Multitiered Architecture
Application Logic

Benoit Garbinato
M ‘ HEC ‘ dop| a b‘ distributed object programming lab

Learning objectives

O Learn about sepa ration of concerns
O Learn about Enterprise Java Beans
O Learn about dq:evwlewag LM:jCOtLOV\,

O Learn about resource pooling § transactions

Multitiered Architecture | Application Logic © Benoit Garbinato d O p | 8
a

Facts

O Dustributed enterprise applications have critical
requirements, such as avaiLabiLL’cg, reLLab'LLLtg, seauri’cgj,
scaLabLLitg, ete.

These requirements are orthogonal to the business domatn,
L.e., they can be found in almost any application

To adodvress these needs, software architects have usuaLLg to
rely on awn existing hardware § software infrastructure

O A flexible software architecture aitms at achieving reuse of
both application code and technical code

Multitiered Architecture | Application Logic © Benoit Garbinato d O p
I b

Problems (1)

O Heterogeneity: existing infrastructures are
usually heterogeneous (different
technologies, standards § products)

= To solve this problem, we need a portable
platform that encapsulates existing
techwnologies, standards and products,
e.9..Java § its Enterprise APIs (Java EE)

Multitiered Architecture | Application Logic © Benoit Garbinato d O p I 8
a

Problems (2)

0 Skills Needs: software architects must be
experts L all these techwnieal domains, tin
addition to the bustness domain

underlying the application they build

0 Software engineering: achieving code reuse
both at the technical and the business Level
Ls difficult whew all concerns (business §
technical) are tightly tnterwoven

Multitiered Architecture | Application Logic © Benoit Garbinato d O p | 8
a

Solutions: overview

0 sSkills Needs: we should define distinet
roles tn developing, assembling, deploying

and managing ewtev‘Prlsc applicatiows

0 Software engineering: we should be able to
separate the vartous concerns (business §
technical) tn distinct reusable components

Multitiered Architecture | Application Logic © Benoit Garbinato d O p | 8
a

Software engineering

void transfer(float money,
Account source,
Account destination,
User user) {

check whether this user is allowed to perform the transfer S@Gulitg]
begin transaction ODVMSLStBVLOEj

load source & destination accounts from database(s) ‘P&YSLStCVbOG

withdraw money from source

credit money to destination

store source & destination accounts to database(s) ‘PCYSLStCVbGB

end transaction GDV\JSLStBV\Ica

Multitiered Architecture | Application Logic © Benoit Garbinato d O p
[ESFEGH o

Separation of concerns (1)

Let me try to explain to you, what to my taste is characteristic for all intelligent thinking.
It is, that one is willing to study in depth an aspect of one’s subject matter in isolation for
the sake of its own consistency, [...] occupying oneself only with one of the aspects.

We know that a program must be correct and we can study it from that viewpoint only;
we also know that is should be efficient and we can study its efficiency on another day
[...] But nothing is gained - on the contrary - by tackling these various aspects
simultaneously. It is what | sometimes have called “the separation of concerns” [...]

A scientific discipline separates a fraction of human knowledge from the rest: we have to
do so, because, compared with what could be known, we have very, very small heads.

E.W. Dijkstra, On the role of scientific thought
EWD 477, 30th August 1974, Neuen, The Netherlands

Multitiered Architecture | Application Logic © Benoit Garbinato d O p
I b

Separation of concerns (2)

void transfer(float money, Account source, Account destination) {

check security

begin transaction techwical concerns

load data should be separated
from business
store data COWCEYNS

withdraw money from source
credit money to destination

end transaction

Multitiered Architecture | Application Logic © Benoit Garbinato

Basic mechanism

O ALl solutions to support separation of concerns are based on the
same basic mechanism: automatic Ltnvocation interception

transfer(...

check security

begin transaction

load data

transfer(...) business

code here

<

store data

end transaction

Separation of concerns: variants |

O wWhew does 'Lwterceptiow oCCUY ?
O At compLLe—time
0 At run-time

O How are techwnical concerns dealt with?
O BY coding/assembling technical objects
0 DeoLath\/eLH, e.g., usitng deployment
descriptors or annotations (wmetadata)

Multitiered Architecture | Application Logic © Benoit Garbinato

Examples

O Aspect) - Aspect-oriented programming
= When? At compile-time.
= tHow? BY coding/assembling.

