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Abstract—We introduce a system-level architecture providing
fine-grained control over user privacy, in the context of location-
based services accessed via mobile devices. In contrast with most
mobile platforms today, users only have coarse-grained control
over their privacy, either accepting to unconditionally stream
their locations in order to use a service, or renouncing the
service altogether. However, not all location-based services do
require the same level of location accuracy and the same level of
privacy renouncement. With this architecture, the user can adapt
the tradeoff between location privacy and location accuracy. To
achieve this, our architecture relies on three main elements:
a trusted module extending the underlying mobile platform, a
secure protocol between that module and untrusted applications
offering location-based services, and a tree capturing user’s
zones of interest and organizing them in various accuracy levels.
Untrusted mobile applications no longer receive user locations
directly: the trusted module intercepts them to compute user’s
zones of interest and create the tree. The user can then decide
what level of accuracy will be disclosed to what application. We
evaluate this architecture from a privacy preserving point of view
by comparing well-known blurring mechanisms and our tree.

Keywords—location privacy, location-based services, privacy
tree, zones of interest, system-level architecture

I. INTRODUCTION

In less than a decade, mobile devices, in particular smart-
phones, have radically changed the way we consume digital
services, be they web searching, online gaming, media stream-
ing, etc. Basically, we can now access such services whenever
we want and wherever we are. Furthermore, the ability of
mobiles devices to locate themselves, either via the Global
Positioning System (GPS) when outside or via WiFi or 3G/4G
when indoor, has given birth to a new breed of digital services,
so-called location-based services.

A. For better or for worse?

There is little doubt that location-based services can be
very useful, ranging from simple one-shot queries about one’s
surroundings, e.g., when looking for nearby restaurants using
applications such as Google Maps or Apple Maps,1 to con-
tinuously tracking one’s movements, e.g., while jogging using
applications such as Runkeeper or Runtastic.2 Location-based
services come however at a price: loss of location privacy.

It is important to stress that location privacy is just one
of many facets of privacy as a whole, yet a crucial one,

1http://google.ch/maps, http://apple.com/ios/maps
2http://runkeeper.com, http://runtastic.com

and that this paper focuses exclusively on location privacy.
Indeed, locations generated by mobile devices offer a powerful
means to link virtually any data associated with a user to a
very tangible aspect of her life: her physical location in the
real world. For this reason, most mobile platforms, such as
Apple iOS or Google Android, are trying to make users aware
of this potential privacy loss, by explicitly asking them whether
they are willing to share their locations with applications
requesting them, either at installation time or at run time.

Unfortunately, this choice is usually binary: either the
application is granted full access to the user locations or no
access at all. Furthermore, once access has been granted, the
user has no control over what the application will do with
her location information. It could theoretically confine this
information to the user mobile device, which is almost never
the case, or forward it to some backend server, in order to
compile statistics, use it later or even sell it to some third party.

A key problem here is that by giving away location in-
formation, users are actually revealing a lot about themselves,
most of the time without even realizing it. In [22] for instance,
it is shown that although most users may occasionally exhibit
spontaneous behaviors, their moves bear strong regularity,
which leads to high predictability of their future locations.
Furthermore, according to [6] only four spatio-temporal co-
ordinates are enough to uniquely identify 95% of the users of
the dataset. As mentioned in the paper, this dataset contains
locations, location antenna more specifically, of a large number
of users, approximately 1.5 M. These locations were caught
when users used their mobile device (e.g., when a user receives
or initiates a call or a text message). Additionally, another
very interesting paper [23] demonstrates the consequence of
privacy leakage via a quantification of social inference from
it. They found 90% inference accuracy concerning social and
community relationships with only three week’s user data
by using their leakage inference framework they create. The
dataset used in this paper contains real mobility traces and
Foursquare data.

B. Location accuracy vs. privacy

When it comes to locations, a rather straightforward way to
control privacy consists in controlling accuracy: the lower the
location accuracy, the higher the location privacy. Obviously,
knowing that Alice is located within a 100 meters range around
the cathedral of Notre-Dame de Paris damages her privacy
more than knowing that she stands within a 10 kilometers
range (which boils down to simply say that Alice is somewhere
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in Paris). Furthermore, the privacy level associated with Alice’s
location is not only dependent on its geographical dimension
but also on its time dimension: knowing that Alice was located
within a range of 100 meters around Notre-Dame de Paris
between 8:00 AM and 9:00 AM yesterday compromises her
privacy more than knowing that she was there between 8:00
AM and 8:00 PM, some day last week.

Based on this privacy-accuracy duality, a key question is
the following: what is the level of accuracy a location-based
service requires to fulfill its function and hence the level of
privacy loss one has to accept to benefit from that service.
A related key question is then: given the level of accuracy
required by some service, how can the mobile platform ensure
that only the corresponding level of privacy will be lost?
This is precisely the question we address in this paper by
proposing a system-level architecture for fine-grained control
over privacy, in the context of location-based services. As
implied above, this architecture must be implemented at the
operating system level.

C. Contributions and roadmap

As already pointed out, today’s mobile platform only offer
the binary choice of revealing all or nothing in terms of
user locations.3 With our architecture in contrast, the user
can decide what level of location privacy she wants to retain,
which then translates to the level of accuracy the location-
based service will be able to offer.

The remainder of this paper is structured as follows. After
presenting our system model and defining the problem we
address in Section II, we describe the conceptual architecture
and generic protocol proposed by this architecture to solve
this problem in Section III. Section IV then focuses on the
notion of privacy tree, which is at the heart of our approach,
while Section V presents key aspects of the implementation of
the architecture on a mobile device. Then, Section VI details
how the location privacy is ensured by using this architecture.
Section VII proposes a quantitative evaluation of the privacy
tree and compares it with existing approaches. In doing so, we
introduce a spatial and temporal probabilistic measure of the
privacy loss induced whenever some location information, even
partially inaccurate, is provided to a location-based service.
Finally, we discuss research results relating to our approach
in Section VIII and conclude the paper with future research
directions in Section IX.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a user moving on the surface of the earth
with a mobile device that has the ability to locate itself,
typically via the Global Positioning System (GPS)4 or some
other positioning means, e.g., WiFi positioning (WPS)5. The
architecture of this mobile device is depicted in Figure 1: Alice,
the user, sits on the top and interacts with both the underlying
trusted operating system and some untrusted location-based

3Most mobile platforms also allow to grant location access to certain
applications only when they are running in the foreground (while others can
access them even when running in background). Still, users only have the
choice to either accept or refuse continuously sharing their locations.

