
Benoît Garbinato

Multitiered Architecture
Application Logic

Multitiered Architecture | Application Logic © Benoît Garbinato

Learning objectives

Learn about separation of concerns

Learn about Enterprise Java Beans

Learn about dependency injection

Learn about resource pooling & transactions

Multitiered Architecture | Application Logic © Benoît Garbinato

Facts
Distributed enterprise applications have critical
requirements, such as availability, reliability, security,
scalability, etc.

These requirements are orthogonal to the business domain,
i.e., they can be found in almost any application

To address these needs, software architects have usually to
rely on an existing hardware & software infrastructure

A flexible software architecture aims at achieving reuse of
both application code and technical code

Multitiered Architecture | Application Logic © Benoît Garbinato

Problems (1)

Heterogeneity: existing infrastructures are
usually heterogeneous (different
technologies, standards & products)

➥ To solve this problem, we need a portable 
 platform that encapsulates existing 
 technologies, standards and products, 
 e.g., Java & its Enterprise APIs (Java EE)

Multitiered Architecture | Application Logic © Benoît Garbinato

Problems (2)
Skills Needs: software architects must be
experts in all these technical domains, in
addition to the business domain
underlying the application they build

Software engineering: achieving code reuse
both at the technical and the business level
is difficult when all concerns (business &
technical) are tightly interwoven

Multitiered Architecture | Application Logic © Benoît Garbinato

Solutions: overview

Skills Needs: we should define distinct
roles in developing, assembling, deploying
and managing enterprise applications

Software engineering: we should be able to
separate the various concerns (business &
technical) in distinct reusable components

Multitiered Architecture | Application Logic © Benoît Garbinato

void transfer(float money,  
Account source,  
Account destination,  
User user) {

check whether this user is allowed to perform the transfer security
 begin transaction consistency
 load source & destination accounts from database(s) persistence

 withdraw money from source
credit money to destination

store source & destination accounts to database(s) persistence
 end transaction consistency
}

Software engineering

business

Multitiered Architecture | Application Logic © Benoît Garbinato

Let me try to explain to you, what to my taste is characteristic for all intelligent thinking.
It is, that one is willing to study in depth an aspect of one’s subject matter in isolation for

the sake of its own consistency, […] occupying oneself only with one of the aspects.

We know that a program must be correct and we can study it from that viewpoint only;
we also know that is should be efficient and we can study its efficiency on another day

[…] But nothing is gained – on the contrary – by tackling these various aspects
simultaneously. It is what I sometimes have called “the separation of concerns” […]

A scientific discipline separates a fraction of human knowledge from the rest: we have to
do so, because, compared with what could be known, we have very, very small heads.

E.W. Dijkstra, On the role of scientific thought 
EWD 477, 30th August 1974, Neuen, The Netherlands

Let me try to explain to you, what to my taste is characteristic for all intelligent thinking.
It is, that one is willing to study in depth an aspect of one’s subject matter in isolation for

the sake of its own consistency, […] occupying oneself only with one of the aspects.

We know that a program must be correct and we can study it from that viewpoint only;
we also know that is should be efficient and we can study its efficiency on another day

[…] But nothing is gained – on the contrary – by tackling these various aspects
simultaneously. It is what I sometimes have called “the separation of concerns” […]

A scientific discipline separates a fraction of human knowledge from the rest: we have to
do so, because, compared with what could be known, we have very, very small heads.

E.W. Dijkstra, On the role of scientific thought 
EWD 477, 30th August 1974, Neuen, The Netherlands

Separation of concerns (1)

Multitiered Architecture | Application Logic © Benoît Garbinato

void transfer(float money, Account source, Account destination) {

withdraw money from source
credit money to destination

}

Separation of concerns (2)

begin transaction

check security

load data

end transaction

store data

technical concerns
should be separated

from business
concerns

Multitiered Architecture | Application Logic © Benoît Garbinato

Basic mechanism
All solutions to support separation of concerns are based on the
same basic mechanism: automatic invocation interception

client BankInterceptor

transfer(...)

