probabilistic algorithms
learning objectives

- learn what randomized algorithms are
- learn what they are useful for
- learn about pseudo-randomness
determinism vs randomness

A computer is deterministic by design, so an algorithm executing on a computer is inherently deterministic.

Yet we can abstractly define the notion of probabilistic or randomized algorithm as follows:

A randomized algorithm is one that receives, in addition to its input data, a stream of random bits used to make random choices.

So even for the same input, different executions of a randomized algorithm may give different outputs.
deterministic algorithm vs randomized algorithm

- **deterministic algorithm**
 - Input
 - Output

- **randomized algorithm**
 - Input
 - Output

...01010110101101101

...0101011010110110101101101...
why introduce randomness?

because randomized algorithms tend to be much simpler than their deterministic counterpart

because randomized algorithms tend to be more efficient than their deterministic counterpart*

*in execution time and memory space

but some randomized algorithms do not always* provide a correct answer (only probabilistically)

*always ≠ deterministically
principles to construct randomized algorithms

- abundance of witnesses
- fingerprinting
- random partitioning
- random sampling
- foiling the adversary
- random ordering
- Markov chains
abundance of witnesses

are these two polynomial of degree $d = 5$ identical?

\[p(x) = (x - 7)(x - 3)(x - 1)(x + 2)(2x + 5) \]
\[q(x) = 2x^5 - 13x^4 - 21x^3 + 127x^2 + 121x - 210 \]

expanding $p(x)$ may take up to $O(d^2) = O(25)$ time*
*provided integer multiplication takes a unit of time

a randomized algorithm can take $O(d) = O(5)$ time

note that:

- computing $p(x)$ and $q(x)$ for a given value $x \in \mathbb{Z}$ takes $O(d)$
- $p(x) = q(x)$ is true if at least one of the following conditions is true
 1. we have the following polynomial equality $p(x) = q(x)$
 2. the value x is a root of polynomial $p(x) - q(x)$, i.e., if $p(x) - q(x) = 0$
- since $p(x) - q(x)$ is of degree $d = 5$, it has no more than 5 roots
abundance of witnesses

algorithm

- randomly choose \(x \) from a very large range of integer \(R \subset \mathbb{Z} \)
- compute \(r = p(x) - q(x) \)
- if \(r = 0 \), then \(p(x) = q(x) \) is true with probability \(1 - \frac{d}{|R|} \)

\(x \) is our potential witness that \(p(x) \neq q(x) \)

after \(n \) trials, the error probability is \(\left(\frac{d}{|R|} \right)^n \)

after \(d + 1 \) trial, the error probability drops to 0

this is a Monte Carlo algorithm
Monte Carlo & Las Vegas algorithms

A Monte Carlo algorithm computes in a deterministic time but only provides a correct answer probabilistically.

A false-biased Monte Carlo algorithm is always correct when returning false. A true-biased Monte Carlo algorithm is always correct when returning true.

A Las Vegas algorithm computes in some random time but always* provides a correct answer.

*always ≠ deterministically

A Monte Carlo algorithm can be turned into a Las Vegas algorithm if we have a way to verify that the output is correct.
bob has x, a very long string of bits

fingerprinting consist in computing much shorter strings of bits from x and y, so-called fingerprints, to then exchange them

bob randomly chooses a prime number p less than M

bob sends p and $h_p(x)$ to alice

alice checks whether $h_p(x) = h_p(y)$ and sends the results to bob

...101001110001001011101010010010100101010100101...

they want to check if $x = y$ but their channel has limited bandwidth

algorithm

- bob randomly chooses a prime number p less than M
- bob sends p and $h_p(x)$ to alice
- alice checks whether $h_p(x) = h_p(y)$ and sends the results to bob

a typical fingerprinting function is $h_p(s) = h(s) \mod p$, where $h(s)$ is the integer corresponding to the string of bits s and p is a prime number

$h_p(s)$ is called a (high performance) hash function
we can see the execution of an algorithm as a zero-sum two-person game.

The payoff is the execution time.

A randomized algorithm can be seen as a probabilistic distribution over deterministic algorithms, i.e., as mixed strategy for the algorithm player.

Faced with a mixed strategy, the input player does not know what the algorithm player will do with the input.

This uncertainty makes it difficult for the input player to choose an input that will slow down the execution time.
foiling the adversary via random ordering

the performance of a binary search tree depends on its structure, which in turn depends on the order in which its elements were inserted.

we cannot assume insertion are made in random order, so we can end up with a binary search tree with catastrophic performance.

how can we get a binary search tree that looks like one resulting from insertions in random order whatever the execution?
a heap is a binary tree where the vertices on any path from the root to a leaf increase in value.

a treap is a binary tree where each vertex v has two values, $v.key$ and $v.priority$ and which is a binary search tree with respect to key values and a heap with respect to priority values.
given \(n \) items with associated keys and priorities, there exists a unique treap containing these \(n \) items

this unique treap has the same structure as a binary search tree where these \(n \) items would have been inserted in increasing order of priorities

algorithm for inserting key \(k \)

- draw a random priority \(p \)
- create new vertex \(v \) with \(v.key = k \) and \(v.priority = p \)
- insert \(v \) in the treap

the random priority acts as a randomized timestamp

at any given time, we have a binary search tree obtained by random insertion
Markov chains

a Markov chain is a stochastic* process satisfying the
Markov property, which states that the next state of
the process only depends on its present state

\[
\Pr(X_{n+1} = x \mid X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n) = \Pr(X_{n+1} = x \mid X_n = x_n)
\]

*stochastic ⇔ probabilistic ⇔ non-deterministic

transition matrix

\[
\begin{bmatrix}
0.9 & 0.075 & 0.025 \\
0.15 & 0.8 & 0.05 \\
0.25 & 0.25 & 0.5
\end{bmatrix}
\]

assume that at time \(t \), state = 2 then
at time \(t + 3 \), we will have:

\[
x^{(t+3)} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0.9 & 0.075 & 0.025 \\
0.15 & 0.8 & 0.05 \\
0.25 & 0.25 & 0.5\end{bmatrix}^3
\]

\[
= \begin{bmatrix} 0.3575 & 0.56825 & 0.07425 \end{bmatrix}
\]

\[
= \begin{bmatrix} 0.3575 & 0.56825 & 0.07425 \end{bmatrix}
\]
how to generate randomness in a deterministic machine?

do computers have a real source of random bits?

true random number generator

nuclear decay radiation, thermal noise from a resistor, etc...

augment computers with a intrinsically non-deterministic physical source

pseudo random number generator

a parameterized set of function $g = \{g_n\}$ such that each function $g_n : \langle 0,1 \rangle^n \rightarrow \langle 0,1 \rangle^{t(n)}$ takes a seed string of n bits and stretches to a longer string of length $t(n)$

not polynomial-time test can distinguish the output of g_n from a true random sequence of bits
how to generate randomness in a deterministic machine?

pseudo random number generator

Python

```python
import random

random.seed(666)
f = random.random()
i = random.randint(2, 9)
```

- $0.0 \leq f < 1.0$
- $2 \leq i \leq 9$

Scala

```scala
import scala.util.Random

val rand = Random
val f = rand.nextFloat
val i = random.nextInt(9)
```

- $0.0 \leq f < 1.0$
- $0 \leq i < 9$

C

```c
import Foundation

let i = arc4random()
let j = arc4random_uniform(9)
```

- $0 \leq i \leq 2^{32} - 1$
- $0 \leq j < 9$