4http://www.schriever.af.mil/GPS
5http://en.wikipedia.org/wiki/Wi-Fi positioning system
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Fig. 1. Generic system architecture

service. At the bottom, the system-level location provider is
continuously pushing raw location information to the location
access protocol above it. The latter processes this information
according to some privacy policy and feeds the resulting
altered location information to the untrusted location-based
service, which can potentially forward this information across
the network to some equally untrusted remote server.

We model the stream of raw locations originating from
the location provider as sequence L = ⟨loc1, loc2, · · · , locn⟩,
where loci = (φ,λ, t) is a tuple representing an individual
location. In this tuple, φ,λ ∈ R represents a latitude and a
longitude respectively, while t ∈ N represents the time when
the location was captured. In the following, we sometimes
use the notation loc.φ, loc.λ and loc.t to designate specific
parts of tuple loc. In addition, the duration between two
consecutive locations in L does not exceed a constant ∆tlimit,
i.e., loci+1.t− loci.t ≤ ∆tlimit. This means that locations are
captured in a regular manner.

The generic architecture presented in Figure 1 allows us to
model most (if not all) relevant location privacy approaches.
On iOS and Android for instance, the stream of raw locations
received by the location access protocol is initially kept safe
from the untrusted location-based service client (0). Then, the
latter requests access to location information to the operating
system (1), either at run time or at installation time. This
request is forwarded to Alice in the form of a binary choice, in
order to draw her attention on the potential loss of privacy (2).
Assuming she accepts to grant access, the stream of raw
locations is simply forwarded, unaltered, to the requesting
location-based service client (3), which might then propagate
it to its remote counterpart (4).

Yet finer-grained access protocols are both desirable and
possible, which do not merely block or forward all raw location
information. Rather, such access protocols should involve a
parameterized alteration of the location information eventually
provided to the untrusted location-based service and a more
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subtle interaction between trusted and untrusted components
of the system. Providing such a location access protocol is
precisely the problem we address in this paper.

III. THE PROPOSED ARCHITECTURE INCLUDING SHAREZ
SERVICE

Our system-level architecture proposes a location access
protocol that allows user to share their locations with location-
based services, via zones of interest of various granularities,
in order control the level of privacy loss incurred by this
sharing. That is, the notion of privacy granularity captures the
accuracy-privacy duality inherent to sharing zones of interest:
coarse-grained zones offer lower accuracy but higher privacy
than sharing fine-grained zones.

Figure 2 sketches the proposed architecture, the included
service called SHAREZ as well as its location access proto-
col, which are assumed to be integrated into the underlying
mobile operating system, as prescribed by our generic system
architecture. To illustrate the description hereafter, we assume
that Alice is shopping in Paris and wants to be notified when
passing by a shop with special offers. For this, she relies on a
mobile application acting as the local client of some location-
based shopping service.

(0) SHAREZ continuously computes zones of interests of
various granularities using raw locations.

(1) The location-based service client requests location
information in the form of zone of interests.

(2) SHAREZ asks Alice to choose the privacy granularity
and the zones of interest to share with that service.

(3) SHAREZ pushes the selected zones with the chosen
privacy granularity to the service.

(4) The client forwards those zones to the server, which
computes related contextual information, i.e., cou-
pons associated with special offers in our example.

(5) The server sends the contextual information with its
period(s) of validity related to the zones it received
back to the client.

(6) The client pushes this contextual information to
SHAREZ, with the associated zones.

(7) SHAREZ monitors incoming raw locations and
checks if they match some valid contextual informa-
tion according to its period(s) of validity.

(8) As soon as SHAREZ receives a raw location posi-
tioned in a zone associated with some contextual
information, a coupon in our example, the latter is
directly displayed to Alice by SHAREZ.

(9) At this point, Alice might or not decide to act based
on this information, e.g., use the coupon to benefit
from some special offer. If she does, the location-
based service has finally the ability to precisely locate
Alice, directly or indirectly. If she however decides
not to use the coupon, the service will never know
that Alice was in that area.

One might of course argue that knowing Alice’s zones of
interest is already an important breach in her privacy. Note
however that Alice has the ability to prevent certain zones
from being disclosed to the location-based service and to blur
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Fig. 2. The SHAREZ location access protocol

the zones she accepts to share, based on the privacy granularity
she chose. In addition, a rather simple strategy that SHAREZ
can apply to further protect Alice’s privacy consists in adding
one or more fake zones to those passed to the service in Step 3.
Of course, such fakes zones are completely ignored during the
location monitoring in Step 7. Yet the location-based service
has no way to distinguish real zones of interest from fake ones
(see research work in [13] and [5]).

In Step 2, it is indicated that Alice must choose a privacy
granularity as well as the zones of interest that she wants to
share with the location-based service. This means that Alice
expresses the maximum accuracy she accepts to reveal about
her location, which is also the minimum privacy. In our internal
architecture, this translates into a level in the privacy tree.
In terms of user interface, a map highlighting the different
privacy tree levels could be presented to Alice in order to
let her choose this maximum accuracy in a graphical manner.
Since her choice may be not adapted to the functionality of
the location-based service, she can modify her choice at any
time.

The main characteristics of the proposed architecture, in-
cluding its service SHAREZ, and its location access protocol
are summarized hereafter.

Local. The protocol minimizes the communication with the
location-based service client and hence drastically reduces the
risk of location information leakage to remote parties.

Flexible. SHAREZ allows users to set distinct privacy pref-
erences for different location-based services and for different
contexts, e.g., one might use a certain privacy granularity while
shopping and another one when jogging.

Adaptive. SHAREZ constantly updates the zones of interest it
manages, based on the stream of raw locations received from
the underlying location provider.