Technical code

doBefore(...)

transfer(...)

doAfter(...)

!begin transaction

!check security

load data

end transaction

store data

business

code here

Multitiered Architecture | Application Logic © Benoît Garbinato

Separation of concerns: variants
When does interception occur ?

At compile-time
At run-time

How are technical concerns dealt with?
By coding/assembling technical objects
Declaratively, e.g., using deployment
descriptors or annotations (metadata)

Multitiered Architecture | Application Logic © Benoît Garbinato

Examples
AspectJ - Aspect-oriented programming 
➥ When? At compile-time. 
➥ How? By coding/assembling.

GARF - Génération d’Applications Résistantes aux Fautes 
➥ When? At run-time. 
➥ How? By coding/assembling.

EJB - Enterprise JavaBean 
➥ When? At compile-time. 
➥ How? Declaratively.

Multitiered Architecture | Application Logic © Benoît Garbinato

AspectJ
public class Bank {  

...
void transfer(float money, Account src, Account dest, User user) { ... }

}

aspect techCode
{ pointcut callTransfer() : call(void Bank.transfer(float, Account, Account, User));

before() : callTransfer() {
 check security
 begin transaction
 load data

}

 after() returning : callTransfer() {
store data

 end transaction
}

}

We add the technical code as follows :

Assume we have some Bank class :

Multitiered Architecture | Application Logic © Benoît Garbinato

The GARF system (1)

server

encapsulator encapsulator

client

client and server ⇔ component

encapsulator ⇔ container

Multitiered Architecture | Application Logic © Benoît Garbinato

The GARF system (2)

�

�
�

� �

×
doesNotUnderstand

client server

encapsulator
(of the client)

encapsulator
(of the server)

interceptor

proxy
(of the server)

aMethod

aMethod
ou
tR
eq
ue
st

serverProxyclientEncaps

aMethod

Multitiered Architecture | Application Logic © Benoît Garbinato

doesNotUnderstand: aMethod
|client clientEncaps|

client ← currentStackFrame getCaller.
clientEncaps ← client getEncapsulator.

↑clientEncaps outRequest: aMethod 
to: serverProxy.

public void doesNotUnderstand(Method aMethod) {
 Object client; Encapsulator clientEncaps;

 client = currentStackFrame.getCaller();
 clientEncaps = client.getEncapsulator();

 return clientEncaps.outRequest(aMethod, 
 serverProxy);
}

The GARF system (3)

Important: we must also make sure doesNotUnderstand is 
 called for all methods, including inherited ones 

The Interceptor class holds a reference to the serverProxy and
redefines method doesNotUnderstand
as follows:

Multitiered Architecture | Application Logic © Benoît Garbinato

The GARF system (3)

B. Garbinato, R. Guerraoui, and K. Mazouni. 1993.
Distributed Programming in GARF. In Proceedings of the
Workshop on Object-Based Distributed Programming
(ECOOP '93). Springer-Verlag, London, UK, 225-239.

B. Garbinato, R. Guerraoui, and K.R. Mazouni.
Implementation of the GARF Replicated Object Platform.
Distributed Systems Engineering Journal, 2:14–27, 1995.

Multitiered Architecture | Application Logic © Benoît Garbinato

The EJB model (1)
The Enterprise JavaBeans model relies on two
key notions:

Component: server-side software unit encapsulating
business logic and deployed into a container; this is the
actual Enterprise JavaBean (EJB).

Container: hosting environment interfacing the EJB
with its clients and with the low-level platform services,
and ultimately managing all technical aspects for the
EJB; it is also known as the EJB Container.

