the vertices
in the two trees.
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Figure 23.4 The execution of Kruskal’s algorithm on the graph from Figure 23.1. Shaded edges
belong to the forest A being grown. The algorithm considers each edge in sorted order by weight.
An arrow points to the edge under consideration at each step of the algorithm. If the edge joins two
distinct trees in the forest, it is added to the forest, thereby merging the two trees.

checks, for each edge .u; !/, whether the endpoints u and ! belong to the same
tree. If they do, then the edge .u; !/ cannot be added to the forest without creating
a cycle, and the edge is discarded. Otherwise, the two vertices belong to different
trees. In this case, line 7 adds the edge .u; !/ to A, and line 8 merges the vertices
in the two trees.

Introduction to Algorithms
by T. H. Cormen et al.
3rd Edition
MIT Press, 2009

from:



Introduction to Algorithms
by T. H. Cormen et al.
3rd Edition
MIT Press, 2009

from:

23.2 The algorithms of Kruskal and Prim 631

23.2 The algorithms of Kruskal and Prim

The two minimum-spanning-tree algorithms described in this section elaborate on
the generic method. They each use a specific rule to determine a safe edge in line 3
of GENERIC-MST. In Kruskal’s algorithm, the set A is a forest whose vertices are
all those of the given graph. The safe edge added to A is always a least-weight
edge in the graph that connects two distinct components. In Prim’s algorithm, the
set A forms a single tree. The safe edge added to A is always a least-weight edge
connecting the tree to a vertex not in the tree.

Kruskal’s algorithm
Kruskal’s algorithm finds a safe edge to add to the growing forest by finding, of all
the edges that connect any two trees in the forest, an edge .u; !/ of least weight.
Let C1 and C2 denote the two trees that are connected by .u; !/. Since .u; !/ must
be a light edge connecting C1 to some other tree, Corollary 23.2 implies that .u; !/
is a safe edge for C1. Kruskal’s algorithm qualifies as a greedy algorithm because
at each step it adds to the forest an edge of least possible weight.

Our implementation of Kruskal’s algorithm is like the algorithm to compute
connected components from Section 21.1. It uses a disjoint-set data structure to
maintain several disjoint sets of elements. Each set contains the vertices in one tree
of the current forest. The operation FIND-SET.u/ returns a representative element
from the set that contains u. Thus, we can determine whether two vertices u and !
belong to the same tree by testing whether FIND-SET.u/ equals FIND-SET.!/. To
combine trees, Kruskal’s algorithm calls the UNION procedure.

MST-KRUSKAL.G; w/

1 A D ;
2 for each vertex ! 2 G:V
3 MAKE-SET.!/
4 sort the edges of G:E into nondecreasing order by weight w
5 for each edge .u; !/ 2 G:E, taken in nondecreasing order by weight
6 if FIND-SET.u/ ¤ FIND-SET.!/
7 A D A [ f.u; !/g
8 UNION.u; !/
9 return A

Figure 23.4 shows how Kruskal’s algorithm works. Lines 1–3 initialize the set A
to the empty set and create jV j trees, one containing each vertex. The for loop in
lines 5–8 examines edges in order of weight, from lowest to highest. The loop
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Figure 23.4, continued Further steps in the execution of Kruskal’s algorithm.

The running time of Kruskal’s algorithm for a graph G D .V; E/ depends
on how we implement the disjoint-set data structure. We assume that we use
the disjoint-set-forest implementation of Section 21.3 with the union-by-rank and
path-compression heuristics, since it is the asymptotically fastest implementation
known. Initializing the set A in line 1 takes O.1/ time, and the time to sort the
edges in line 4 is O.E lg E/. (We will account for the cost of the jV j MAKE-SET
operations in the for loop of lines 2–3 in a moment.) The for loop of lines 5–8
performs O.E/ FIND-SET and UNION operations on the disjoint-set forest. Along
with the jV j MAKE-SET operations, these take a total of O..V CE/ ˛.V // time,
where ˛ is the very slowly growing function defined in Section 21.4. Because we
assume that G is connected, we have jEj ! jV j " 1, and so the disjoint-set opera-
tions take O.E˛.V // time. Moreover, since ˛.jV j/ D O.lg V / D O.lg E/, the to-
tal running time of Kruskal’s algorithm is O.E lg E/. Observing that jEj < jV j2,
we have lg jEj D O.lg V /, and so we can restate the running time of Kruskal’s
algorithm as O.E lg V /.
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Figure 23.4, continued Further steps in the execution of Kruskal’s algorithm.