Encapsulated. SHAREZ is the sole recipient of raw locations
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originating from the location provider and the protocol never
forwards them directly to mobile applications.

IV. PRIVACY TREE

At the heart of the architecture, more specifically in the
service SHAREZ, and its concept of flexible privacy granularity
lies the notion of privacy tree. In the following, we first
formally define what zones of interest are, as well as the notion
of privacy distance. We then introduce the notion of privacy
tree and its significance when it comes to support various
privacy granularities.

A. Zone of interest

In order to precisely define a zone of interest, we must
introduce other fundamental definitions based on the definition
of a user location (see Section II) such as the definitions of
cluster and cluster group.

1) Cluster: Intuitively, a cluster gathers locations sharing
several common characteristics in terms of space and time. Let
∆dmax ∈ R be a constant representing a distance (expressed
in meters) and ∆tmin ∈ N be a minimum time threshold
(expressed in seconds). Moreover, we consider the two follow-
ing functions: centroid(⟨loc1, loc2, ..., locn⟩), which computes
and returns a location representing the centroid of the set of
locations passed as parameters (i.e., the mean of the locations)
and distance(loci, locj), which simply computes and returns an
Euclidian distance between two locations passed as parameters.

A subset l ⊆ L is a cluster iff the three following conditions
are met:

∀loci, loci+1 ∈ l :
distance(centroid(loc1, · · · , loci), loci+1) ≤ ∆dmax (1)

locn.t− loc1.t ≥ ∆tmin (2)
!l′ ̸= l : l ⊂ l′ (3)

This first part of the clustering process is based on a well-
known technique described in [8] and presented as density-time
cluster (DT cluster). A cluster is a tuple c = (φ,λ,∆r, l),
where φ ∈ R represents a latitude, λ ∈ R represents a
longitude, ∆r ∈ R represents its radius in meters and l the
subset of locations. The centroid (φ,λ) of the cluster is simply
the mean of all φ and λ of the locations contained in l. The
notation c.centroid is used to designate the centroid of the
cluster c. Hereafter, C = {c1, c2, · · · } is the set of clusters
associated with the user, based on her sequence of locations.

2) Cluster group: Intuitively, a group of clusters contains
all the clusters that can be gathered iff there exists an inter-
section between these clusters. Two clusters ci, cj ∈ C are
gathered in the same group of clusters g iff we have:

distance(ci.centroid, cj .centroid)
− (ci.∆r + cj .∆r) < 0 (4)

So a group of clusters(s) is defined as tuple g =
(φ,λ,∆r, {c1, c2, · · · }), where φ ∈ R represents a latitude,
λ ∈ R represents a longitude, ∆r ∈ R represents its radius
in meters and the array of clusters from which g is formed.
The centroid of a group of clusters is represented by tuple
(φ,λ), which is simply the mean of the centroids of the clusters
in g. Hereafter, G = {g1, g2, · · · } is the set of cluster groups
associated with the user, based on her set of clusters C.

3) Zone of interest: Intuitively, a zone of interest is a
delimited zone that is frequently visited by a user in everyday
life. Let minV isitNb ∈ N be a constant representing the
minimum number of visits and let visitThreshold ∈ N that
is a maximum threshold of visits. Moreover, let size(g) be
a function that computes and returns the number of clusters
of the group passed as a parameter and let meanVisitNb(G)
be a function that computes and returns the mean number
of visits among all the cluster groups passed as parameters.
The number, returned by meanVisitNb(G), frequently changes
over time depending on the mobility behavior of the user if
we consider that the discovery process works in a sequential
manner. It is important to note that minV isitNb must be equal
to the value returned by meanVisitNb(G) until reaching the
visitThreshold, which is the maximum number of visits to
transform a cluster group into a zone of interest. A group of
clusters g ∈ G becomes a zone of interest z iff it follows
Equation 5:

size(g) ≥ minV isitNb

| minV isitNb = meanV isitNb(G)

AND minV isitNb <= visitThreshold (5)

Formally, a zone of interest z is a tuple z = (φ,λ,∆r, g),
where φ ∈ R represents a latitude, λ ∈ R represents a
longitude, ∆r ∈ R represents its radius in meters and g
the group of clusters. The centroid of z is represented by
(φ,λ), which is simply the centroid computed from group g.
Hereafter, Z = {z1, z2, · · · , zn} is the set of zones of interest
associated with the user, based on her set of cluster groups G.

B. Privacy distance

The privacy distance is simply a cursor expressing the
accuracy of the shared location information, which perfectly
illustrates the inherent tradeoff between accuracy and privacy.
With SHAREZ, the user is responsible for setting this cursor.
Let ∆da ∈ R be a constant representing this accuracy (in
meters): the greater ∆da, the higher the location privacy
offered by zones of interest respecting this privacy distance.

C. Privacy tree structure

Privacy trees follow a similar hierarchical structure as R-
trees, which were introduced by Guttman to index geo-located
objects (i.e., leaves of the tree), by grouping and representing
them via minimum bounding rectangles at each hierarchical
level [10]. In SHAREZ, the zones of interest of a user are the
leaves of her privacy tree and each hierarchical level closer
to the root covers a set of zones found at the lower levels,
as illustrated in Figures 3 and 4. So each level of the tree
represents a different privacy granularity.

Figures 3 and 4 present a privacy tree based on five zones of
interest. The process of building this tree goes as follows. The
first step consists in trying to gather close zones by computing
the smallest distance between two zones among all of them.
A group containing close zones gives birth to a new upper
zone with a new centroid. If a zone of interest cannot be
gathered with another one, an upper zone is created around
it. For example, zone z3 has the same centroid as its upper
zone z2’. Note also that the radius of various zones found at
a given privacy level are not necessarily equal.
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Since this process is realized sequentially in real time
(i.e., each time that a new user raw location is caught),
it may take time to highlight all zones of interest of the
user. In this context and previously mentioned in Section II,
the minV isitNb and the visitThreshold enable to discover
zones of interest related to the user when she starts using
her mobile device. Since minV isitNb corresponds to the
current mean number of visits, this value is obviously 0 at
the beginning. Then, minV isitNb evolves over time until
reaching the visitThreshold, which is the maximum number
of visits. If this mechanism was not included in the discovery
process, the latter would not be able to discover zones of
interest of the user from the beginning.

