
Business Tier
Data Persistence

Benoît Garbinato

Business Tier | Data Persistence © Benoît Garbinato

The EJB model

client tier web tier business tier

Persistent
Storage

J2ME

Midlet Container

Java SE Java SE

Java SE

Java SE

Java ME

Business Tier | Data Persistence © Benoît Garbinato

Persisting objects
To ensure persistence basically means to ensure the
durability property of transactions

It can be done via object serialization but:
‣ no easy navigation and querying of the object graph

‣ no support of legacy persistent data, stored in relational databases

The object-relational mapping approach:
‣ How should we persist a graph of objects into a relational 

database, and what is the reference model?

‣ What happens to fields, constructors & methods ?

‣ How do manage complex relationships between objects?

AccountBean
object-

relational
mapping

Business Tier | Data Persistence © Benoît Garbinato

Object-relational mapping

Question: how is the mapping done ?

AccountBean
number
balance
owner

primary key ⇔ unique identifier

Business Tier | Data Persistence © Benoît Garbinato

Solutions in the Java platform
The Java Persistence API...
‣ ... is more recent(2006) and merges several previous efforts

‣ ... is available in both the Java Standard Editions (Java SE)  
 and the Java Enterprise Edition (Java EE) platforms

‣ ... is portable across operating systems

‣ ... relies on the notion of entities

The entity bean model...
‣ ... came first, as part of the EJB programming model

‣ ... is also portable across operating systems

‣ ... is still valid, i.e., not deprecated

entities ≠ entity beans

EJB 2.1

Business Tier | Data Persistence © Benoît Garbinato

What is an entity?
An entity is a POJO (Plain Old Java Object), not an EJB

It is not remotely accessible (unlike session or entity beans)

It represents data stored in a relational database

It provides basic methods to manipulate that data

It has a persistent identity (primary key) that is distinct
from its object reference (in memory)

Its lifetime may be completely independent of the
application lifetime in which it is used

The persistence aspect is managed via annotations and 
calls to the persistence provider API

Business Tier | Data Persistence © Benoît Garbinato

Persistence provider
The Java Persistence API defines the notion of 
persistence provider, which...
‣ ... is responsible for the object-relational mapping

‣ ... complies with a Service Provider Interface (SPI)

The SPI is what makes the persistence provider pluggable 
into both the Java SE and EE runtime environments

In Java EE, the runtime is simply the EJB 3.0 container

The object-relational mapping is transparent to entities

application code (using entities)

persistent provider

runtime environment

Java Persistence API

Java Persistence SPI

Business Tier | Data Persistence © Benoît Garbinato

A typical entity
@Entity
@Table(name = "ACCOUNT")
public class Account implements Serializable {
 @Id
 @Column(name = "ACCTNUMBER", nullable = false)
 private Integer acctnumber;

 @Column(name = "NAME")
 private String name;

 @Column(name = "BALANCE")
 private Integer balance;

 public Account() {
 this.acctnumber =

(int) System.currentTimeMillis();
 this.balance = 0;
 }

 public Integer getAcctnumber() {
 return acctnumber;
 }
 ...

 ...

 public Integer getAcctnumber() {
 return acctnumber;
 }

 public void setAcctnumber(Integer acctnumber) {
 this.acctnumber = acctnumber;
 }

 public void deposit(int amount) {
 balance += amount;
 }

 public int withdraw(int amount) {
 if (amount > balance) return 0;
 else {
 balance -= amount;
 return amount;
 }
 }
}

why is it serializable ?

pr
im

ar
y

 k
ey

CREATE TABLE ACCOUNT(ACCTNUMBER INT PRIMARY KEY, NAME VARCHAR(256), BALANCE INT);

Business Tier | Data Persistence © Benoît Garbinato

Relationship management
@Entity
@Table(name = "ACCOUNT")
public class Account implements Serializable {
 ...
 @OneToMany(mappedBy = "account",
 cascade = {CascadeType.PERSIST, CascadeType.REMOVE})
 private Collection<Order> orders;
 ...
}

