
Using Virtual Mobile Nodes for Neighbor Detection
in Proximity-Based Mobile Applications

Behnaz Bostanipour Benoı̂t Garbinato

Distributed Object Programming Laboratory
University of Lausanne

CH-1015 Lausanne, Switzerland
Email: {behnaz.bostanipour,benoit.garbinato}@unil.ch

Abstract—We introduce a time-limited neighbor detector ser-
vice for mobile ad hoc networks, which enables a mobile device
to detect other nearby devices in the past, present and up to
some bounded time interval in the future. Our motivation lies
in the emergence of a new trend of mobile applications known
as proximity-based mobile applications, which enable a user to
communicate with other users within some defined range and for
a certain amount of time. Neighbor discovery is a fundamental
requirement for these applications and is not restricted to the
current neighbors but can include past or future neighbors.
To implement the time-limited neighbor detector service, we
apply an approach based on virtual mobile nodes. A virtual
mobile node is an abstraction that is akin to a mobile node that
travels in the network in a predefined trajectory. In practice
it can be implemented by a set of mobile nodes based on a
replicated state machine approach. In this paper, we assume
that each node can accurately predict its own locations up to
some bounded time interval in the future. Thus, we present
a time-limited neighbor detector algorithm that uses a virtual
mobile node that continuously travels in the network, collects
the predicted locations of all nodes, performs the neighborhood
matching between nodes and sends the list of neighbors to each
node. We show that our algorithm correctly implements the time-
limited neighbor detector service under a set of conditions.

Keywords—Neighbor Detection; Virtual Mobile Node;

Proximity-Based Broadcast; MANET; Distributed Systems;

Smartphone;

I. INTRODUCTION

With the ubiquitous use of mobile devices and particularly
smartphones, we face the emergence of a new type of dis-
tributed applications known as Proximity-Based Mobile (PBM)
applications [5], [6]. These applications enable a user to
interact with others in a defined range and for a given time
duration e.g., for social networking ([26], [21], [1], [20]),
gaming ([4]) and driving ([25]).

Discovering who is nearby is at the core of the PBM ap-
plications. It is the preliminary step for the further interactions
between users. It also provides users with the opportunity
to extend their social network from the people that they
know to the people that they might not know but who are
in their proximity. For instance, in a simple usage scenario
of social networking applications such as WhosHere [26] or
LoKast [21], a user first discovers other users in her proximity
and then decides to view their profiles, start a chat with a user
or a group of users or add them as friends. The discoverability,
however, may not always be limited to the current neighbors.
For instance, with the social networking applications such as
iGroups [1] or LocoPing [20], a user can discover other users

who were in her vicinity during a past event (e.g., concert,
tradeshow, wedding) or simply during a past time interval
(e.g., the past 24 hours). One can also think of applications
that provide the user with the list of people who will be in her
proximity up to some time interval in future and thus create
the potential for new types of social interactions.

In this paper, we introduce a time-limited neighbor detector
service that enables a user to discover the set of its neighbors
in the past, present and up to some bounded time interval
in the future in a mobile ad hoc network (MANET). We also
present an algorithm that implements the time-limited neighbor
detector using a virtual mobile node. A virtual mobile node
is an abstraction that is already introduced in the literature
and used for tasks such as routing or collecting data in
MANETs [10], [11]. It is akin to a mobile node that travels
in the network in a predefined trajectory known in advance
to all nodes. In practice a virtual mobile node is emulated
by a set of nodes in the network based on a replicated state
machine approach. In this paper, we assume that each node can
accurately predict its own locations up to some bounded time
interval in the future. Thus, in the algorithm we use the virtual
mobile node to continuously travel in the network, collect the
the predicted locations of all nodes, perform the neighborhood
matching between nodes and then send back to each node the
list of its neighbors at current and future times. Each node also
stores its neighbor set at any time so that later it will be able
to be queried about its past neighbors.

In order to show that our algorithm correctly implements
the time-limited neighbor detector service, we present a proof
of correctness. In particular, we define the conditions under
which the service can be correctly implemented by the algo-
rithm.

To the best of our knowledge, this is the first paper that
introduces a neighbor detector service that can detect future
neighbors (although up to some time interval) in a MANET.
It is also the first paper that uses an approach based on virtual
mobile nodes for neighbor discovery.

The remainder of the paper is as follows. In Section II, we
describe our system model and present some definitions. In
Section III, we introduce the neighbor detector abstraction in
two variants: the perfect variant which presents the ideal case
of neighbor detection and is rather impractical and the time-
limited variant. In Section IV, we present the implementation
of the time-limited variant of the neighbor detector service. In
order to do so, we first describe what is a virtual mobile node
and how it can be used for the implementation of the time-

limited neighbor detector. We then introduce an algorithm that
implements the time-limited neighbor detector and we present
a proof of correctness for the algorithm. In Section V, we
discuss the related work. Finally, in Section VI, we discuss
open problems and future work.

II. SYSTEM MODEL AND DEFINITIONS

We consider a mobile ad-hoc network (MANET) consisting
of processes that move in a bounded region R of a two-
dimensional plane. We use the terms process and node in-
terchangeably. Each process is assigned a unique identifier.
Processes can move on any continuous path, however there
exists a known upper bound on their movement speed. A
process is prone to crash-reboot failures: it can fail and recover
at any time, and when the process recovers, it returns to its
initial state. Moreover, a process may join or leave the system
at any time (where a leave is treated as a failure). A process
is correct if it never fails. Since we do not consider Byzantine
behaviors, the information security and privacy issues are
beyond the scope of this paper.