V. IMPLEMENTATION OF THE ARCHITECTURE ON A
MOBILE DEVICE

The implementation of the architecture has an impact on
the two main components presented in Figure 2: trusted and
untrusted components, i.e., the operating system including the
service SHAREZ and the location-based service respectively. In
this section, we present the key aspects of the implementation
of this architecture on a mobile device from the two following
points of view: operating system and location-based service.

A. On the operating system side

In order to implement our architecture at the operating
system level, we need to create SHAREZ as well as the

application programming interface (API) that can be used
by developers to receive zones of interest of user and share
contextual information. SHAREZ is able to directly interact
with the location provider in order to discover the zones of
interest of the user and update the related privacy tree. The
location provider, which gets location via GPS, WiFi or 3G/4G,
provides the stream of raw locations to SHAREZ, which is
necessary to update the privacy tree. This service must also be
able to store the privacy preferences set by the user for each
application she is using (e.g., the privacy distance, the zones
of interest already shared). In addition, this service must also
memorize the contextual information, provided by the location-
based service, and display it when it is appropriate according
to the current location of the user and the validity period of the
content. As described in Figure 2, we consider that SHAREZ
is safe because it is included at the operating system layer,
which is also a trusted component. In order to prevent some
low level kernel attacks we could also implement a TrustZone
technique to isolate critical data transactions but it is out of
the scope of the paper. We assume that both the operating
system including SHAREZ and the location provider are trusted
components. Moreover, there is no data alteration during the
data sharing between the trusted and untrusted components
under the assumption that this exchange is realized in a safe
manner. The data sharing implementation is also out of the
scope of the paper.

B. On the location-based service side

If this architecture is implemented at the operating system
level, developers of location-based services need to modify
the way they obtain user locations. Their code must change in
accordance with the new API exposed by the operating system
library and, more specifically, by SHAREZ. This is already
the case when a new version of the API of the operating
system is released. Therefore, they must adapt their location-
based service to the protocol of the architecture. This has
an impact on the way to provide information to the user. In
return, a location-based service improves its level of respect
for user location privacy. One limit of our architecture is that it
does not work with location-based service requiring frequent
and precise location updates such as running applications
and personal navigation applications. Regarding these specific
cases, user should be able to share her raw locations, during a
limited period of time, in order to reduce her location privacy
loss.

VI. LOCATION PRIVACY ENSURED BY THE
ARCHITECTURE

It is important to recall that we focus on location privacy
only and not on other user privacy issues. Location privacy
also aims at enhancing user privacy. As explained in the
previous section, we assume that SHAREZ is implemented
at the operating system level, which is considered as a safe
and trusted component. Considering this, we discuss two main
privacy levels, both aiming at ensuring location privacy of the
user: at a low level with the privacy tree and at a high level
with the architecture protocol.

A. At the level of the privacy tree

At the privacy tree level, the structure of the tree itself
enables to protect the location privacy. With multiple levels of
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location privacy, computed from the zones of interest of the
user, the latter is able to select the most appropriate privacy
distance for the location-based service. This tree is frequently
updated according to the user mobility behavior. As a result,
we cannot predict in advance its structure because it may
evolve over time according to the new or outdated zones of
interest. In addition, the privacy tree structure is only computed
from the stream of user raw location, which is only accessible
at the trusted component level. It is also important to indicate
that we cannot prevent developers to use other way to obtain
user locations such as beacons for instance. However, it is not a
privacy threat because there does not exist a sufficient number
of beacons used to locate users to extract a complete overview
of the mobility behavior of a user.

B. At the level of the architecture protocol

At the architecture protocol level, the location privacy is
mainly ensured by two crucial steps: the sharing of zones of
interest (Step 0 to 3 in Figure 2) and the sharing of location-
based content (Step 4 to 9 in Figure 2). Firstly, the sharing of
zones of interest (from SHAREZ to the location-based service)
protects the location privacy of the user, because no raw
locations are sent to the location-based service. In addition,
even if zones of interest of the lowest level of the privacy
tree are shared, they do not correspond to precise locations.
The user can also decide the zones of interest that she wants
to share with the location-based service, that may reinforce
the location privacy. Secondly, the sharing of content, from
the location-based service to SHAREZ, aims at preserving the
location privacy of the user because the content is gathered
locally at the trusted component and only displayed when the
current location of the user is in the zone of interest linked
to this content. Consequently, the location-based service never
knows the exact location of the user. However, if the user must
interact with the location-based service to use a specific offer,
the latter may infer the location of the user by linking the offer
selected by the user with her related zone of interest.

VII. EVALUATION

This section has two different goals: (1) presenting a
generic location privacy indicator according to space and time
dimensions, and (2) comparing our privacy tree solution to
three other location privacy preserving mechanisms: Gaussian
alteration, sampling and spatial cloaking. It is important to
indicate that we decide to assess the low privacy level, which
concerns the privacy tree, because it is the heart of our
architecture in terms of privacy preserving.

Firstly, we present the dataset we use for our evaluation,
which is based on a real life experiment carried out by Nokia
between 2009 and 2011. Secondly, we introduce the threat
model as well as the privacy indicator. Further, we explain the
classification of the users contained in the Nokia dataset. Next,
we detail the chosen scenarios as well as the different blurring
strategies we implemented. Finally, we present and discuss the
obtained privacy indicator results of our experiments.

A. Nokia dataset

For this analysis, we use a dataset provided by Nokia
and containing real mobility traces of users. This dataset was

collected in the Lake Geneva region in Switzerland (Europe)
from October 2009 to March 2011. A Nokia N95 mobile
device was given to all volunteers participating to the data
collection campaign. The whole process of this campaign
is explained in detail in [16]. In addition, the data was of
course anonymized in order to preserve user privacy, i.e., the
dataset does not allow to infer the identity of the users who
participated in this data collection campaign. To summarize,
the dataset contains 188 users. This data comes from different
sources, such as locations from GPS or GPS WLAN, phone
and SMS logs, accelerometer, application usage, etc. Although
this data is rich and abundant, we only use the raw location
data coming from GPS or GPS-WLAN sources.