Multitiered Architecture | Application Logic © Benoît Garbinato

The EJB model (2)

client tier web tier business tier

Persistent
Storage

J2ME

Midlet Container

Java SE Java SE

Java SE

Java SE

Java ME

business logic

Multitiered Architecture | Application Logic © Benoît Garbinato

EJB 2 versus EJB 3
The EJB specification has been drastically revised
from version 2 to version 3

The execution model is basically the same

The programming model however has been 
deeply revisited

In version 2, the programming model is more explicit 
but also more complex, as it relies on multiple files

In version 3, the programming model is simpler but
somehow more opaque, as it heavily relies on annotations
and dependency injection

Multitiered Architecture | Application Logic © Benoît Garbinato

Annotations
An annotation is a portion of text that expresses
information about the code directly in the code

An annotation does not directly modify the
semantics of your code but the way it is treated  
by tools and library from

Java always had ad hoc annotation, e.g., Java
comments, the transient keyword, etc.

Since Java SE 5, Java supports general and
extensible annotations mechanism (@...)

In Java EE 5, annotations are used as a lighter
alternative to deployment descriptors

@Stateless
@Stateful
@LocalBean
@Remote
@Resource
@EJB
@Remove
@PostConstruct
@PreDestroy
@PrePassivate
@PostActivate
...

Multitiered Architecture | Application Logic © Benoît Garbinato

Dependency injection
Dependency injection is an alternative to having
an object set its dependencies to other objects itself

With dependency injection, an object’s field can be
set by an external actor, in our case the container

Dependency injection is expressed by the
programmer via annotations

Dependency injection allows us to decouple various
components at the code level

Multitiered Architecture | Application Logic © Benoît Garbinato

Types of EJBs (1)

There exists three types of Enterprise JavaBeans

Session: performs actions for the client, manages a  
conversation with it

Entity: represents a persistent business object, usually
accessed within a transaction

Message-driven: acts as a JMS MessageListener and 
processes messages asynchronously

EJB 2.1

Multitiered Architecture | Application Logic © Benoît Garbinato

Types of EJBs (2)
A session bean can be either :

stateless: it belongs to a client only during a method call
stateful: it belongs to a client for the whole conversation
this client holds with the application

An entity bean can have its persistence either:
bean-managed: the developer writes SQL code to retrieve,
store and update persistent information (in the database)
container-managed: the developer provides a relational
mapping, which is used by the container to automatically
manages the persistence of the entity bean

EJB 2.1

Multitiered Architecture | Application Logic © Benoît Garbinato

Managing skills needs
The Bean Provider develops enterprise beans and produces an ejb-
jar containing one or more EJBs (hereafter bean ��EJB).

The Application Assembler combines several EJBs into larger
deployable units, still as ejb-jars.

The Deployer takes one ore more ejb-jars and deploys them in a
specific operational environment (application server/container).

The Container Provider provides tools for deploying EJBs and
runtime support for the deployed EJBs, in the form of a container.

The Server Provider provides the low-level system services on which
the container relies, e.g., transactions, persistence, etc.

The System Administrator manages the computing &
networking infrastructure, including the container & server.

Multitiered Architecture | Application Logic © Benoît Garbinato

Container responsibilities
The container intercepts client calls to manage
the EJB lifecycle and its technical needs

Distributed transactions, 
distributed objects, resource access

JVM

Application logic
coded by bean provider

Transaction control, threading, security,
persistence, pooling, memory management

Management services supplied
by container provider

Middleware services
supplied by server provider

BankBean

Multitiered Architecture | Application Logic © Benoît Garbinato

Container as interceptor

Client EJB instanceBankBean
�

Bank
�

transfer

Multitiered Architecture | Application Logic © Benoît Garbinato

Bean provider tasks

creates the
bean class,
coding
business
methods

creates the remote interface

BankBeanBank

Multitiered Architecture | Application Logic © Benoît Garbinato

Container provider tasks
provide an EJB-compliant container

BankBeanBank

implements the remote interface,
i.e., provides the interceptor object

Multitiered Architecture | Application Logic © Benoît Garbinato

@Remote
public interface BankRemote {
 public void transfer(Account source, Account destination,double amount)
 throws BankingException;
 void initialize();
}