We assume the existence of a discrete global clock, i.e., the
range T of the clock’s ticks is the set of non-negative integers.
We also assume the existence of a known bound on the relative
processing speed. Each process in the system has access to a
global positioning service, a timely scoped broadcast service
and a mobility predictor service. In the following, we first
introduce some definitions that are used throughout the paper.
We then present each of the above mentioned services.

A. Definitions

Let p

i

be a process in the network, we introduce the
definitions given hereafter in order to capture proximity-based
semantics.

• location denotes a geometric point in the two dimen-
sional plane where region R is situated and can be
expressed as tuple (x, y).

• loc

i

(t) denotes the location occupied by process p

i

at
time t 2 T .

• Z

i

(r, t) denotes all the locations inside or on the circle
centered at loc

i

(t) with given radius r.
• r

d

is called neighbor detection radius. It is a constant
known by all processes in the network. Thus, Z

i

(r
d

, t)
presents the neighborhood region of p

i

at time t.

B. Timely Scoped Broadcast Service

This communication service allows a process to send
messages to all processes located within a given radius around
it. Formally, the timely scoped broadcast service exposes the
following primitives:

• BROADCAST(m, r): broadcasts a message m in
Z

i

(r, t
b

), where p

i

is the sender and t

b

is the time
when the broadcast is invoked.

• RECEIVE(m, p

i

): callback delivering a message m

broadcast by process p

i

.

The service satisfies the following properties.

Timely Delivery. If a correct process p

i

broadcasts
a message m, there exists a bounded time duration

�
bcast

such that every correct process p

j

delivers m

in interval [t
b

; t

b

+ �
bcast

], if loc

j

(t) 2 Z

i

(r, t) for
all t 2 [t

b

; t

b

+�
bcast

].
No Duplication. No message is delivered more than
once.
No Creation. If some process p

j

delivers a message
m with sender p

i

, then m was previously broadcast
by process p

i

.

For a detailed discussion regarding the implementability of this
service in both the single-hop and the multi-hop cases see [5].

C. Global Positioning Service

This service allows each mobile process p
i

to know its cur-
rent location and the current time via the following functions:

• GETCURRENTTIME: returns the current global time.
Formally, this implies that each process p

i

has access
to the global clock modeled in Section II.

• GETCURRENTLOCATION: returns the location occu-
pied by p

i

at the current global time.

In this paper, we do not provide any formal properties
for this service. However, we assume that the outputs of its
functions are exact. In practice, such a service would typically
be implemented using NASA’s GPS or ESA’s Galileo space-
based satellite navigation technologies.

D. Mobility Predictor Service

This service allows each mobile process p

i

to predict its
future locations up to some bounded time �

predict

via the
following function:

• PREDICTLOCATIONS: returns a hash map containing
the predicted locations for p

i

at each time t in the
interval [t

c

; t

c

+�
predict

] where t

c

is the time when
PREDICTLOCATIONS is invoked.

The service satisfies the following property.

Strong Accuracy. Let t 2 [t
c

; t
c

+�
predict

] and l be
a location, if p

i

is predicted to be at l at time t, then
loc

i

(t) = l.

In order for the service to predict the locations of the
process in the future, we assume that the mobility model
applied by the processes is such that the future locations
of a process can be predicted up to a certain �

predict

. For
instance, if a process moves according to a mobility model with
temporal dependency (such as Gauss-Markov Mobility Model
or Smooth Random Mobility Model), its future locations can
be predicted using its past locations [2]. In practice, the future
location prediction can be achieved for example by taking
into account the current trajectory (direction, speed,...) of the
mobile device, possibly coupled with maps information.

III. THE NEIGHBOR DETECTOR ABSTRACTION

In this section, we introduce the neighbor detector abstrac-
tion in two variants. Formally, the neighbor detector service
exposes the following primitive:

• PRESENT(t): returns N

i

(t) i.e., the set of processes
detected as neighbors of p

i

at time t, where p

i

is the
process that invokes PRESENT.

A. Neighbor Detector Variants

1) Perfect Neighbor Detector: By querying this variant of
neighbor detector service, a mobile process is able to know
the set of its neighbors at any time in the past, present or the
future.

Perfect Completeness. Let p
i

and p

j

be two correct
processes, if loc

j

(t) 2 Z

i

(r
d

, t), then p

j

2 N

i

(t).
Perfect Accuracy. Let p

i

and p

j

be two correct
processes, if p

j

2 N

i

(t), then loc

j

(t) 2 Z

i

(r
d

, t).

Roughly speaking, the perfect completeness property re-
quires a neighbor detector to detect any node that is in the
neighborhood region at any time in the past, present or future.
At the same time, the perfect accuracy property guarantees that
no false detection occurs. Since in practice implementing the
perfect completeness property requires an infinite knowledge
of nodes’ locations in the future, we consider a more practical
variant of the neighbor detector abstraction called the time-
limited neighbor detector. We introduce this variant hereafter.

2) Time-limited Neighbor Detector: Compared to the per-
fect neighbor detector, this variant has a different completeness
property. However, its accuracy property is the same. We
define its properties, below.

Time-limited Completeness. Let p

i

and p

j

be two
correct processes and �

future

be a bounded time
interval such that �

future

> 0, if loc

j

(t) 2 Z

i

(r
d

, t)
and t t

c

+ �
future

, then p

j

2 N

i

(t), where t

c

is
the time when PRESENT is invoked at p

i

.
Perfect Accuracy. Let p

i

and p

j

be two correct
processes, if p

j

2 N

i

(t), then loc

j

(t) 2 Z

i

(r
d

, t).