B. Threat model and privacy indicator metric

As already pointed out, we only focus in this paper on
location privacy. In particular, we do not distinguish cases
where the user identity is already known by the location-based
service and the latter wants to discover her mobility pattern,
from scenarios where the user identity is not known and the
location-based service is trying to discover it based on her
locations. Yet controlling the access to locations by location-
based services can have a significant impact on privacy as a
whole in both cases.

We assume a threat model including a possible adversary
represented by a location-based service, which is an untrusted
component as depicted in Figure 2. This adversary wants
to infer personal information related to a user based on her
locations received from the operating system layer. In this case,
we consider that the locations shared with the location-based
service are critical as well as their accuracy. Their accuracy
inevitably influences the process used by the location-based
service to infer sensitive user data. Consequently, we propose
a metric that is a privacy indicator aiming at highlighting the
degree of alteration of the user locations sent to the location-
based service. This alteration takes space and time dimensions.
The privacy indicator enables to compute this level of alteration
and takes values between 0 and 1 included. The higher the
value of the privacy indicator, the higher the protection of
the user locations sent. Conversely, the lower the value of the
privacy indicator, the lower the protection of the user locations
sent.

Remember that in our generic architecture (Figure 1), the
purpose of the location access protocol is to alter raw locations
of the form (φ,λ, t) in order to achieve location privacy. The
nature of this alteration depends on the location access protocol
and can act on both the spatial dimension of locations, i.e., φ
and λ, and on their temporal dimension, i.e., t. To model this,
we introduce function F as follows:

F (⟨loc1, loc2, · · · ⟩) +→ {(z1,∆t1), · · · , (zn,∆tn)}

where zi = (φi,λi,∆ri) represents the spatial alteration
and ∆ti represents the temporal alteration of the location
information. It is important to note that these alterations are
computed in parallel with the computation of the blurred
locations directly sent to a possible adversary, which is the
location-based service in our context. Both zi and ∆ti are
used to compute our global privacy indicator, as shown in
Equation 6. That is, the global privacy indicator is the mean
of the individual privacy indicators of all these alterations.
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Privacy =
1

n
×

n∑

i=1

Privacy(zi,∆ti) (6)

Note that the number of (zi,∆ti) tuples can significantly
differ from the number of raw locations, e.g., in SHAREZ,
the privacy tree is the actual result of alteration function F .
The calculation of the privacy of a single (zi,∆ti) tuple is
described in Equation 7. This second Equation is the sum of
the spatial alteration and the temporal alteration where α and
β are respectively factors of them.

Privacy(zi,∆ti) =
(α× Pspace(zi)) + (β × Ptime(∆ti))

(α+ β)
(7)

The spatial alteration is presented in Equation 8, where the
minimum between the area of the zone and the maximum area,
called zmax, is divided by this maximum area. It means that,
when this maximum area is reached, the user cannot lose more
privacy because her privacy is fully ensured.

Pspace(zi) =
min(Area(zi), Area(zmax))

Area(zmax)

=
min(zi.∆r2, zmax.∆r2)

zmax.∆r2

(8)

The time alteration is presented in Equation 9, where
∆tmax is the time threshold beyond which the user cannot
lose more privacy. The equation is therefore the division of
the minimum between zi.∆t and ∆tmax by ∆tmax.

Ptime(∆ti) =
min(∆ti,∆tmax)

∆tmax
(9)

C. User mobility behavior classification

We choose to classify users of the Nokia dataset according
to their mobility behavior in terms of distance in order to see
if the latter might have an influence on the results obtained
for the different experiments that are explained in the next
section. Among the 188 users contained in the dataset, we
started by selecting all the users having GPS and GPS-WLAN
data and found 184 users. Then, we decided to compute the
average of all mean time difference between two successive
locations of all users in order to find an appropriate threshold.
The latter was presented in the system model in Section II as
∆tlimit. After computation, we find a mean of 568 seconds.
Consequently, we decided to set the value of ∆tlimit to 600
seconds, which indicates that the locations are captured in
a regular manner. We select all users having a mean time
difference lower than 600 seconds and obtain a final set of
161 users. The tracking duration of all these users varies from
less than 1 day to 567 days.

After exploring the radius of the largest zone of interest of
each remaining user, obtained with the privacy tree algorithm,
we find three groups of users as described in Figure 5. In
order to illustrate our classification, Figures 6, 7 and 8 describe
the mobility traces of users belonging to each group. To
be more precise, User 1 travels very long distances (i.e.,
a radius of the largest zone of interest of approximately

Fig. 5. User mobility behaviors

Fig. 6. Mobility traces of user 1

Fig. 7. Mobility traces of user 2

Fig. 8. Mobility traces of user 3

180 km), User 2 travels medium distances (i.e., a radius of
approximately 60 km) and User 3 travels short distances (i.e.,
a radius of approximately 19 km) belonging to group 3, 2 and
1 respectively. In addition, Figures 9, 10 and 11 show the three
different privacy trees obtained for each user. Concerning these
three users, their locations were taken during a time period of
about 500 days.

31



Fig. 9. Privacy tree of user 1 (7 zones of interest and 4 privacy tree levels)

Fig. 10. Privacy tree of user 2 (10 zones of interest and 5 privacy tree levels)

Fig. 11. Privacy tree of user 3 (7 zones of interest and 5 privacy tree levels)

D. Scenarios and blurring strategies

We consider two scenarios involving two distinct location-
based services. The first scenario focuses on a social network
that offers various location-based discounts (e.g., travel dis-
counts, shopping discounts, etc.) according to their space/time

context. In this context, we also consider that users select one
offer per month on average. This amount is called utility, which
is the utility perceived by the user when she uses the service.
The second scenario concerns a green location-based mobile
application that provides train and public transportation sched-
ules to users according to their spatial and temporal context.
The utility of this service is greater than the previous because
users read the location-based information on an average of two
times per day at least.