GARF - Génération d’Applications Résistantes aux Fautes
w wWhen? At run-time.
- How? BY coding/assembling.

O EJB - Enterprise Javarean
= When? At comptle-time.
- How? DeoLamtiveLg.

Multitiered Architecture | Application Logic © Benoit Garbinato

Aspect]

Assume we have some Bank class :

public class Bank {

void transfer(float money, Account src, Account dest,User user){ ... }

¥
we add the technical code as follows :

aspect techCode
{ pointcut callTransfer() : call(void Bank.transfer(float, Account, Account,

before() : callTransfer() {

check security
begin transaction
load data

}

after() returning : callTransfer() {

store data
end transaction

}

Multitiered Architecture | Application Logic © Benoit Garbinato

The GARF system (1)

client and server < component

encapsulator contaLner

Multitiered Architecture | Application Logic © Benoit Garbinato

ENCaps ulator
(of the client)

’
’
’
’
’

@ * aMethod

D

Proxy

(of the server)

N/

encapsulator
(of the server)

Multitiered Architecture | Application Logic © Benoit Garbinato

dop: : ;

The GARF system (3)

The Interceptor class holds a reference to the serverProxy and

red e-ﬁwes method doesNotUnderstand | public void doesNotUnderstand(Method aMethod) {
Object client; Encapsulator clientEncaps;
as follows:

client = currentStackFrame.getCaller();
clientEncaps = client.getEncapsulator();

doesNotUnderstand: aMethod return clientEncaps.outRequest(aMethod,
|client clientEncaps| } serverProxy),

client ¢« currentStackFrame getCaller.
clientEncaps ¢ client getEncapsulator.

TclientEncaps outRequest: aMethod
to: serverProxy.

lvaortawt: we must also make sure doesNotUnderstand Ls
called for all methods, tneluding tnherited ones

Multitiered Architecture | Application Logic © Benoit Garbinato d O p
[ESFEGH o

The GARF system (3)

B. Garbinato, R. Guerraoui, and K. Mazouni. 1993.
Distributed Programming in GARF. In Proceedings of the
Workshop on Object-Based Distributed Programming
(ECOOQOP '93). Springer-Verlag, London, UK, 225-2309.

B. Garbinato, R. Guerraoui, and K.R. Mazouni.
Implementation of the GARF Replicated Object Platform.
Distributed Systems Engineering Journal, 2:14-27, 1995.

Multitiered Architecture | Application Logic © Benoit Garbinato d O p | 8
a

The E)JB model (1)

O The Enterprise Javaseans model relies on two
ey notions:

O Cowmponent: server-side software unit encapsulating
bustness logic and deployed Lnto a container; this s the
actual Enterprise Javasean (EJB).

Contalner: hosting environment tnterfacing the €&
with its clients and with the Low-Llevel platform services,
and ultimately managing all technical aspects for the
EJB; Lt Ls also Rnoww as the E)B Contalner.

Multitiered Architecture | Application Logic © Benoit Garbinato d O p | 8
a

The E)JB model (2) business logie

‘ \

NN DOF Lab
| « a Alle E\ € hrip:f fwww.nec.unil.cn/dopjPages/cours ids /e @ = Qs -
~ | Applet Container Web Container EJB Container

Applet —>> ‘ JSP ’ @

idiip

Introduction to Distributed Systems > Home

1h's course several wols ‘or orogramming distributed apolications. See
for more datails.