Similarly to the perfect completeness property, the time-
limited completeness property requires a neighbor detector to
detect any node that is in the neighborhood region at any time
in the past or present. However, its ability to detect future
neighbors is limited by a bounded time duration �

future

. More
precisely, it only detects a node that is in the neighborhood
region at any time from the time when PRESENT is invoked
up to �

future

. The perfect accuracy property also guarantees
no false detection.1

IV. IMPLEMENTING THE TIME-LIMITED NEIGHBOR
DETECTOR

To implement the time-limited neighbor detector, our intu-
ition is as follows: since each node knows its own locations up
to �

predict

in the future, we can think of a moving entity that
travels through the network, collects the predicted locations of
all nodes, performs the neighborhood matching between nodes
and then sends back to each node the list of its neighbors
at current and future times. For this reason, we rely on the
concept of Virtual Mobile Node (VMN) introduced in [10].

In what follows we first describe what is a VMN and
we add a VMN to the system model. We then introduce an
algorithm that implements the time-limited neighbor detector
in the new system model. Finally, we discuss the correctness
of the algorithm.

1 For simplicity’s sake, we do not assume a time bound on the availability
of the past neighborhood information at this point.

A. Virtual Mobile Node (VMN)

A VMN is an abstraction that is akin to a mobile node
that travels in the network in a predefined trajectory. It is
first introduced in [10]. One of the main motivations behind
the design of a VMN abstraction is that if the motion of a
mobile node could be predefined and known to all nodes in the
network, the task of designing various algorithms for mobile
ad hoc networks would be significantly simplified. Therefore,
a VMN is designed such that it can execute any distributed
algorithm that a node can execute, however, its movement can
be predefined and be known in advance to all nodes in the
network.

In [10] an algorithm called Mobile Point Emulator (MPE)
is introduced which implements the VMN abstraction in a
system model equivalent to the system model defined in this
paper. Its approach to implement the VMN is based on a
replicated state machine technique similar to the one originally
presented in [19]. The algorithm defines a mobile point to be
a circular region of a radius r

mp

, that moves according to
the predefined path of the VMN, i.e., at time t the center of
the mobile point coincides with the preplanned location of the
VMN at time t. The MPE replicates the state of the VMN
at every node within the mobile point’s region, modifying the
set of replicas as the nodes move in and out of the mobile
point’s region. MPE uses a total-order broadcast service to
ensure that the replicas are updated consistently. The total order
broadcast service is built using a synchronous local broadcast
service (equivalent to our timely scoped broadcast) and the
synchronized clocks (obtained by using a service equivalent
to our global positioning service).

Similarly to a node, the VMN can communicate with
other nodes using the timely scoped broadcast service (or its
equivalents). Moreover, the VMN is prone to crash-reboot
failures. It can crash if and only if its trajectory takes it into
a region unpopulated by any nodes (i.e., where there are no
nodes to act as replicas), however, it recovers to its initial state
as soon as it renters a dense area. A VMN is correct if it never
fails.

B. Adding a VMN to the System Model

In this section, we add a VMN to the system model defined
in Section II. The movement trajectory of this VMN is such
that it can be used by our algorithm for the implementation
of the time-limited neighbor detector. Note that we do not
provide an implementation for the VMN, however, we assume
that it can be implemented by the MPE algorithm sketched in
Section IV-A.

The VMN communicates with the nodes in the network
using the timely scoped broadcast service where the broadcast
radius equals to a constant rVMN known to all nodes. This
constant is, in fact, defined by the VMN implementation
(see [10]).

The movement of the VMN is defined by a predetermined
trajectory function locVMN which maps every t in T to a
location in region R. This function is known to all nodes in the
network. According to locVMN, the VMN continuously scans
the region R. The scans are arranged in the form of outward-
returns. More precisely, let l

A

, l

B

be two distinct locations
in R, then an outward scan starts at l

A

and ends at l
B

and a
return scan starts at l

B

and ends at l
A

(see Fig. 1). Outward and

lB

lA

(b) Return Scan(a) Outward Scan

lA

lB

Fig. 1: VMN scans the region R

return scans alternate and the VMN uses exactly the same path
in the outward and the return scans. The amount of time that
the VMN spends in the outward scan is equal to the amount
of time that it spends in the return scan. This time duration is
denoted by �

scan

.

In order for a scan to cover the entire region (and thus be
useful for our time-limited neighbor detector algorithm), the
trajectory function of the VMN ensures the following property.

Scan Completeness. Let s be a scan (outward or
return) and let t

start

be the time when s is started,
then the path traversed by the VMN during s is such
that 8location 2 R, 9t 2 [t

start

; t
start

+�
scan

[such
that distance(locVMN(t), location) rVMN.

C. A Time-limited Neighbor Detector Algorithm

The basic idea behind the algorithm is as follows: time is
divided into rounds of duration �

scan

. At each round k, the
VMN scans the entire network, collects the predicted locations
maps of all nodes, and also sends to each node the neighbors
map of that node. The neighbors map is, in fact, generated
by the VMN based on the predicted locations maps that are
collected at round k�1. Note, however, that in the first round
the VMN only collects the predicted locations maps and does
not send any neighbors maps to the nodes.