Regarding these two scenarios, we explore the impact of
different blurring strategies applied to user locations. Further-
more, we also consider a case, i.e., worst case used as a
reference, where all user locations are sent to the location-
based service without any blurring strategy (i.e., spatial and
temporal alterations are equal to 0 for all sent locations). The
four selected blurring strategies are the following: Gaussian
alteration, sampling, spatial cloaking and our privacy tree.
Above all, it is important to note that the spatial cloaking
technique is traditionally use to preserve the anonymity of
users but we will use it as a blurring technique applied to
one user as explained in Krumm’s paper [14].

Gaussian alteration. The Gaussian alteration is a blurring
strategy that consists in altering a location by adding Gaussian
random noise on the latitude and the longitude of the original
location. This Gaussian random noise depends on two vari-
ables: the mean which is the value where the curve is at the top
(e.g., the latitude or the longitude of the original location) and
the chosen standard deviation that may be expressed in meters.
This strategy only has an impact on the space dimension of the
location. In this context, each new location is spatially blurred
and, therefore, a spatial alteration is generated. Regarding the
spatial alteration, i.e., zi = (φi,λi,∆ri), the centroid of the
zone corresponds to the blurred location and its radius is the
distance between the blurred location and the original location.
However, the temporal alteration, i.e., ∆ti, is 0 because there
is no temporal alteration.

Sampling. The sampling strategy is a technique enabling
to summarize several locations into a single location. In order
to reach this goal, there exists different means of sampling.
For our experiments, we decide to sample according to a time
window. Consequently, we divide the user dataset into several
sets of locations. Each set has a duration equal to the time
window. Then, we summarize locations of each set into a
single location. We create a new location by computing the
mean of all the latitudes and the mean of all the longitudes.
In this context, spatial and temporal alterations are generated
for each blurred location, which is computed from one set
of locations. Regarding the spatial alteration, the centroid of
the zone equals to the blurred location and its radius is the
maximum distance between the centroid of the blurred location
and the farthest original location included in the set used to
compute the sample. In this context, the temporal alteration
corresponds to the duration between the first location and the
last location of the set used to compute the sample.

Spatial cloaking. As mentioned previously, spatial cloak-
ing can be applied to one user only (see [14]) and, in our
experiments, we use it as a blurring technique even if it
is originally an anonymization technique. We assume that
all zones of interest of a user, as precise as possible, are
sensitive regions. The spatial cloaking works as follows: all
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TABLE I. OVERVIEW OF ALTERATION STRATEGIES

Strategy Spatial Alteration Temporal Alteration
None (worst case) No (real location sent) No (real timestamp sent)
Gaussian alteration Yes No (real timestamp sent)

Sampling Yes Yes (time window)
Spatial cloaking Yes/No Yes/No

Privacy tree Yes Yes (no timestamp sent)

user locations located in cloaked regions are deleted. In our
implementation of the spatial cloaking technique, we simply
create cloaked regions for each zone of interest of a user that
must always contain the centroid of the related zone of interest.
If the radius of the cloaked region is very small, the centroid of
the cloaked region is obviously very close to the centroid of the
zone of interest. Every time a user enters in a cloaked region,
the original locations are deleted and, spatial and temporal
alterations are created. Regarding the spatial alteration, the
centroid of the zone and its radius are the centroid and
the radius of the cloaked region respectively. The temporal
alteration is the duration between the first location and the
last successive location deleted for a specific cloaked region
considering that the blurring process works in a sequential
manner. For all remaining locations, which are not located in
a cloaked region, spatial and temporal alterations are equal to 0
because they are sent without any alteration.

Privacy tree. Section IV already explains the creation of a
privacy tree as well as its different characteristics. It helps to
blur user locations from the zones of interest of the user and an
aggregation technique to build the privacy tree. In the analysis,
we compute the alterations of all user’s zones of interest of
each selected level of the privacy tree (e.g. most precise,
intermediate and less precise level explained below). Spatial
and temporal alterations are generated for each zone of interest
shared. Consequently, the spatial alteration corresponds to a
zone having a centroid and a radius equal to the centroid
and the radius of the zone of interest previously created.
The temporal alteration is 1 (i.e., fully ensured) because no
temporal information is revealed with the zones of interest.

Table I summarizes the chosen blurring strategies. In next
section, the parameters of all blurring strategies are indicated.

E. Evaluation method, experimental settings and results

In this section, we present the experimental settings as well
as the privacy indicator results achieved for each group of
users.

1) Evaluation method and experiment settings: In order to
run all the following experiments explained below, we create
a cocoa application implemented in Objective-C containing
the implementations of the four blurring strategies as well as
the calculation of the privacy indicator. For all experiments,
we chose a radius of zmax equal to 1000 meters under the
assumption that it is a sufficient radius from which users
consider that their location privacy is spatially ensured. This
value is appropriate in highly dense urban areas but different
radius should be chosen in other contexts, especially when
users frequently travel. We also chose a ∆tmax of the duration
of one day meaning that when this threshold is exceeded,
users think that their location privacy is temporally ensured.
Consequently, when these two thresholds are exceeded, the
location privacy is entirely preserved and the privacy indicator

is equal to 1. Finally, for all the experiments we consider
the factors α, i.e., spatial privacy factor, and β, i.e., temporal
privacy factor, are equal (i.e., 0.5 for both factors).

The parameters of each blurring strategies are chosen in
order to highlight when the privacy indicator results reach
a maximum value, i.e., 0.5 or 1 depending on the strategy.
Concerning the Gaussian alteration strategy, we select several
standard deviations from 0.001 to 0.1 corresponding to differ-
ent distance noise from approximately 120 to 11880 meters.
Regarding the sampling strategy, we also take several different
durations for the time window: from 30 minutes to 8 months.
About the spatial cloaking strategy, we choose several different
distances for the radius of the cloaked regions: from 1000 to
1000000 meters. And finally, regarding the privacy tree, three
levels of privacy are taken into account: the most accurate, i.e.,
the level of the leaves of the tree (i.e., the zones of interest
of a user), the intermediate level (i.e., approximately the mean
between the most accurate level and the less accurate), and the
level of the root node, which is the less accurate level. During
an experiment, if a user has a privacy tree with only one level,
we consider that the privacy indicator of the intermediate and
that of the level of the root node also correspond to the level
of the leaves. In addition, if a user has a privacy tree with two
levels, the privacy indicator of the intermediate level is equal
to that of the level of the leaves. User clusters are discovered
with ∆dmax of 60 meters and ∆tmin of 900 seconds (i.e.,
15 minutes). To highlight the zones of interest, we consider a
visitThreshold of 10. Finally, it is also important to mention
that the zones of interest of the privacy tree are generated with
the same parameters for all the users.