The running time of Kruskal’s algorithm for a graph G D .V; E/ depends
on how we implement the disjoint-set data structure. We assume that we use
the disjoint-set-forest implementation of Section 21.3 with the union-by-rank and
path-compression heuristics, since it is the asymptotically fastest implementation
known. Initializing the set A in line 1 takes O.1/ time, and the time to sort the
edges in line 4 is O.E lg E/. (We will account for the cost of the jV j MAKE-SET
operations in the for loop of lines 2–3 in a moment.) The for loop of lines 5–8
performs O.E/ FIND-SET and UNION operations on the disjoint-set forest. Along
with the jV j MAKE-SET operations, these take a total of O..V CE/ ˛.V // time,
where ˛ is the very slowly growing function defined in Section 21.4. Because we
assume that G is connected, we have jEj ! jV j " 1, and so the disjoint-set opera-
tions take O.E˛.V // time. Moreover, since ˛.jV j/ D O.lg V / D O.lg E/, the to-
tal running time of Kruskal’s algorithm is O.E lg E/. Observing that jEj < jV j2,
we have lg jEj D O.lg V /, and so we can restate the running time of Kruskal’s
algorithm as O.E lg V /.
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Figure 23.4, continued Further steps in the execution of Kruskal’s algorithm.

The running time of Kruskal’s algorithm for a graph G D .V; E/ depends
on how we implement the disjoint-set data structure. We assume that we use
the disjoint-set-forest implementation of Section 21.3 with the union-by-rank and
path-compression heuristics, since it is the asymptotically fastest implementation
known. Initializing the set A in line 1 takes O.1/ time, and the time to sort the
edges in line 4 is O.E lg E/. (We will account for the cost of the jV j MAKE-SET
operations in the for loop of lines 2–3 in a moment.) The for loop of lines 5–8
performs O.E/ FIND-SET and UNION operations on the disjoint-set forest. Along
with the jV j MAKE-SET operations, these take a total of O..V CE/ ˛.V // time,
where ˛ is the very slowly growing function defined in Section 21.4. Because we
assume that G is connected, we have jEj ! jV j " 1, and so the disjoint-set opera-
tions take O.E˛.V // time. Moreover, since ˛.jV j/ D O.lg V / D O.lg E/, the to-
tal running time of Kruskal’s algorithm is O.E lg E/. Observing that jEj < jV j2,
we have lg jEj D O.lg V /, and so we can restate the running time of Kruskal’s
algorithm as O.E lg V /.
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The two minimum-spanning-tree algorithms described in this section elaborate on
the generic method. They each use a specific rule to determine a safe edge in line 3
of GENERIC-MST. In Kruskal’s algorithm, the set A is a forest whose vertices are
all those of the given graph. The safe edge added to A is always a least-weight
edge in the graph that connects two distinct components. In Prim’s algorithm, the
set A forms a single tree. The safe edge added to A is always a least-weight edge
connecting the tree to a vertex not in the tree.

Kruskal’s algorithm
Kruskal’s algorithm finds a safe edge to add to the growing forest by finding, of all
the edges that connect any two trees in the forest, an edge .u; !/ of least weight.
Let C1 and C2 denote the two trees that are connected by .u; !/. Since .u; !/ must
be a light edge connecting C1 to some other tree, Corollary 23.2 implies that .u; !/
is a safe edge for C1. Kruskal’s algorithm qualifies as a greedy algorithm because
at each step it adds to the forest an edge of least possible weight.

Our implementation of Kruskal’s algorithm is like the algorithm to compute
connected components from Section 21.1. It uses a disjoint-set data structure to
maintain several disjoint sets of elements. Each set contains the vertices in one tree
of the current forest. The operation FIND-SET.u/ returns a representative element
from the set that contains u. Thus, we can determine whether two vertices u and !
belong to the same tree by testing whether FIND-SET.u/ equals FIND-SET.!/. To
combine trees, Kruskal’s algorithm calls the UNION procedure.

MST-KRUSKAL.G; w/

1 A D ;
2 for each vertex ! 2 G:V
3 MAKE-SET.!/
4 sort the edges of G:E into nondecreasing order by weight w
5 for each edge .u; !/ 2 G:E, taken in nondecreasing order by weight
6 if FIND-SET.u/ ¤ FIND-SET.!/
7 A D A [ f.u; !/g
8 UNION.u; !/
9 return A

Figure 23.4 shows how Kruskal’s algorithm works. Lines 1–3 initialize the set A
to the empty set and create jV j trees, one containing each vertex. The for loop in
lines 5–8 examines edges in order of weight, from lowest to highest. The loop
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the Kruskal’s algorithm is greedy, i.e., it makes 
locally optimal choice at each step