The algorithm includes two parts: (1) a part that is executed
on each physical node p

i

in the network (Algorithm 1); (2)
a part that is executed on the VMN (Algorithm 2). In the
following, we discuss the algorithm in more detail.

Since the trajectory function of the VMN is globally
known, each node p

i

knows the value of �
scan

and can
determine when a new round begins (line 7). It can also
calculate its distance to the VMN at any time. Thus, at each
round p

i

waits until its distance to the VMN becomes less
than or equal to rVMN. Then, if it has not already sent a
message to the VMN in that round, it creates a message msg
to send to the VMN (lines 9-11). This message encapsulates
some parameters. Among these parameters the hash map locs

(also referred as the predicted locations map) is used to store
the output of PREDICTLOCATIONS primitive of the mobility
predictor service (line 12). The parameters t

start

and t

end

of
msg store, respectively, the beginning and the end of the time
interval for which the locations are predicted (lines 13-14).2
In what follows, for simplicity’s sake, we refer to the time
interval [msg.t

start

; msg.t
end

] as the epoch of msg or Emsg.
Once all parameters of msg are assigned their values, msg is
broadcast within the radius rVMN, so it can be received by the
VMN (line 16).

2We assume no clock tick between lines 12-13.

When the VMN receives msg sent by p

i

, it adds msg to the
currentRoundCollectedMsgs set (lines 31-32). If the VMN is
not in the first round and if it has collected a message from p

i

in the previous round, then it creates a message VMNmsg to
reply to p

i

(lines 33-34). The message VMNmsg encapsulates a
hash map neighbors (also referred as the neighbors map) and
some other parameters. To obtain neighbors, first pmsg or
the message collected from p

i

in the previous round is found
(line 35). Then, the function GETNEGHBORS is called (line
36), which uses the parameters of pmsg and messages collected
from other nodes in the previous round to find neighbors of
p

i

during Epmsg (lines 46-52). Thus, neighbors contains the
set of detected neighbors of p

i

at each time t during Epmsg.
The parameters t

start

and t

end

of VMNmsg store, respectively,
the values of pmsg.t

start

and pmsg.t
end

(lines 37-38). Hence,
EVMNmsg is equal to Epmsg. Finally, p

i

is specified as the
destination of VMNmsg and it is broadcast within the radius
rVMN so it can be received by p

i

(lines 39-40). The process
p

i

has a hash map N that is used to store the set of its
detected neighbors at any time t in T . Thus, when p

i

receives
a VMNmsg that is addressed to it, it looks through EVMNmsg
to find a time t at which N(t) is undefined i.e., equals to ?
(lines 18-21). Then, it assigns VMNmsg.neighbors(t) to N(t)
(line 22).

D. Proof of Correctness

In this section we prove that the time-limited neigh-
bor detector algorithm correctly implements the time-limited
neighbor detector abstraction under certain conditions. In order
to do so, we prove hereafter that the algorithm guarantees
the properties of the time-limited neighbor detector abstraction
defined in Section III-A2.

Note that in the following we use the notation t

s,k

to refer
to the beginning time of a round k in the algorithm. Thus,
for instance t

s,3 and t

s,1 denote, respectively, the beginning of
round 3 and round 1 in the algorithm.

Theorem 1. The time-limited neighbor detector algorithm
satisfies the time-limited completeness property if the following
conditions hold:

(a) 8t 2 T , at least one correct node resides in the
circular region of radius r

mp

around locVMN(t). This
condition, in fact, guarantees that the VMN is correct.

(b) In each round, the time elapsed from the sending of
the predicted locations map to the VMN by a process
p

i

until the reception at p
i

of the neighbors map sent
by the VMN, is negligible.

(c) �
predict

� �
future

+ 3⇥�
scan

� 2.
(d) Let PRESENT(t), then t

c

� t

s,3. Recall that t
c

is the
time when PRESENT(t) is invoked. Thus, this condition
guarantees that PRESENT(t) is called in a round k

such that k � 3.
(e) Let PRESENT(t), then t � t

s,1 +�
scan

� 1.

Proof: We show that with the worst case scenario the
algorithm satisfies the time-limited completeness property if
Conditions (a), (b), (c), (d), (e) hold.

Let PRESENT(t) be invoked at process p

i

in a round k

i.e., t

c

be in round k. We consider the worst case scenario
according to which in round k the distance between p

i

and

Algorithm 1 Time-limited Neighbor Detector Algorithm at Process p

i

1: initialisation:
2: noMsgSentInThisRound true

3: for all t 2 T do
4: N(t) ?

5: PRESENT(t)
6: return N(t)

7: every �scan do {pi knows the function locVMN and can calculate �scan}
8: noMsgSentInThisRound true

9: upon DISTANCE(GETCURRENTLOCATION, locVMN(GETCURRENTTIME)) rVMN do
10: if noMsgSentInThisRound then
11: msg ? {a message msg is created to encapsulate some parameters}
12: msg.locs PREDICTLOCATIONS
13: msg.tstart GETCURRENTTIME
14: msg.tend msg.tstart +�predict

15: msg.sender pi

16: trigger BROADCAST(msg, rVMN)
17: noMsgSentInThisRound false

18: upon RECEIVE(VMNmsg, V MN) do
19: if VMNmsg.destination = pi then
20: for all t 2 [VMNmsg.tstart, VMNmsg.tend] do
21: if N(t) =? then
22: N(t) VMNmsg.neighbors(t)

Algorithm 2 Time-limited Neighbor Detector Algorithm at the VMN
23: initialisation:
24: k 1 {k stores the round number}
25: currentRoundCollectedMsgs ;
26: previousRoundCollectedMsgs ;