@Stateless
public class BankBean implements BankRemote {
 @Resource
 SessionContext ctx;

 public void transfer(Account source, Account destination,double amount)
 throws BankingException { ... }

 public void initialize() { ... }
}

A typical session bean

d
ep

en
d

en
cy

 i
n

je
ct

io
n

Multitiered Architecture | Application Logic © Benoît Garbinato

Local beans
A bean can also provide a local interface, marked by the
@Local annotation, in order to expose methods to
components deployed in the same address space, e.g.,
another bean or a servlet (deployed together with the bean)

While it is possible for a bean to provide both a local
interface and a remote interface, this is usually
considered bad practice

A bean marked by the @LocalBean annotation can only be

invoked locally and you do not need to provide a separate
Java interface for that bean

Multitiered Architecture | Application Logic © Benoît Garbinato

Singleton beans
In software engineering, the singleton pattern is used to
implement the mathematical concept of a singleton, by
restricting the instantiation of a given type of object to 
one and one instance only

To make a given type of bean a singleton, simply mark
the corresponding class with the @Singleton annotation

As a consequence, the container ensures that any
reference to a bean of that class point to the same instance

A singleton bean is stateful by definition

Multitiered Architecture | Application Logic © Benoît Garbinato

Client developer tasks

The Bank remote interface

Bank

�

�
�

The client

myBank.initialize();  
myBank.transfer(...);

@EJB
private static BankRemote myBank;

dependency injection

Multitiered Architecture | Application Logic © Benoît Garbinato

Creating session beans
Stateless bean: no need for an initialization method

Stateful bean: one or more initialization methods (business method)

Client

�

Bank �

fetch bean

BankBean
�

�initialize

@EJB
private static  
BankRemote myBank;

�

Multitiered Architecture | Application Logic © Benoît Garbinato

Creating session beans
Stateless bean: no need for an initialization method

Stateful bean: one or more initialization methods (business method)

 ...
 Context c = new InitialContext();
 BankRemote theBank = (BankRemote) c.lookup("java:global/ubs-app/Bank");
 theBank.initialize();
 ...

@Stateful(mappedName = "java:global/ubs-app/Bank")
public class BankBean implements BankRemote {
...
}

assuming we have:

Multitiered Architecture | Application Logic © Benoît Garbinato

Session context
The SessionContext object provides 
access to container services, e.g., to:

the interceptor object

the transaction context

the security context BankBean
�

�
SessionContext

 @Resource
 SessionContext ctx;

Multitiered Architecture | Application Logic © Benoît Garbinato

Business methods
The BankBean object is not a remote object, but its interceptor
object (implementing the Bank interface) is,

so this object throws java.rmi.RemoteException

BankBeanBank
�

transfer
Client

transfer

�

Multitiered Architecture | Application Logic © Benoît Garbinato

Removing a session bean...
... is useful to perform some house cleaning before stopping to use that bean

... is useful to indicate to the container that we no longer need that bean

... is performed:
1. in the bean code by marking a method using the @Remove annotation

2. in the client code by calling that method on the bean

Client BankBean�
�deleteBank

�×delete

@Stateful
public class BankBean implements BankRemote {  
 ...
 @Remove
 public void delete() { ... }  
 ...
}

Multitiered Architecture | Application Logic © Benoît Garbinato

Resource pooling
Among the various resources managed 
by the container, we find connections 
(to databases, to moms, etc.), threads,
memory, etc., and the EJBs themselves

To ensure adequate performance &
scalability, the container uses various
pooling strategies to manage resources

Multitiered Architecture | Application Logic © Benoît Garbinato

Session bean pooling (1)

Pool of EJB
instances

BankBean

How does the container manage stateless session beans?
 ➥ It fetches any bean from the pool for any call

