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ABSTRACT
Mobility trajectory datasets are fundamental for system evaluation
and experimental reproducibility. Privacy concerns today, how-
ever, have restricted sharing of such datasets. This has led to the
development of synthetic trac generators, which simulate mov-
ing entities to create pseudo-realistic trajectory datasets. Existing
work on trac generation, supercially matches a-priori modeled
mobility characteristics, which lacks realism and does not capture
the substantive properties of human mobility. Critical applications
however, require data that contains these complex, candid and hid-
den mobility patterns. To this end, we investigate the eectiveness
of Recurrent Neural Networks (RNN) to learn these hidden patterns
contained in an original dataset to produce a realistic synthetic
dataset. We observe that, the ability of RNNs to learn and model
problems over sequential data having long-term temporal depen-
dencies is ideal for capturing the inherent properties of location
traces. Additionally, the lack of intuitive high-level spatiotemporal
structure and instability, guarantees trajectories that are dierent
from the ones seen in the training dataset. Our preliminary eval-
uation results show that, our model eectively captures the sleep
cycles and stay-points commonly observed in the considered train-
ing dataset, along with preserving the statistical characteristics and
probability distributions of the movement transitions. Although,
many questions remain to be answered, we show that generating
synthetic trac by learning the innate structure of human mobility
through RNNs is a promising approach.
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1 INTRODUCTION
The pervasiveness of mobile devices equipped with internet connec-
tivity and global-positioning (GPS) functionality has resulted in the
collection of large volumes of mobility trajectory data of individuals.
This data is used for a variety of applications such as designing and
evaluating systems aimed at mobility prediction, urban planning,
consumer proling and trac management. However, sharing such
datasets with untrusted third parties have several privacy implica-
tions. Simple heuristics can be applied on such datasets to derive
personally identiable information (PII) of users for blackmailing
or stalking purposes [11]. Furthermore, data breaches, unlawful
data exchanges and security vulnerabilities has restricted sharing
of such datasets for development and research purposes.

This has led to the usage of synthetic trac generators that sim-
ulate or mimic the behavior of moving entities. However, existing
trac generators rely on deterministic models having predeter-
mined movement distribution, which fails to capture the behavioral
realism. The Brinko data generator [2] uses the road network and
a perturbation model to generate mobility traces. The BerlinMod
Trac Generator [3] relies on the Berlin road network and the
Secondo DBMS 1 to generate data. MNTG trac generator [14]
provides a web-based road network trajectory generator, which
is based on Brinkho and BerlinMod movement models. A recent
trajectory generator, called Hermoupolis [16], uses existing trajec-
tory datasets to generate a larger synthetic dataset. The underlying
idea of this model is to extract semantic data from the raw data
which is then used to construct a realistic user behavioral model. To
generate synthetic data, such generators pick new sets of semantics
and use the extracted mobility behaviors to generate trajectories.
Such approaches result in purely discriminative behavioral models,
i.e., the conditional probability distribution of a data point is learnt
according to another point. Although, such models are suitable
for generating datasets that address use cases such as trajectory
indexing, they lack realism specially in capturing human behav-
ior, which expands beyond modeling the semantics, trip-based and
trajectory-based movements. For example, a user can showcase
complex routes to travel from point A to B, vary the wake up-sleep
and weekend cycle or change behavior to visit some places de-
pending on certain external factors. These changes are critical for
applications such as consumer proling and behavioral analysis.

To this end, we present a synthetic trac generator that uses
machine learning, i.e., recurrent neural networks (RNN) for ex-
tracting the substantive behavioral patterns of users from actual
datasets. We then use this trained model to create new and larger
datasets, characterized by features that resemble the true proper-
ties of users from an actual dataset. Our approach combines the
discriminative model with the generative model to learn the joint

1Secondo DBMS: http://dna.fernuni-hagen.de/secondo/
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Figure 1: A recurrent neural network architecture. Hidden layer is
connected to the context units which feeds back into the hidden
layer at the subsequent time step.

probability distribution of a dataset. Training in this manner, re-
stricts the output trajectories to the bounds derived from the dataset,
however, the generative model results in producing new trajectory
sets. In addition to generating synthetic trac, the trained model
can be used to capture the generalized mobility patterns in a given
area, which may include the frequently visited places, commonly
followed trajectories and transportation modes utilized.

The rest of this paper is organized as follows. Section 2 presents
the necessary background knowledge about RNNs to illustrate our
system design. The related literature and the associated shortcom-
ings are discussed in Section 3. We present our system model in
Section 4. The evaluation results are presented in Section 5. Finally,
the conclusion and future work is presented in Section 6.

2 RECURRENT NEURAL NETWORKS
A typical feed forward neural network has connections from layer
n to layer n + 1. A key determinant, dierentiating RNN is the
connection from layer n to layer n in addition to the regular con-
nections as shown in Figure 1. Such loops enable the network to
compute on data from previous cycles, creating a network memory.
This inuences the network predictions to be inuenced by the
past values making it ideal to learn a sequence. The length of the
network memory is not indenite and gradually degrades with
older information being less relevant. A drawback of RNN is that it
suers from the vanishing gradient problem, which also hinders
remembering the past inputs. In order to address this, long short
term memory (LSTM) is used which also bridges the long time lags
between the inputs. This capability is used to learn sequential data
using the recurrent connections between their neural activations
at consecutive time steps. For a given input xt at a time step t
the network creates a hidden state ht , such that it is a non-linear
function of the previous hidden state ht−1.