We presant in
ne

o Lactures will take place in each Monday fom 10 15.12:00
o Exercises will take paca in Mongay rom 12:15-13:00

The exercisas, the bonus and e final grade will be availabie Java SE

nawsgroun is available The 2ssistants will answer your H0sts as soon
3s possible

$.10]08UU0)

$10]08uUu0)

Java SE

Application Client

Midlet Container
Container

Application
Client

Persistent
Storage

SOAIS GO

- .
v R
web tler busLiness tier

OC)pl grr b

I d Y Id
client tier

Multitiered Architecture | Application Logic © Benoit Garbinato

EJB 2 versus EJB 3

O The ge specuﬁcatww has beew drastically revised
from version 2 to version =

O The execution model Ls basioaLLg the samee

O The programming model however has been
deeply revisited

O W version 2, the programming model ts more explicit
but also more complex, as it relies on multiple files

O n version 3, the 'progmmmiwg model is stmpler but
somehow more opague, as Lt heang relles on annotations
and Ulc‘pcwdewa Lwlectww

Multitiered Architecture | Application Logic © Benoit Garbinato d O p | 8
a

@Stateless

An nOtationS @Stateful

@LocalBean
@Remote

O An annotatiow Ls a portion of text that expresses | €Resource
information about the code directly tn the code S

@Remove

O An annotation does not directly modify the ggi;;g::i’;;uct

S&ma V\fCLOS Df aDI/LV ODdﬂ bl/(.t the Waa Lt LS tYCWCCDl @PrePassivate

bg tools and Lubmrg from @PostActivate

O_java always had ad hoc annotation, e.g9., Java
comments, the transient Regword, ete.

0O Since java SE 5, Java supports general and
extemsible annotations mechantsm (@...)

O njava BE 5, annotations are used as a lighter
alternative to deployment descriptors

Multitiered Architecture | Application Logic © Benoit Garbinato

Dependency injection

O Dependency injection is an alternative to having
an object set its dependencies to other objects itself

with dependency injection, an object’s field can be
set by an external actor, Ln our case the container

O Dependency injection is expressed by the
programmer via annotations

O Dependency Lm:jectiow allows us to decouple various
components at the code Level

Multitiered Architecture | Application Logic © Benoit Garbinato d O p | 8
a

Types of EJBs (1)

There exists three types of Bnterprise Javareans

Session: performs actions for the client, manages a
conversation with it

& Entity: represents a persistent business object, usually

accessed within a transaction

Message-driven: acts as a JMS Messagelistener and

processes messages asywnchronously

Multitiered Architecture | Application Logic © Benoit Garbinato d O p
[ESFEGH o

Types of EJBs (2)

O A sesston bean can be etther :

O stateless: it belongs to a client only during a wmethod call
O stateful: it belongs to a client for the whole conversation
this client holos with the application

w Awn entity bean can have its persistence either:
O bean-managed: the developer writes SRL code to retrieve,
store and update persistent information (in the database)
O container-managed: the developer provides a relational
mapping, which is used bg the container to au’comaticaLLg
manages the persistence of the entity bean

Multitiered Architecture | Application Logic © Benoit Garbinato d O p
[ESFEGH o

Managing skills needs

O The Bean Provider develops enterprise beans and produces an ¢jb-
Jar containing one or more EJBs (hereafter bean < €/B).

O The Application Assembler combines several €8s tnto larger
deployable units, still as ejb-jars.

O The Deployer takes one ore wore ejb-jars and deploys them in a
specific operational environment (application server/container).

The Contalner Provider provides tools for deploying E/es and
runtime support for the deployed gJBs, tn the form of a container.

The Server Provider provioles the low-level system services on whieh
the container relies, e.g., transactions, persistence, ete.

The System Adwministrator manages the computing §
networking infrastructure, tncluding the container § server.