BankBean

BankBean

Client

Client

Client

Bank

Multitiered Architecture | Application Logic © Benoît Garbinato

Session bean pooling (2)

Pool of EJB
instances

How does the container manage stateful session beans?
 ➥ It dedicates a specific bean to each client session

BankBean

Client

Client

Client

BankBean
BankBean

Bank

Bank
Bank

BankBean

BankBean

Multitiered Architecture | Application Logic © Benoît Garbinato

Passivation/Activation (1)
A container can only host a limited number of session beans
in memory

When more stateful session beans are needed, the container
uses an passivation/activation strategy

‣ Passivation: write a bean to disk and remove it (swap out)

‣ Activation: read a bean from disk and recreate it (swap in)

‣ Usually follows a Least Recently Used (LRU) policy

The container can only manage part of the state of a
passivated/activated session bean, i.e., primitive types,
serializable objects, context objects, etc.

For state (fields) outside this category, the bean provider
must manage activation/passivation programmatically

Multitiered Architecture | Application Logic © Benoît Garbinato

Object interaction diagrams for a STATEFUL session beanEnterprise JavaBeans 2.1, Proposed Final Draft Session Bean Component

91 8/2/02

Sun Microsystems, Inc.

Figure 7 OID for Creation of a session object

7.7.3 Starting a transaction

The following diagram illustrates the protocol performed at the beginning of a transaction.

client instance transaction
service

EJB

ejbCreate(args)

session
context

EJB

Object

create(args)

container provided classes

new

synchro-
nization

new

setSessionContext()

new

Home

container
(Local) (Local)

Session Bean Component Contract Enterprise JavaBeans 2.1, Proposed Final Draft Object interaction diagrams for a STATE-

 8/2/02 94

Sun Microsystems, Inc.

Figure 10 OID for passivation and activation of a session object

7.7.6 Removing a session object

The following diagram illustrates the removal of a session object.

ejbActivate

ejbPassivate

read state

client instanceEJB session
context

containerEJB

Object

container provided classes

synchro-
nization

secondary store

write state

Activation:

Passivation:

Home
(Local) (Local)

secondary store
Object interaction diagrams for a STATEFUL session beanEnterprise JavaBeans 2.1, Proposed Final Draft Session Bean Component

91 8/2/02

Sun Microsystems, Inc.

Figure 7 OID for Creation of a session object

7.7.3 Starting a transaction

The following diagram illustrates the protocol performed at the beginning of a transaction.

client instance transaction
service

EJB

ejbCreate(args)

session
context

EJB

Object

create(args)

container provided classes

new

synchro-
nization

new

setSessionContext()

new

Home

container
(Local) (Local)

secondary store

Session Bean Component Contract Enterprise JavaBeans 2.1, Proposed Final Draft Object interaction diagrams for a STATE-

 8/2/02 94

Sun Microsystems, Inc.

Figure 10 OID for passivation and activation of a session object

7.7.6 Removing a session object

The following diagram illustrates the removal of a session object.

ejbActivate

ejbPassivate

read state

client instanceEJB session
context

containerEJB

Object

container provided classes

synchro-
nization

secondary store

write state

Activation:

Passivation:

Home
(Local) (Local)

Passivation/Activation (2)

@Stateful
public class BankBean implements BankRemote {
 ...
 @PrePassivate
 public void passivate() { ... }
 @PostActivate
 public void activate() { ... }
}

call passivate()

call activate()

container

Multitiered Architecture | Application Logic © Benoît Garbinato

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import javax.annotation.Resource;
import javax.ejb.PostActivate;
import javax.ejb.PrePassivate;
import javax.ejb.Remove;
import javax.ejb.SessionContext;
import javax.ejb.Stateless;

@Stateful
public class BankBean implements BankRemote {

 @Resource
 SessionContext ctx;

 public void initialize() { ... }

 @Remove
 public void delete() { ... }

 @PostConstruct
 public void construct() { ... }

 @PreDestroy
 public void destroy() { ... }

 @PrePassivate
 public void passivate() { ... }

 @PostActivate
 public void activate() { ... }
}

Session bean
contract

called by container 
(optional)