27: every �scan do {the VMN knows the function locV MN and can calculate �scan}
28: k k + 1
29: previousRoundCollectedMsgs currentRoundCollectedMsgs
30: currentRoundCollectedMsgs ;

31: upon RECEIVE(msg, pi) do
32: currentRoundCollectedMsgs currentRoundCollectedMsgs [{msg}
33: if k > 1 ^ GETPREVIOUSMSG(pi) 6=? then
34: VMNmsg ?
35: pmsg GETPREVIOUSMSG(pi)
36: VMNmsg.neighbors GETNEGHBORS(pmsg)
37: VMNmsg.tstart pmsg.tstart
38: VMNmsg.tend pmsg.tend

39: VMNmsg.destination pi

40: trigger BROADCAST(VMNmsg, rVMN)

41: function GETPREVIOUSMSG(pi)
42: for all m 2 previousRoundCollectedMsgs do
43: if m.sender = pi then
44: return m

45: return ?

46: function GETNEGHBORS(pmsg)
47: for all t 2 [pmsg.tstart, pmsg.tend] do
48: neighbors(t) ;
49: for all m 2 previousRoundCollectedMsgs do
50: if m.sender 6= pmsg.sender ^ DISTANCE(m.locs(t), pmsg.locs(t)) rd then
51: neighbors(t) neighbors(t) [{m.sender}
52: return neighbors

round = k-2

round = k-1

round = k

t s,k-2

t s,k-1

t s,k t s,k + ∆ scan - 1t c

pi is at distance ≤ rVMN
to the VMN

Fig. 2: The worst case scenario

the VMN becomes less than or equal to rVMN only at the last
clock tick of the round i.e., at t

s,k

+�
scan

�1 and t

c

= t

s,k

+
�

scan

�2 (see Fig. 2). In addition, for this scenario we assume
that �

predict

= �
future

+ 3⇥�
scan

� 2. Thus, we show the
proof in the two following cases: (1) for t

c

 t t

c

+�
future

;
and (2) for t

s,1 +�
scan

� 1 t < t

c

.

(1) For tc t tc + �future. In the described scenario,
the neighbors map sent by the VMN at round k cannot
be used by p

i

for the neighbor detection at time t

c

. The
reason is that this neighbors map is only received by p

i

at
t

s,k

+�
scan

�1, i.e., after t
c

. According to Condition (d),
k is at least equal to 3. Thereby, at time t

c

, the process p

i

can rely on the neighbors map that it has received in round
k�1 for neighbor detection.3 According to the algorithm,
the neighbors map that p

i

has received in round k � 1 is
made based on the predicted locations maps collected at
round k � 2.
Since �

predict

= �
future

+ 3 ⇥ �
scan

� 2, predicted
locations maps of p

i

and p

j

collected at round k�2 contain
the predicted locations for time interval [t

c

; t
c

+�
future

].
In fact, according to the scan completeness property of
the VMN scans, in a round, for each node there exists
a time when its distance to the VMN becomes less than
or equal to rVMN. According to the algorithm, as soon
as a node realizes that it is within distance rVMN to the
VMN, it sends its predicted locations map to the VMN.
Thus, in round k � 2 both p

i

and p

j

send their predicted
locations maps to the VMN. Moreover, in round k� 2, if
a node is within distance rVMN to the VMN at the earliest
possible time (i.e., at time t

s,k�2 which is the beginning
of the round), its predicted locations map is defined for
time interval [t

s,k�2; t

s,k�2 + �
predict

] = [t
s,k�2; t

c

+
�

future

]. Therefore, regardless of the time when p

i

and
p

j

are within distance rVMN to the VMN, their predicted
locations maps in round k�2 contain predictions for time
interval [t

c

; t
c

+�
future

]. Considering Conditions (a) and
(b), plus the timely delivery property of the underlying
timely scoped broadcast, the communication between the
VMN and a node is reliable and with negligible delay.
Therefore, the messages sent by p

i

and p

j

in round k� 2
are received by the VMN in round k � 2.
The scan completeness property of the VMN scans guar-
antees that the VMN would be within rVMN of p

i

at

3Note that according to the algorithm, no neighbors map is distributed by
the VMN in round 1.

some time in round k � 1. At this time, the VMN
sends to p

i

its neighbors map which is made based on
the predicted locations maps collected at round k � 2.
The strong accuracy property of the mobility predictor
service guarantees that the location predictions of p

i

and
p

j

in their corresponding predicted locations maps are
accurate. The function GETNEGHBORS (lines 46-52) also
guarantees the correct neighbor matching between nodes.
According to the algorithm, the neighbors map sent to p

i

at round k� 1 is defined for the same time interval as the
predicted locations map collected from p

i

at round k� 2.
This means that the neighbors map has the information
for time interval [t

c

; t

c

+ �
future

]. Thus, based on the
arguments above, if loc

j

(t) 2 Z

i

(r
d

, t), p
j

is indicated as
a neighbor of p

i

at time t in the neighbors map sent to p

i

in round k � 1. Again Conditions (a), (b) and the timely
delivery property of the timely scoped broadcast guarantee
that the neighbors map sent to p

i

by the VMN in round
k � 1 is received by p

i

in round k � 1. Then, according
to the algorithm, the values of the neighbors map for time
interval [t