RNNs read through a sequence iteratively, preserving the struc-
ture in the model. It goes through each element of the sequence
and updates its representation based on that item and the input
from the previous state. At each time-step n, the number of hidden
unit dimensional vector represents the input sequence. The con-
nections between the hidden units and their respective projections
are preserved making learning tractable. Gating units are often
utilized in a RNN model, to transform the information ow in a
more structured manner. They also control the proportion of the
past information which should go forward and models the net-
work to adaptively forget information. The model’s remembrance

is controlled by averaging the previous hidden state output with
the current output. A crucial factor determining RNN suitability is
the dataset size, as RNNs have poor generalization properties on
small dataset volumes [12].

The eectiveness of RNN to learn the patterns on sequential
data has been successfully applied for text generation [15], image
captioning [13] and action recognition [17]. Sutskever et al. [18]
showed that, when provided with a limited set of vocabulary, RNN
outperforms a machine translation system with an unlimited vo-
cabulary on a large scale machine translation task. Our motivation
to employ LSTM-based RNN to generate mobility trajectories with-
out making any assumptions regarding the problem structure is
based on the successful application of RNN for sequence learning
problems.

3 RELATEDWORK
A majority of the existing techniques to generate synthetic traces
are based on trajectory modeling. Jian et al. [8] characterizes mo-
bility as goal oriented in terms of Levy ight behavior attributed
to the underlying street network. Here, trajectory is modeled in
terms of several ights between the underlying street network,
with purposive destination locations. The eect of space on the
movement patterns is taken into account by modeling the length
and the frequency of a ight according to the power-law distri-
bution. Ghosh et al. [4] model trajectories by nding correlation
between user-place, place-place and user-user from the GPS traces.
These correlations are then used to form a temporal node-based
graph structure for user’s trajectory. Kim et al. [9] model mobility,
characterized by the speed and pause time of the movements, which
follow a log-normal distribution. Using the above techniques, the
problem of modeling human mobility becomes quite challenging
for unpredictable behaviors.

Another category of techniques rely on well established mobility
models of moving objects. Random walk is one of such approaches
in which the path of a mathematical object is modeled as a succes-
sion of random steps on an arbitrary mathematical space. In the
case of random waypoint and random direction model, the move-
ment of mobile users is characterized according to the changes in
their location/direction depending on random changes in veloc-
ity and acceleration over time. In the truncated Levy walk model,
mobility is modeled to follow truncated power-law and further
constrained to geographical features such as walk boundary, ob-
structions and trac. In the above techniques, the mobile entities
can stop suddenly or turn very sharply, failing to capture the true
movement patterns of mobile objects. To eliminate such behaviors,
Jean-Daniel et al. propose Gauss-Markov (GM) mobility model [1] ,
to limit the sudden stops and turns within specic regions. In the
reference point group mobility model (RPMG) [7], the relationships
between dierent mobile objects is considered to generate synthetic
traces as a group of entities. In the above models, the speed and
the direction of movement at a new timestamp has no relation to
the past locations, furthermore the mobility models are based on
stochastic processes and do not truly reect the realistic mobility
characteristics. Furthermore, these approaches result in creation of
mobile objects at the same locations in a periodic manner due to
the use of bounding parameters.
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Figure 2: Model training and trajectory generation. The coordinates are mapped on to a grid which are than one hot encoded. Feature explo-
ration is performed on the discretized movements. The extracted features and the vectors are then used for training. The formulated model
is instantiated with a sequence of grids to initiate the trajectory generation phase.

4 SYSTEM MODEL
Problem Statement: Given a dataset of trajectories belonging to
actual moving subjects, tr = 〈u1,u2...un〉, such that ui = 〈..., si ...〉
is a trajectory of a user ui and each point si is a three item tuple,
(lati , loni , ti ), where lat and lon are the latitude and longitude co-
ordinates and t is the timestamp, our goal is to extract and learn
the user mobility behaviors, in a way that facilitates generation
of synthetic but realistic mobility trac data of a ctional subject
fi = 〈..., f si ...〉 such that f si is also a three item tuple containing
the latitude, longitude and timestamp generated by the trained
model.

SystemDesign:We base our system design on Long Short-term
Memory(LSTM) recurrent neural networks(RNN), by conguring
the network model to learn convoluted sequences and extend it
to formulate predictions in the spatiotemporal domain [5]. The
network with an attention mechanism is trained using actual user
trajectories to make it deterministic and follow road networks or
other valid paths taken by the legitimate users. Training the model
by shuing the user trajectories, incorporates stochasticity and
fuzziness in the model [6], impacting its probabilistic output distri-
bution, which leads to generation of novel trajectory sets. Finally,
the complete trajectory sequences can be generated by iteratively
feeding the current output trajectory sequence as input to the next
step to the trained model, starting at some arbitrary location.