Multitiered Architecture | Application Logic © Benoît Garbinato

Lifecycle of a session bean
client creation BankBean

@EJB

new

setSessionContext

new

transfer

transfer

passivate

activate

new

delete

delete

× ×

interception lifecycle
container

Multitiered Architecture | Application Logic © Benoît Garbinato

Deployment descriptor (1)
A deployment descriptor is associated with one or more
EJBs, within the corresponding ejb-jar file

It expresses how the container should handle the technical
aspects with respect to these EJBs, e.g., security,
transactions, persistence, etc.

It is written in XML and its format is standardized by
the EJB specification

In EJB 3, the deployment descriptor is optional and
supersedes annotations

Multitiered Architecture | Application Logic © Benoît Garbinato

Deployment descriptor (2)
<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar version="2.1" ... >
 <display-name>BankApplication-EJBModule</display-name>
 <enterprise-beans>
 <session>
 <display-name>BankSB</display-name>
 <ejb-name>BankBean</ejb-name>
 <home>org.dop.BankRemoteHome</home>
 <remote>org.dop.BankRemote</remote>
 <ejb-class>org.dop.BankBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>BankBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Multitiered Architecture | Application Logic © Benoît Garbinato

Atomic transactions
A transaction T ensures the four ACID properties:

Atomicity. T appears either committed or aborted with 
 respect to failures
Consistency. T does not compromise the consistency of the
 data it manipulates
Isolation. T appears indivisible with respect to all other 
 transactions
Durability. T being committed, its effects will survive 
 subsequent crashes

Multitiered Architecture | Application Logic © Benoît Garbinato

Transactions with EJBs
The EJB transactional model supports
various scenarios

The EJB model offers two ways to express
transactional needs:

programmatically (⇔bean-managed)

declaratively (⇔container-managed)

Multitiered Architecture | Application Logic © Benoît Garbinato

Transactional scenarios
Client

Client

Client

Client

local transaction,
single container

global transaction,
single container

global transaction,
multiple containers

client-demarcated & global
transaction, multiple containers

Multitiered Architecture | Application Logic © Benoît Garbinato

@Resource(name=”jdbc/EmployeeAppDB”, type=javax.sql.DataSource)
@Stateless public class WarehouseBean implements SessionBean {

private DataSource ds;
 private Connection cn;

@Resource SessionContext ctx;
 public void ship(String productId, String orderId, int quantity) {
 try {

ds = (javax.sql.DataSource) ctx.lookup("jdbc/EmployeeAppDB");
 cn = ds.getConnection();
 cn.setAutoCommit(false);
 updateOrderItem(productId, orderId);
 updateInventory(productId, quantity);
 cn.commit();
 } catch (Exception ex) {
 try {
 cn.rollback();
 throw new EJBException("Transaction failed: " + ex.getMessage());
 } catch (SQLException sqx) {
 throw new EJBException("Rollback failed: " + sqx.getMessage());
 }
 } finally {
 cn.close();
 }

...
 }

Programmatic transactions

local transaction

Multitiered Architecture | Application Logic © Benoît Garbinato

@Stateless
@TransactionManagement(javax.ejb.TransactionManagementType.BEAN)
public class TellerBean implements TellerRemote {

...
 public void withdrawCash(double amount) {
 UserTransaction ut =

context.getUserTransaction();
 try {
 ut.begin();
 updateChecking(amount);
 machineBalance -= amount;
 insertMachine(machineBalance);
 ut.commit();
 } catch (Exception ex) {
 try {
 ut.rollback();
 } catch (SystemException syex) {
 throw new Exception("Rollback failed: " + syex.getMessage());
 }
 throw new Exception("Transaction failed: " + ex.getMessage());
 }
 }
}