c

; t
c

+�
future

] are assigned to N at p
i

(line 22).
Hence, if loc

j

(t) 2 Z

i

(r
d

, t), then p

j

2 N

i

(t).
(2) For ts,1 + �scan � 1 t < tc. We prove this case by

induction.
Basis. We start with the smallest possible value for k,
which according to Condition (d) is k = 3. If k = 3, p

i

can only rely on the neighbors map that it has received in
round 2 for neighbor detection. According to the algorithm
the neighbors map sent to p

i

at round 2 is defined for the
same time interval as the predicted locations map collected
from p

i

at round 1. So, even if at round 1, p
i

is within
distance rVMN to the VMN at the latest possible time
(i.e., at time t

s,1 + �
scan

� 1 which is the end of the
round), its neighbors map in round 2 is defined for time
interval [t

s,1+�
scan

� 1; t

s,1+�
scan

� 1+�
predict

] =
[t
s,1+�

scan

� 1; t

s,1+4⇥�
scan

+�
future

� 3]. Thus,
the neighbors map contains the neighborhood information
for time interval [t

s,1 +�
scan

� 1; t

c

[and by the same
reasoning that in the case (1) above, we conclude that
when k = 3, the time-limited completeness is guaranteed
for t

s,1 +�
scan

� 1 t < t

c

.
Inductive Step. We consider some round k > 3. Then, we
show that if the time-limited completeness is guaranteed
for t

s,1 + �
scan

� 1 t < t

c

in round k, then it is
also guaranteed in round k + 1. From the case (1) above,
we know that in round k the time-limited completeness
is guaranteed for t = t

c

. Considering this fact and the
induction hypothesis, we can say that in round k, the time-
limited completeness is guaranteed for t

s,1+�
scan

�1
t t

c

which is equivalent to say that it is guaranteed for
t

s,1+�
scan

�1 t t

s,k

+�
scan

�2 by replacing t

c

with
t

s,k

+�
scan

� 2. Thus, since the algorithm continuously
stores the neighborhood information (lines 21-22), in
round k+1 the time-limited completeness is already guar-
anteed for t

s,1+�
scan

� 1 t t

s,k

+�
scan

� 2. Also,
we know that in round k, p

i

receives a new neighbors map
at time t

s,k

+�
scan

�1. This new neighbors map is made
based on the predicted locations map collected at round
k� 1 and in the worst case contains the neighborhood in-
formation for the time interval [t

s,k�1; ts,k�1+�
predict

].
The time interval [t

s,k�1; ts,k�1+�
predict

] can be written
as [t

s,k�1; tc+�
future

] where t

c

is the t

c

of round k+1.

Thus, the neighbors map contains the neighborhood infor-
mation for time interval [t

s,k

+�
scan

� 1; t

c

[. Thereby,
by the same reasoning that in the case (1) above, we know
that in round k + 1, the time-limited completeness is also
guaranteed for t

s,k

+�
scan

�1 t < t

c

. Finally, since we
showed that in round k+1, the time-limited completeness
is guaranteed for t

s,1+�
scan

� 1 t t

s,k

+�
scan

� 2
and for t

s,k

+�
scan

� 1 t < t

c

, we conclude that it is
guaranteed for t

s,1 +�
scan

� 1 t < t

c

.

Theorem 2. The time-limited neighbor detector algorithm
satisfies the perfect accuracy property.

Proof: According to the algorithm, if p

j

2 N

i

(t),
there exists a round during which p

i

has received a
VMNmsg with a neighbors map parameter such that p

j

2
VMNmsg.neighbors(t). Since p

i

verifies the destination of
each VMNmsg that it receives (line 19), we know that p

i

ignores a VMNmsgs that is not addressed to it. Also, according
to the no creation property of the timely scoped broadcast
service, we know that the VMNmsg is in fact broadcast by the
VMN. According to the algorithm, the neighbors map of the
VMNmsg is created by calling the function GETNEGHBORS
(lines 46-52). This function performs the neighbor matching
based on locs (or the predicted locations maps) parameter of
msg messages collected from nodes in the previous round. The
parameter sender of each msg guarantees that there is no error
regarding the sender of a msg. The strong accuracy property
of the mobility predictor service guarantees that the location
predictions in locs are accurate. In addition, the function
GETNEGHBORS only detects p

j

as a neighbor of p
i

at time t if
the distance between their predicted locations at t is less than
or equal to r

d

(lines 50-51). Finally, the no creation property
of the timely scoped broadcast service guarantees that each
msg collected by the VMN from a node is indeed sent by that
node. Therefore if p

j

2 N

i

(t), then loc

j

(t) 2 Z

i

(r
d

, t).

Theorem 3. The time-limited neighbor detector algorithm
correctly implements the time-limited neighbor detector ab-
straction if the following conditions hold:

(a) 8t 2 T , at least one correct node resides in the
circular region of radius r

mp

around locVMN(t). This
condition, in fact, guarantees that the VMN is correct.

(b) In each round, the time elapsed from the sending of
the predicted locations map to the VMN by a process
p

i

until the reception at p
i

of the neighbors map sent
by the VMN, is negligible.

(c) �
predict

� �
future

+ 3⇥�
scan

� 2.
(d) Let PRESENT(t), then t

c

� t

s,3. Recall that t
c

is the
time when PRESENT(t) is invoked. Thus, this condition
guarantees that PRESENT(t) is called in a round k

such that k � 3.
(e) Let PRESENT(t), then t � t

s,1 +�
scan

� 1.