Multitiered Architecture | Application Logic © Benoit Garbinato d O p
[ESFEGH o

Container responsibilities

The container intercepts client calls to manage
the /B Lifecycle and its technical needs

Application Logic

coded bg bean proviolcr

Transaction control, threading, security,
persistence, pooling, memory management

Management services supplied
ba contalrner prov'wler

Distributed transactions,
distributed objects, resource access

— Muddleware services

JVM

suppl,ieol bg server provioler

Multitiered Architecture | Application Logic © Benoit Garbinato

dop: : ;

Client e —»(BankBecD —— EJB unstance

Multitiered Architecture | Application Logic © Benoit Garbinato

Bean provider tasks

creates the
beaw class,
I:I Bank %@nkBeD — coding
bustness
methools

creates the remote Lnterface

Multitiered Architecture | Application Logic © Benoit Garbinato d O p | 8

Container provider tasks

provide an EJB-compliant container

Bank %@nkBeD

Lmplements the remote interface,
L.e., provioes the Lnterceptor object

Multitiered Architecture | Application Logic © Benoit Garbinato

A typical session bean

@Remote
public interface BankRemote {
public void transfer(Account source, Account destination,double amount)

throws BankingException;
void initialize();

@Stateless
public class BankBean implements BankRemote {

@Resource
— 1 SessionContext ctx;

public void transfer(Account source, Account destination,double amount)
throws BankingException { ... }

dependency LwJ'ectiow

public void initialize() { ... }

Multitiered Architecture | Application Logic © Benoit Garbinato d O p I 8
a

Local beans

O A bean can also provide a Local interface, marked by the
@Local annotation, in order to expose methods to
components deployed tn the same address space, e.g.,
another beaw or a servlet (deployed together with the bean)

0O While it is possible for a bean to provide both a Local
interface and a remote Lnterface, this Ls usually
consioered bad practice

O A bean mwarked bg the @LocalBean anwnotation can only be

Lnvoked Locally and You do not need to proviale a separate
_ava interface for that bean

Multitiered Architecture | Application Logic © Benoit Garbinato d O p | 8
a

Singleton beans

O n software engineering, the singleton pattern is used to
Lmplement the mathematical concept of a stngleton, by
restricting the tnstantiation of a given type of object to
one and one tnstance only

O To wmake a givewn type of bean a singleton, simply mark
the corresponding class with the @Singleton annotation

O As a consequence, the container ensures that any
reference to a beaw of that class point to the same instance

O A singleton beaw is stateful by definition

Multitiered Architecture | Application Logic © Benoit Garbinato d O p | 8
a

Client developer tasks

dependency Lmd'eotiow

L @EJB
private static BankRemote myBank;

myBank.initialize();
myBank. transfer(...); Bank

¢

The Bank remote Lnterface

Multitiered Architecture | Application Logic © Benoit Garbinato d O p I 8
a

Creating session beans

Stateless bean: wo need for an tnitialization method

Stateful bean: one or more Lnitialization methods (business methool)

@EJB
private static fetch bean

BankRemote myBank;
\®
/@nkBeD
€)

initialize ‘

Multitiered Architecture | Application Logic © Benoit Garbinato d O p | 8
a

Creating session beans

Stateless bean: wo need for an tnitialization method

Stateful bean: one or more Lnitialization methods (business methool)

Context ¢ = new InitialContext();
BankRemote theBank = (BankRemote) c.lookup("java:global/ubs-app/Bank™);
theBank.initialize();

assuming we have:

@Stateful(mappedName = "java:global/ubs-app/Bank™)
public class BankBean implements BankRemote {

j..

Multitiered Architecture | Application Logic © Benoit Garbinato

Session context

The SessionContext olojeot provides
access to container services, e.9., to:

O the interceptor objeat

@Resource

| tl’le tra V\zsactLDV\/ context SessionContext ctx;

O the securitg context <—><BankBeD

@

SessionContext

Multitiered Architecture | Application Logic © Benoit Garbinato

Business methods

The BankBean object LS not a remote object, but tts 'Lwtercep’cor
object (implementing the Bank interface) is,

so this objeot throws java.rmi.RemoteException

: ® #)
Client — BankBean

transfer transfer

Multitiered Architecture | Application Logic © Benoit Garbinato d O p | 8
a

Removing a session bean...