Programmatic transactions

global transaction

Multitiered Architecture | Application Logic © Benoît Garbinato

Declarative transactions (1)

Attribute Meaning

NotSupported If a client’s transaction exists, it is suspended

Supports If a client’s transaction exists, it is continued

Required
 If a client’s transaction exists, it is continued;

otherwise, the container starts a new transaction

RequiresNew
 The container always starts a new transactions;  

if a client’s transaction exists, it is suspended first

Mandatory The client must be in a transaction when calling

Never The client must not be in a transaction when calling

A transactional attribute is associated with each method
via annotations or deployment descriptors

Multitiered Architecture | Application Logic © Benoît Garbinato

Declarative transactions (2)

...
 <container-transaction>
 <method>
 <ejb-name>AccountBean</ejb-name>
 <method-intf>Local</method-intf>
 <method-name>getBalance</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <container-transaction>

...

@Stateless
@TransactionManagement(javax.ejb.TransactionManagementType.CONTAINER)
public class AccountBean implements AccountLocal {
 ...

 @TransactionAttribute(javax.ejb.TransactionAttributeType.SUPPORTS)
 public double getBalance() { ... }
}

Multitiered Architecture | Application Logic © Benoît Garbinato

Declarative transactions (3)

Transaction 3

Transaction 2

Transaction 1
EJB_1.Method_A()

EJB_2.Method_X()

EJB_1.Method_B()

EJB_1.Method_C()

EJB_2.Method_Y()

EJB_2.Method_Z()

EJB_1.Method_D()

call stack

EJB_1.Method_D Mandatory

EJB_2.Method_Z Required

EJB_2.Method_Y Supports

EJB_1.Method_C NotSupported

EJB_1.Method_B RequiresNew

EJB_2.Method_X Supports

EJB_1.Method_A Required

transactional attributes

Multitiered Architecture | Application Logic © Benoît Garbinato

 public void transferToSaving(double amount) throws InsufficientBalanceException {
 checkingBalance -= amount;
 savingBalance += amount;

 if (checkingBalance < 0.00) {
 context.setRollbackOnly();
 throw new InsufficientBalanceException();
 }

 updateChecking(checkingBalance);
 updateSaving(savingBalance);

...
 }

Rolling back transactions
How can we tell the container to rollback a transaction,

because of some applicative problem occurred?

Multitiered Architecture | Application Logic © Benoît Garbinato

The transaction manager and all data managers
must at least run compatible protocols (JTS/OTS)

Distributed transactions

transaction manager

client

data managerB

data managerA

data managerC

en
d

invocations

be
gi
n

newTransaction

pr
ep
ar
e

votes co
mm
it

 o
r a
bo
rt

Two-Phase Commit (2PC)

resource

resource

resource

resource

global

Multitiered Architecture | Application Logic © Benoît Garbinato

Global transactions (APIs)

application server

resource
managerapplication transaction

manager

JDBC/JMSEJB

JTS

transaction
service

 (OTS 1.1)

javax.transaction.xa.

XAResourcejavax.transaction.

UserTransaction

javax.transaction.

TransactionManager

incoming transaction outgoing transaction

JTA

Multitiered Architecture | Application Logic © Benoît Garbinato

Context propagation
The various containers play a key role 
in propagating the context across tiers, 
typically security & transaction contexts

client

jsp

internet highly secure zone

dmz

intranet

Multitiered Architecture | Application Logic © Benoît Garbinato

Message-driven beans
A message-driven bean is a bean that can receive
asynchronous messages

It is invoked by the container upon arrival of a 
message at a given destination

It is decoupled from clients, stateless and single-threaded

@MessageDriven(mappedName = "jms/OrderQueue", activationConfig = {
 @ActivationConfigProperty(propertyName = "acknowledgeMode",
 propertyValue = "Auto-acknowledge"),
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Queue") })
public class OrderListenerBean implements MessageListener {
 public void onMessage(Message message) { ... }
 ...
}