2) Results: The privacy indicator results obtained for each
user group according to each blurring strategy are shown in
Figures 12, 13, 14 and 15. The ”worst” scenario for which all
locations are sent without any blurring strategy is not indicated
in the diagrams because the privacy indicator is equal to 0. To
begin, we can clearly see that the privacy indicator results are
very close for all groups of users in Figures 12 and 13, unlike
Figures 14 and 15. Regarding the spatial cloaking strategy
for a radius of 100000 meters, the obtained privacy indicator
results are different for each user group. This difference is
explained by the fact that user groups have different travel
distances. About the privacy tree, the privacy indicator results
show indeed that they are different for the intermediate level.
This difference can be easily explained: if a user travels long
distances, the created privacy tree is automatically larger than
that of a user travelling medium distances. Consequently, the
alterations of the users travelling long distances are most
significant than those of users moving over short distances.
We observe the same if we compare the results obtained for
medium and small distances of the intermediate level of the
privacy tree.

In Figure 12, we can see that it is impossible to reach a pri-
vacy indicator result greater than 0.5 for a Gaussian alteration.
This is explained by the fact that there is no temporal alteration
when this strategy is used, unlike other blurring strategies.
Figure 13 shows we can reach a suitable protection from a
sampling with a time window duration of approximately 2
days. However, it seems to be rather unrealistic to send user
locations every 2 days or more. Regarding the spatial cloaking
strategy in Figure 14, the larger the radius of the cloaked
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Fig. 12. Gaussian alteration - Privacy indicator results

regions, the higher the privacy indicator results. It also means
that when 1 is reached, all user locations are contained in
one large cloaked region. This strategy is interesting because
it protects the sensitive regions of the user according to a
specific radius distance around them. Concerning the privacy
indicator results obtained for the privacy tree (see Figure 15),
the most precise level (i.e., at the original zones of interest
level of the users) already provides good results because
they are around 0.5. These good results are explained by
the non-disclosure of the temporal information. The results
of the intermediate level strongly depend on the radius of the
computed zones of interest of the intermediate level of the
privacy tree. Then, the obtained results for the less precise
level are very high, i.e., close to 1, because this level (i.e., at
the root level of the privacy tree) mainly exceeds or is close to
1000 meters, which is the radius of the maximum area zmax

of the space privacy (see Equation 8). Although the spatial
cloaking strategy offers a good spatial and temporal protection,
this strategy does not include a structure containing several
encapsulated privacy levels. The privacy tree is a structure with
various privacy levels, which makes it flexible. To conclude,
the privacy tree strategy is an appropriate approach to protect
location privacy of the user.

According to these results, if we resume the two scenarios
described at the beginning with the two location-based mobile
applications, we can now argue that the privacy tree is an
appropriate blurring strategy to ensure location privacy. More
specifically, we lose less privacy by only allowing a certain
level of accuracy/privacy especially when the utility of the
application is not high (i.e., in the case of the social network).
In addition, thanks to the privacy tree we can also decide to
lose more privacy for the green application, which is more
useful for us (i.e., high utility), compared to the social network
that is considered as less useful (i.e., low utility).

VIII. RELATED WORK

In the following, we discuss two research subjects included
in our work: location protection strategies, and privacy archi-
tectures and frameworks.

A. Location protection strategies

There exists various strategies that enable to protect lo-
cations, such as mix-zones, spatial cloaking, perturbation,
aggregation and many others as described in [8]. As presented
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in [11], [15], [8], [14], some of these strategies focus on
anonymization (i.e., the impossibility of linking a user and
an action) and others on location blurring or obfuscation (i.e.,
hiding a location). To begin with the anonymization strategies,
Beresford and Stajano introduce the concept of mix-zone in [4]
to achieve anonymization. In a mix-zone, precise locations of
users are not computed. This guarantees the privacy of the
user in this area and the anonymity of her moves from one
zone to another zone thanks to a pseudonym mechanism. More
specifically, when a user enters in a mix-zone, her pseudonym
changes and the third party application does not obtain precise
locations during her moves in the zone. Another technique
helping to spatially anonymize a user is known as spatial
cloaking [20]. If a user is located in a zone with at least k other
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users, the entire area is returned and not her precise location.
This strategy is based on the k-anonymity concept. However,
although these anonymization strategies are well-known, they
should not be used alone but complemented by other blurring
strategies [24].

Other strategies aim at blurring locations through alteration
techniques, which are used to modify the location by adding
some noise to the coordinates of the location, typically Gaus-
sian noise. In [2], authors present various spatial approaches in-
cluding affine transformations, random perturbation as well as
aggregation. In [19], a family of geometric data transformation
methods (GDTMs) are introduced. The aggregation strategy
enables to gather some close locations into a single one. For
example, the clustering process can help to reach this goal as
seen in [8], where several clustering algorithms are described
such as density-joinable cluster, density-time cluster and time-
density cluster. In our work, a density-time is used in order to
find clusters at the beginning of our process. In doing so, we
rely on a blurring strategy, aggregation more specifically.

To end this section, there also exist other strategies con-
sisting in sending fake user locations. Kido et al. introduce
this concept by presenting an anonymous communication
technique based on the sending of false locations with the
true location of the user as demonstrated in [13]. In [5],
Bindschaedler and Shokri present a model to generate fake
user locations to protect user location privacy. Their model
is based on statistical metrics quantifying geographic and
semantic aspects of the mobility of users.