.. Ls useful to perform some house cleaning before stopping to use that bean
.. Ls useful to indicate to the container that we no Longer need that bean

... 1s performed:
1. in the beaw code by marking a method using the @Remove annotation
2. n the client code by calling that method on the bean

@Stateful
public class BankBean implements BankRemote {

@Remove
public void delete() { ... }

N
©

Multitiered Architecture | Application Logic © Benoit Garbinato d O p
|

Resource pooling

O Awmong the various resources managed
by the container, we fund conmections
(to databases, to mowms, ete.), threads,
memory, ete., and the €)B< themselves

O To ensure adequate performance §
sealability, the container uses vartous
pooling strategles to manage resources

Multitiered Architecture | Application Logic © Benoit Garbinato d O p I 8
a

Session bean pooling (1)

How does the container manage stateless sesstown beans?
= [t fetehes any bean from the pool for any call

Cclient

/@”"BQD

Pool (SR =S
—’<BankBecD < ool of €
\ Lnstances

Cclient

>

Multitiered Architecture | Application Logic © Benoit Garbinato d O p | 8
a

Session bean pooling (2)

How does the container manage stateful session beans?
= 1t dedicates a specific beaw to each client session

< BankBean
< BankBean Pool. of BJE

Client Bank —><BankBeaD > Lnstances

client Bank = *@BankBean
| |

client Bank —><BankBeaD
|

Multitiered Architecture | Application Logic © Benoit Garbinato d O p | 8
a

Passivation/Activation (1)

O A container can only host a Limited number of session beans
Ln memory

0O Whewn more stateful sesston beans are needed, the container
uses an passivation/activation strategy

) Passivation: write a beawn to disk and remove it (swap out)
» Activation: read a bean from disk and recreate it (swap in)
» Usually follows a Least Recently Used (LRW) policy

O The container can only manage part of the state of a
passivateo/activated sesstow beaw, i.e., primitive types,
serializable objects, context objects, ete.

O For state (fields) outsiode this category, the bean provider
must manage activation/passivation programmatically

Multitiered Architecture | Application Logic © Benoit Garbinato d O p | 8

Passivation/Activation (2)

client container instance

1
1

secondary store

\
call passivate()

write state

1

1

read state

call activate()

@Stateful
public class BankBean implements BankRemote {

@PrePassivate
public void passivate() { ... }
@PostActivate
public void activate() { ... }

Multitiered Architecture | Application Logic © Benoit Ga

import javax.annotation.PostConstruct;

S s b import javax.annotation.PreDestroy;
ess I O n ea n import javax.annotation.Resource;
import javax.ejb.PostActivate;
import javax.ejb.PrePassivate;

con tra Ct import javax.ejb.Remove;
import javax.ejb.SessionContext;
import javax.ejb.Stateless;
@Stateful
public class BankBean implements BankRemote {

@Resource
SessionContext ctx;

public void initialize() { ... }

@Remove
public void delete() { ... }

called bg GDV\'taLV"eV < @PostConstruct

(O'PJCLDV\ML) public void construct() { ... }

@PreDestroy
public void destroy() { ... }

@PrePassivate
public void passivate() { ... }

\~ @PostActivate
public void activate() { ... }

Multitiered Architecture | Application Logic © Benoit Garbinato

| | |
-

Llfecvcle of a sessmn bean
contatner
creation Lw‘cerceptiow LifeogoLe

Bank®Bean

setSessionContext

>
transfer

transfer

passivate

activate

delete

delete

Deployment descriptor (1)

O A olepLog ment olescriptor Ls assoctated with one or more
EJ/Bs, within the corresponding ejb-jar file

O It expresses how the container shouldd handle the technical
aspects with respect to these €JBs, e.9., seour'ucg,
transactions, persistence, ete.