Proof: According to Theorem 1, the algorithm guarantees
the time-limited completeness property of the time-limited
neighbor detector if Conditions (a), (b), (c), (d), (e) hold. In
addition, according to Theorem 2, the algorithm guarantees
the perfect accuracy property of the time-limited neighbor
detector. Therefore, the algorithm correctly implements the

time-limited neighbor detector abstraction if Conditions (a),
(b), (c), (d), (e) hold.

V. RELATED WORK

Neighbor detection in ad hoc networks is usually studied
as a building block for applications such as routing, leader
election, group management and localization. Many of the
existing neighbor detection algorithms belong to the hello
protocols family [22], [24], [13], [17], [3], [16], [15], [6].
They are based on the basic hello protocol first described
in Open Shortest Path First (OSPF) routing protocol [23].
It works as follows: nodes periodically send hello messages
to announce their presence to close nodes, and maintain a
neighbor set. The sending frequency is denoted by f

hello

.
If a hello message is not received from a neighbor for a
predefined amount of time, then that neighbor is discarded
from the neighbor set. The problem with this approach is that
if f

hello

is too low (with respect to the speed of the nodes),
then the neighbor set becomes quickly obsolete. On the other
hand, if it is too high, the neighbor set remains up to date
but it causes a significant waste of communication bandwidth
and energy [16]. However, finding the optimal f

hello

is not
obvious and the existing solutions cannot ideally solve this
problem. Moreover, the hello protocols usually provide only
the set of current neighbors and they do not satisfy any formal
guarantees.

Nevertheless, in the literature there exist schemes that use
different approaches than the hello broadcast for neighbor
detection [8], [9]. For instance, in [9], a reliable neighbor
detection abstraction is defined that establishes links over
which message delivery is guaranteed. The authors present two
region-based neighbor detection algorithms which implement
the abstraction with different link establishment guarantees.
The algorithms are implemented on top of a Medium Access
Control (MAC) layer which provides upper bounds on the time
for message delivery. The main idea behind the first algorithm
is that a node sends a join message some time after entering
a new region to establish communication links. It also sends a
leave message some time before leaving a region to inform the
other nodes so that they can tear down their corresponding link
with that node. To guarantee that these notification messages
reach their destination despite the continuos motion of nodes,
the authors define the time limits for a node to send the join
and the leave messages. These time limits are obtained using
the timing guarantees of the underlying MAC layer. Since a
node should send a leave message some time before it actually
leaves a region, the algorithm assumes that a node’s trajectory
function is known to that node with enough anticipation to
communicate with other nodes before leaving the region. The
first algorithm does not guarantee the communication links
when nodes are moving quickly across region boundaries.
Thus, the authors introduce a second algorithm. In this new
algorithm they apply a technique which overlays multiple
region partitions, associating with each region partition an
instance of the first algorithm. The output of each instance is
then composed such that it guarantees the communication links
even when nodes are moving across region boundaries. The
approach applied in [9] for neighbor detection is interesting
because it uses a relatively lower number of message broadcast
compared to the hello protocols. Similarly to our work, this
approach also uses the knowledge of nodes about their future
locations for the neighbor detection. However, contrary to our

work, no future neighbor detection is defined and only the
current neighbor detection is guaranteed.

We believe that our work is the first attempt to use a
virtual node for neighbor detection. The idea of using mobile
entities with predefined trajectory to facilitate the design of
algorithms for mobile networks was first introduced by Hatzis
et al. in [14]. They define the notion of a compulsory protocol
which requires a subset of the mobile nodes to move in a
predefined way. They also present an efficient compulsory
protocol for leader election. In [7] and [18] routing protocols
for MANETs using compulsory protocols are introduced.
In [10], [11], several basic algorithms that use a VMN to
solve various problems are briefly presented. These algorithms
address the problems such as routing, collecting and evaluating
data in mobile ad hoc sensor networks and some other general
problems such as group communication and atomic memory.

VI. CONCLUSION

We have introduced a time-limited neighbor detector ser-
vice for MANETs. By querying this service a mobile process
can know the set of its neighbors at any time in the past,
present and up to some bounded time interval in the future.
We presented an algorithm that implements this service using a
virtual mobile node. Our algorithm is shown to implement cor-
rectly the neighbor detector service under certain conditions.

To the best of our knowledge, this is the first work that
introduces a neighbor detector service that can detect future
neighbors of a node in MANETs. It is also the first paper that
uses an approach based on virtual nodes for neighbor detection.

Yet, some issues remain open, which we might consider
as future work. For instance, in this work we assumed the
strong accuracy property for the mobility predictor service.
However, in practice such predictions are approximative. Thus,
it is interesting to devise an algorithm that can guarantee
a certain percentage of correct neighbor detection based on
the approximative location predictions. Moreover, one of the
conditions for correctness of our algorithm is the correctness of
the VMN which is guaranteed if the circular region of radius
r

mp

around the location of the VMN remains populated all
the time. In fact, as also claimed in [11], in the real world this
density assumption is reasonable in many cases. For instance,
there exist regions (specially in urban areas) that are almost
always populated—such as main squares in a downtown area.
However, to guarantee the neighbor detection even in less
populated regions, we can think of using another type of
virtual nodes called autonomous virtual mobile nodes [12].
This type of virtual nodes can move autonomously, choosing
to change their path based on their own state and inputs from
the environment. For instance, if the area in their paths appears
deserted, they can change their path to the more populated
areas.

Finally, as also claimed in [10], implementing a VMN is
expensive. Therefore, it would be interesting to experiment
our neighbor detection algorithm with a real implementation
to know if the utility outweighs the implementation overhead
and possibly to come up with optimizations.