B. Privacy architectures and frameworks

There basically exists two types of frameworks and ar-
chitectures aiming at protecting user privacy: decentralized
ones, where components are confined to the mobile device,
and centralized ones, where components may be the mobile
device and on some remote server [11]. In [17], Mokbel et al.
introduce a framework called Casper, which is entirely central-
ized. The goal of Casper is to allow users to use location-based
services without disclosing their location data. This framework
consists of two distinct components: a location anonymizer
and a privacy-aware query processor. The location anonymizer
constantly receives user locations from the mobile device and
blurs them using a spatial cloaking technique. It is important
to note that the location anonymizer is not on the mobile
device but on a remote server. Then, the blurred location is
sent to the privacy-aware query processor, which enables to
handle location-based requests such as ”Where is the nearest
restaurant?”. This last component is also located on a remote
server. In [18], Myles et al. present LocServ, a middleware
acting as a unifying location service. This location service
relies on a remote server that collects user locations from
different sources, as well as user privacy requirements, and
provides answers to location requests from applications. The
main goal of LocServ is to protect user locations gathered by
various tracking systems. Users must subscribe to the location
server LocServ and indicate their privacy preferences expressed
with rules. Unlike the previous middleware, user anonymity is
achieved by using multiple identifiers for one user in LocServ.
In [9], a decentralized architecture, called Prive, is presented.
Prive enables to preserve the anonymity of users using a de-
centralized version of k-anonymity. Although the architecture

of Prive is decentralized, there are a certification server where
users need to be registered as well as a centralized pseudonym
service. The goal of Prive is also to answer to requests
like ”Where is the nearest hospital?”, while protecting user
anonymity. In [12], Hong and Landay present Confab, a frame-
work for privacy-sensitive ubiquitous computing applications.
Its goal is to facilitate the development of privacy-sensitive
applications by taking into account user privacy preferences.
The architecture is composed of infospaces linked to users or
things, e.g., an infospace for a specific user and another for
a room. An infospace contains static information (e.g., user
name, user address, etc. . . ) and dynamic information extracted
from different sensors (e.g., temperature). The architecture may
be centralized, i.e., an infospace is managed by a remote
server, or decentralized, i.e., an infospace is hosted on the
user mobile device. As presented in the paper with three use
cases, locations may be shared during a specific duration (i.e.,
time-to-live flag) and according to a pre-defined location levels
(i.e., street level, room level, city level). In [7], Fawaz and
Shin present LP-Guardian, a framework that helps to ensure
location privacy. LP-Guardian takes into account the tracking
context: background or foreground mode. For instance, when
locations are caught in background, LP-Guardian is able to
capture the location object being in the process of creation
and blur it in order to protect the user. On the contrary, when
the tracking is in foreground, the user may be notified in
order to choose an appropriate location sharing option, e.g.,
hiding the place, revealing it during the application session,
as well as revealing it always. In this case, it is not a binary
choice as in a standard architecture, described in Figure 1,
but it is also not a personalized option provided according to
the behavior of the user, because the offered choices are not
generated on the basis of the user locations. In addition to
the blurring option, anonymization may always be enabled or
disabled according to the context. Amini et al. offer a system
called Caché, described in [1], enabling to pre-fetch and store
locally location-based content (i.e., weather forecast data, bus
schedule data, etc. . . ) from various sources (e.g., web services)
and for multiple areas. These areas must be pre-defined by the
user and are regions of interests of the user. Beresford et al.
introduce MockDroid in [3], which is a modified version of
Android operating system enabling to change personal content
shared with an application. It is an interesting way to make
users aware that a large amount of personal data is shared
with applications or services. Users are able to find a adapted
tradeoff between privacy and service functionality they want
to use. Finally the last remaining research to present is FINE,
a framework proposed by Shao et al. in [21]. This framework
enables to mainly ensure the confidentiality of location-based
service data and user location privacy, and provide a fine-
grained access control in the location-based service system. A
cloud server is mandatory because it executes location queries
and is a bridge between the location-based service provider
and the users. By using a specific and adapted encryption
technique, the framework ensures the confidentiality of data
shared. The user must decide the range of location she wants
to query but there is no information regarding how this range is
chosen by the user. The context of FINE is not the same as our
work because the location-based service provider is considered
as a remote entity and not as a component of the user mobile
device.
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When comparing the above architectures and frameworks
to SHAREZ, LP-Guardian is close to our solution in the sense
that it also offers a personalized location privacy protection
per application. However, its blurring strategy is quite different
from ours, which relies on the concept of a privacy tree. Our
blurring approach is constantly adapted to the user behavior in
order to offer appropriate levels of location privacy protection
for each specific location-based service. Furthermore, in the
architectures presented above, most of them are centralized
and need a remote server to work. Although Confab framework
enables to share locations according to different location levels
that seems to be pre-defined according to the context (e.g.,
different location levels in a building related to a work place).
Our blurring solution is obviously not pre-defined because
the privacy tree is updated over time. Unlike Caché, our
solution automatically computes user’s zones of interest in
real-time from user raw location data. Moreover, we propose
an approach per location-based service that the user wants to
use, and not an approach that catches location-based content
from different sources. To finish with MockDroid, even if
this approach is per application, the privacy preferences are
limited and also not automatically adapted to the user mobility
behavior.

IX. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel system-level architecture
providing fine-grained control over their location privacy to
mobile device users. Our solution consists in a system-level
architecture, which includes a service SHAREZ, relying on a
location access protocol that is strictly local. Our approach also
offers a flexible blurring technique that is a privacy tree. Rather
than forwarding all user locations to location-based services,
SHAREZ only shares her zones of interest, according to her
privacy preferences. A quantitative location privacy indicator
was also introduced and used in order to compare our solution
to more traditional blurring approaches. The results indicate
that the privacy tree, built from the user zones of interest,
is a valuable structure to flexibly protect user privacy, as it
enables to meet the tradeoff between privacy and accuracy
on a per-service and per-user basis. Future work could be
focused on a real implementation of this architecture on a real
mobile device in order to analyze several performance criteria
and measure the tradeoff between location-based functionality
and location privacy. Since the privacy tree is already imple-
mented in Objective-C, we could implement the architecture
on Apple iOS devices by modifying the operating system layer,
which is the most challenging part of this possible future work.
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