It Ls writtem L XML and tts format is standardized b Y
the EJ® specification

n EJB 3, the deployment descriptor is optional and
supersedes annotations

Multitiered Architecture | Application Logic © Benoit Garbinato d O p
[ESFEGH o

Deployment descriptor (2)

Welcome “ BankBean.java [.4 ejb=jar.xml -1

General CMP Relationships

Enterprise Beans

7 BankSB

L} General

Name (ejb-name): BankBean
Session Type: (o) Stateless () Stateful

Transaction Type: ; Bean i Container

L} Enterprise Bean Implementation and Interfaces

Bean Class: org.dop.BankBean

Local Interface

Component:

Home:

Remote Interface Z

Component: org.dop.BankRemote

Home: org.dop.BankRemoteHome

<?xml version="1.0" encoding="UTF-8"7>
<ejb-jar version="2.1" ... >
<display-name>BankApplication-EJBModule</display-name>
<enterprise-beans>
<session>
<display-name>BankSB</display-name>
<ejb-name>BankBean</ejb-name>
<home>org.dop .BankRemoteHome</home>
<remote>org.dop.BankRemote</remote>
<ejb-class>org.dop.BankBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>BankBean</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>

Multitiered Architecture | Application Logic © ll </ejb-jar>

Atomic transactions

A transaction T ensures the four ACID properties:

Atowmicity. T appears either committed or aborted with
respect to fatlures

Consistency. T does not compromise the consistency of the
data it manipulates

(solatiown. T appears inoivisible with respect to all other
transactions

DumbLLL’cg. T being committed, its effects will survive
subsequent crashes

Multitiered Architecture | Application Logic © Benoit Garbinato d O p | 8
a

Transactions with EJBs

O The E)B transactional moodel supports
VAYLOUS SCENAYLOS

O The €)® model offers two ways to express
transactional needs:

0 progmmmaticaug (ebean-managed)

0 deoLath\/eLg (container-managed)

Multitiered Architecture | Application Logic © Benoit Garbinato d O p I 8
a

Transactional scenarios

client —

local transaction, global transaction, lj lj

single container single container

client ——

client /
T

lj client-demarcated & global | global transaction, lj lj

transaction, multiple containers | multiple containers

Multitiered Architecture | Application Logic © Benoit Garbinato d O p I

Programmatic transactions

-i @Resource(name="jdbc/EmployeeAppDB”, type=javax.sql.DataSource)
@Stateless public class WarehouseBean implements SessionBean {
private DataSource ds;
private Connection cn;
= @Resource SessionContext ctx;
public void ship(String productld, String orderId, int quantity) {
try {
= ds = (javax.sql.DataSource) ctx.lookup("jdbc/EmployeeAppDB");
= cn = ds.getConnection();
=P cn.setAutoCommit(false);
updateOrderItem(productId, orderId);
updateInventory(productld, quantity);
= cn.commit();
} catch (Exception ex) {
try {
=P cn.rollback();
throw new EJBException("Transaction failed:
} catch (SQLException sgx) {
throw new EJBException("Rollback failed: " + sgx.getMessage());

+ ex.getMessage());

ks
} finally {
= cn.close();
}

b Local transaction

Multitiered Architecture | Application Logic © Benoit Garbinato d O p I 8
a

Programmatic transactions

@Stateless
@TransactionManagement(javax.ejb.TransactionManagementType.BEAN)
public class TellerBean implements TellerRemote { 4

public void withdrawCash(double amount) {
= UserTransaction ut =
context.getUserTransaction();
try {
= ut.begin();
updateChecking(amount);
machineBalance -= amount;
insertMachine(machineBalance);
= ut.commit();
} catch (Exception ex) {
try {
= ut.rollback();
} catch (SystemException syex) {
throw new Exception("Rollback failed:
}

throw new Exception("Transaction failed:

+ syex.getMessage());

+ ex.getMessage());

global transaction

Multitiered Architecture | Application Logic © Benoit Garbinato d O p I 8
a

Declarative transactions (1)

A transactional attribute Ls assoclated with each wethod
via annotatlons or deptog ment descriptors

Attribute Meaning

NotSupported | tfaclient’s transaction exists, it is suspendled

Supports If a client’s transaction exists, Lt Ls continued

If a client’s transaction exists, Lt Ls continued;