ACKNOWLEDGMENT

This research is partially funded by the Swiss National
Science Foundation in the context of Project 200021-140762.

REFERENCES

[1] Apple’s iGroups. http://www.patentlyapple.com/patently-apple/2010/03/
igroups-apples-new-iphone-social-app-in-development.html.

[2] F. Bai and A. Helmy, A survey of mobility modeling and analysis in
wireless ad hoc networks, Book Chapter In Wireless ad hoc and sensor
networks, Springer, 2006.

[3] M. Bakht, M. Trower, and R. Kravets. Searchlight: helping mobile
devices find their neighbors. In ACM SIGOPS Oper. Syst., vol. 45, no.
3, pp. 71–76, 2012.

[4] Best iPhone bluetooth games. http://iphone.mob.org/genre/multipleer/
[5] B. Bostanipour, B. Garbinato and A. Holzer, Spotcast – A communication

abstraction for proximity-based mobile applications, In Proc. IEEE
NCA’12, pp. 121–129, 2012.

[6] B. Bostanipour and B. Garbinato, Improving neighbor detection for
proximity-based mobile applications, In Proc. IEEE NCA’13, pp. 177–
182, 2013.

[7] I. Chatzigiannakis, S. E. Nikoletseas and P. G. Spirakis: An Effi-
cient Communication Strategy for Ad-hoc Mobile Networks. In Proc.
DISC’01: pp. 285-299, 2001.

[8] A. Cornejo, S. Viqar, J. L. Welch, Reliable neighbor discovery for mobile
ad hoc networks. In Proc. DIALM-PODC’10, pp. 63-72, 2010.

[9] A. Cornejo, S. Viqar and J. L. Welch, Reliable neighbor discovery for
mobile ad hoc networks. In Ad Hoc Networks. 12 (January 2014), pp.
259–277, 2014.

[10] S. Dolev, S. Gilbert, N. A. Lynch, E. Schiller, A. A. Shvartsman, J. L.
Welch: Virtual Mobile Nodes for Mobile Ad Hoc Networks. In Proc.
DISC’04, pp. 230–244, 2004.

[11] S. Dolev, S. Gilbert, N. A. Lynch, E. Schiller, A. A. Shvartsman, J. L.
Welch. Virtual mobile nodes for mobile ad hoc networks. Tech Report
LCS-TR-937, MIT, 2004.

[12] S. Dolev, S. Gilbert, E. Schiller, A. A. Shvartsman, J. L. Welch:
Autonomous virtual mobile nodes. In DIALM-POMC, pp. 62-69, 2005.

[13] P. Dutta, D. Culler, Practical asynchronous neighbor discovery and
rendezvous for mobile sensing applications. In Proc. SenSys’08, 2008.

[14] K. P. Hatzis, G. P. Pentaris, P. G. Spirakis, V. T. Tampakas and R. B.
Tan. Fundamental control algorithms in mobile networks. In Proc. ACM
SPAA’99, 1999.

[15] D. He, N. Mitton, and D. Simplot-Ryl, An energy efficient adap-
tive HELLO algorithm for mobile ad hoc networks, In Proc. ACM
MSWiM’13, pp. 65–72, 2013.

[16] F. Ingelrest, N. Mitton, and D. Simplot-Ryl, A turnover based adaptive
hello protocol for mobile ad hoc and sensor networks, In Proc. MAS-
COTS’07, pp. 9–14, 2007.

[17] A. Kandhalu, K. Lakshmanan, and R. R. Rajkumar, U-connect: a low-
latency energy-efficient asynchronous neighbor discovery protocol, In
IPSN’10, pp. 350–361, 2010.

[18] Q. Li and D. Rus. Sending messages to mobile users in disconnected
ad-hoc wireless networks. In Proc. MobiCom, 2000.

[19] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[20] LocoPing. http://www.locoping.com/
[21] LoKast. http://www.lokast.com/
[22] M. J. McGlynn and S. A. Borbash. Birthday protocols for low energy

deployment and flexible neighbor discovery in ad hoc wireless networks.
In Proc. ACM MobiHoc’01, pp. 137–145, 2001.

[23] J. Moy, OSPF – Open Shortest Path First, RFC 1583, 1994.
[24] G. Wattenhofer, G. Alonso, E. Kranakis, and P. Widmayer. Random-

ized protocols for node discovery in ad hoc, single broadcast channel
networks. In Proc. IPDPS’03, 2003.

[25] Waze. https://www.waze.com/en/
[26] WhosHere. http://whoshere.net/

http://www.patentlyapple.com/patently-apple/2010/03/igroups-apples-new-iphone-social-app-in-development.html
http://www.patentlyapple.com/patently-apple/2010/03/igroups-apples-new-iphone-social-app-in-development.html
http://iphone.mob.org/genre/multipleer/
http://www.locoping.com/
http://www.lokast.com/
https://www.waze.com/en/
http://whoshere.net/

	Introduction
	System Model and Definitions
	Definitions
	Timely Scoped Broadcast Service
	Global Positioning Service
	Mobility Predictor Service

	The Neighbor Detector Abstraction
	Neighbor Detector Variants
	Perfect Neighbor Detector
	Time-limited Neighbor Detector

	Implementing The Time-Limited Neighbor Detector
	Virtual Mobile Node (VMN)
	Adding a VMN to the System Model
	A Time-limited Neighbor Detector Algorithm
	Proof of Correctness

	Related Work
	Conclusion
	References