Implementation: Our implementation is based on the Tensor-
Flow library2 and is depicted in Figure 2. In order to construct the
model, we rst discretize the space by mapping the coordinates to
grids by using the Google S2 library3 for dimensionality reduction.
We congure the S2 library to map each coordinate pair to a cell
of dimension 38m2. This choice is motivated by the localization
accuracy of a typical GPS sensor and the performance complexity
involved when subdividing the cells to the leaf level. The cell ID’s
and the timestamp’s are one hot encoded and the resulting vectors
are fed as inputs to the network. The network is updated at every
instant which enables the next movements to be dependent on the
recently seen inputs. In order to bound the outputs, we extract fea-
tures from the input trajectories which ensures that the movement
properties are preserved in the synthetically generated traces. Some

2TensorFlow: www.tensorow.org
3Google S2: pypi.python.org/pypi/s2sphere/

of the features include the amplitude of movement which captures
the dierence between the minimum and maximum magnitude
of the movements, the autocorrelation length which captures the
periodicity, mean variance etc. In order to compute the features, we
use the Cesium library4, which is used to featurize time-series data.

Challenges: We observe that, batch training such a network,
with a dataset of around 191 users for roughly 10,000 epochs is
sucient to capture the basic pattern of mobility behavior including
the sleep and wake up cycles and the visitation patterns amongst
commonly visited places in the area under consideration. However,
we observe that, the model does not preserve the ordering of the
commonly visited places and the associated transitions between
them.We argue that, it can be addressed by selecting the appropriate
features which preserve the structure of the trajectories. Training
the model with ne-grained features can eliminate such problems.
Along with the above issue, the training process presents some
interesting challenges, mainly in selecting the size of the network,
amount of memory, dealing with the instability while generating
trajectories, amount of noise to be injected to increase the models
robustness and bounding the outputs by the properties of the real
users. We will address such aspects in our future work.

5 EVALUATION
The model training and evaluation results are based on the Nokia
Mobile Dataset [10]. It consists of mobility traces of 191 users col-
lected in Switzerland over a period of two years. We rst examine
the matching of the generated traces to the road network with
respect to the number of trajectories and training epochs. As seen
in Figure 3, after 60,000 epochs the model learns the paths typically
adopted by the moving objects and starts replicating it. We also
observe that, the model learns the common points where the objects
stop and the stoppage durations while moving.

Next, we evaluate the prediction accuracy of the network. In
order to compute it, we rst extract the most frequent transitions
between the hotspots in the dataset. We observe that, as the number
of users considered in the training phase increases, the models
next place prediction accuracy increases. However, on the contrary,
the prediction accuracy of the next trajectory decreases. This is
crucial to validate the generalization property of the model over

4Cesium: cesium-ml.org
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Figure 3: Road network matching accuracy with respect to the the
number of users and the number of training epochs.

the training dataset. Our future work will adopt metrics such as
negative log-likelihood to quantify such accuracies.

Further, to validate the similarity of the trajectories to the actual
user behaviors, we compute the same features used to train the
model on the generated traces. We observe that, the model is able to
learn the sleep and wake up cycles, movement periodicity and the
variance in the movement distance magnitudes. We also calculate
the season trend decomposition of a generated trace as shown in
Figure 4. Although, the model preserves the weekday and weekend
patterns, we observe some gaps in trajectories and some incoherent
movement transitions. We argue that such abnormalities can be
addressed by using a Bi-directional RNN and echo state network
(ESN). The applicability of such mechanisms and validating the
generated trajectories with additional mobility quantiers such as
movement entropy, number of visited places, visitation frequency,
evolution in the visited places with time, etc. will be addressed in
our future work. We will also validate the generated data points by
performing nonlinear logistic regression to discriminate between
the actual and synthetic data [6].

6 CONCLUSION
In this paper, we have highlighted the necessity of devising genera-
tive models for trac data generation that outreach the limitations
of the existing discriminative models. Our proposed approach uses
a long short-term memory based recurrent neural network for gen-
erating new data on the basis of an existing dataset. The generated
data is suitable for uses cases such as mobility prediction and be-
havioral analysis. Our future work will focus on evaluating the
statistical validity of the generated data and on the challenge of
transposing the learnt behavioral model to new areas by applying
transfer learning. Although the preliminary results are promising,
many questions remain to be answered such as; (1) relationship
between the network model and dataset realism, dataset magnitude
and realism (2) mapping the knowledge from a known region to
another unknown (target) region and use this knowledge to catego-
rize the users in the target region (3) privacy measures to prevent
backtracking of original mobility traces or reproducing the mobility
pattern of any individual (4) quantifying the realism in generated
traces. In order to add stochasticity in the training data, a part of our
future work is to collect data from sources which do not have pre-
dictable/repetitive behavior. Our target subjects include students on
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Figure 4: Seasonal trend decomposition of the synthetic trajectory.

an exchange program and short-term tourists. We believe that such
measures can address the problem of generating datasets having
homogenous distribution.
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