Required otherwise, the container starts a new transaction

The container always starts a new transactions;
Lf a client’s transaction exists, it Ls suspendea first

RequiresNew

Mandatory The client must be in a transaction when calling

Never The client must not be Lin a transaction when aaLLiwg

) I a o

Declarative transactions (2)

@TransactionManagement(javax.ejb.TransactionManagementType.CONTAINER)

@Stateless
public class AccountBean implements AccountLocal {

@TransactionAttribute(javax.ejb.TransactionAttributeType.SUPPORTS)

public double getBalance() { ... }

<container-transaction>

<method>
<ejb-name>AccountBean</ejb-name>
<method-intf>Local</method-intf>
<method-name>getBalance</method-name>

Transactions
</method>
<trans-attribute>Required</trans-attribute>

Resource Ref's Security
</container-transaction>
<container-transaction>

Resource Env. Refs

Transaction Management

E Container-Managed
Transaction Atl
Required 0 (:!()
Not Supported [p| a b

Show:
‘s Local getBalance()
getCreditLine()

| o D LY e

Declarative transactions (3)

transactional attributes

call stack

Transaction 3

E)B_2.Method_Y ()

EJB_1.Method_C()

Transaction 2 EJB_1.Method _B()

Transaction 1

EJB_1.Method_D

Mandatory

EJB_2.Method_Z

Required

EJB_2.Method._Y

Supports

EJB_1.Method_C

NotSupported

EJB_1.Method_B

RequiresNew

EJB_2.Method_X

Supports

EJB_1.Method_A

Required

Multitiered Architecture | Application Logic © Benoit Garbinato

dop: : ;

Rolling back transactions

How cawn we tell the contatner to vollback a transaction,
because of some applicative problem occurveol?

public void transferToSaving(double amount) throws InsufficientBalanceException {
checkingBalance -= amount;
savingBalance += amount;

1f (checkingBalance < 0.00) {
- context.setRollbackOnly();
throw new InsufficientBalanceException();

}

updateChecking(checkingBalance);
updateSaving(savingBalance);

Multitiered Architecture | Application Logic © Benoit Garbinato

gtobaL

Distributed transactions

Two-Phase Commit (2PC)

& .1nvoca tions
@Q

client

transaction mana\gex \\\\

newTransactlon
resource
-data-managerA \ A%

résource

-data- managerB V

resowrce
-data-managerC Y ¢

, resource
The transaction manager and all dasa managers

must at least rumn compatibLe protocols (JTS/OTS)

Multitiered Architecture | Application Logic © Benoit Garbinato d O p I

javax.transaction.
TransactionManager

aneact] \\ javax.transaction.xa.
5 : ransaccion
javax.transaction. XAResource

: 1 .
UserTransaction Syl
e Y (OoTs 1.1)

>

Lncoming transaction outgolng transaction

Multitiered Architecture | Application Logic © Benoit Garbinato

Context propagation

The various containers play a ey role
Ln propagatw\,g the context across tiers,
tgpwa Ly secun’cgj § transaction contexts

odmz

@
S

Lnternet Lntranet highly secure zone

Multitiered Architecture | Application Logic © Benoit Garbinato d O p I 8
a

Message-driven beans

0 A message-driven bean is a bean that caw receive
asywchronous messages

O It is tnvoked by the container upon arvival of a
message at a given destination

O It is decoupled from clients, stateless and single-threaded

@MessageDriven(mappedName = "jms/OrderQueue”, activationConfig = {
@ActivationConfigProperty(propertyName = "acknowledgeMode",
propertyValue = "Auto-acknowledge"),
@ActivationConfigProperty(propertyName = "destinationType",
propertyValue = "javax.jms.Queue™) })
public class OrderListenerBean implements MessagelListener {
public void onMessage(Message message) { ... }

}

Multitiered Architecture | Application Logic © Benoit Garbinato d O p I 8
a