@Entity
@Table(name = "ORDER")
public class Order implements Serializable {
 ...
 @ManyToOne
 @JoinColumn(name = "ACCOUNT")
 private Account account;
 ...
}

Business Tier | Data Persistence © Benoît Garbinato

Using an entity (1)
Since entities cannot be accessed remotely, they are
typically deployed together with EJBs using them

Before using an entity, an EJB must first retrieve it
from the persistence context

The persistence context is part of the persistence provider
API and responsible for the connection with the database

The persistence context is materialized via the
EntityManager interface (API)

Business Tier | Data Persistence © Benoît Garbinato

Using an entity (2)
@Stateless
@TransactionManagement(javax.ejb.TransactionManagementType.CONTAINER)
public class BankBean implements BankRemote {
 ...
 @PersistenceContext
 private EntityManager manager;

 public Account openAccount(String ownerName) {
 Account account = new Account();
 account.setName(ownerName);
 manager.persist(account);
 return account;
 }
 ...
 public void deposit(int accountNumber, int amount) {
 Account account = manager.find(Account.class, accountNumber);
 account.deposit(amount);
 }
 public void close(int accountNumber) {
 Account account = manager.find(Account.class, accountNumber);
 manager.remove(account);
 }
}

d
ep

en
d

en
cy

 i
n

je
ct

io
n

why do we have to find the entity in every method ?

Business Tier | Data Persistence © Benoît Garbinato

Transaction boundaries
After the manager.persist(account) call, the
account entity is scheduled for being
synchronized (written) to the database

The entity will actually be written when the
current transaction commits

Until then, we say that the entity is in
managed state

Business Tier | Data Persistence © Benoît Garbinato

Entity possible states
new The entity was just created but is not yet bound to a persistent identity

in the database or to a persistent context

managed The entity has a persistent identity in the database, is currently bound
to a persistent context and is scheduled to be synchronized with the
database.

detached The entity has a persistent identity but is not currently bound to a
persistent context.

removed The entity is currently bound to a persistent context and scheduled for
removal from the database.

removed

new

detached

new()

remove()

persist()

pers
ist(

)

merge()

persistence or current
transaction context ends

managed
refresh()

Business Tier | Data Persistence © Benoît Garbinato

Entity lifecycle callbacks
@Entity
@Table(name = "ACCOUNT")
public class Account {
 @PrePersist
 void prePersist() { ... }

 @PostPersist
 void postPersist() { ... }

 @PreRemove
 void preRemove() { ... }

 ...

 ...

 @PostRemove
 void postRemove() { ... }

 @PreUpdate
 void preUpdate() { ... }

 @PostUpdate
 void postUpdate() { ... }

 @PostLoad
 void postLoad() { ... }
}

Business Tier | Data Persistence © Benoît Garbinato

Entity lookup and queries
Apart from the straightforward find-by-primary-key query,
automatically managed via the EntityManager.find() method,
we can perform more general queries to find entities

This is done via the Query interface, another key element 
of the persistence provider API

Queries are expressed using the Java Persistence Query
Language (JP-QL), inspired from EJB-QL (EJB 2.1)

JP-QL has a syntax similar to SQL but :

‣ it manipulates objects rather than rows & columns

‣ it is really portable across various implementations

Business Tier | Data Persistence © Benoît Garbinato

Examples of queries
Queries can either be dynamic or static
Static queries are also known as named queries

@Stateless
@TransactionManagement(javax.ejb.TransactionManagementType.CONTAINER)
public class BankBean implements BankRemote {
 ...
 @PersistenceContext
 private EntityManager manager;

 public List<Account> listAccounts() {
 Query query = manager.createQuery("SELECT a FROM Account a");
 return query.getResultList();
 }
}@Entity

@Table(name = "ACCOUNT")
@NamedQueries({

@NamedQuery(name = "findByAcctnumber", query = "SELECT a FROM Account a WHERE a.acctnumber = :acctnumber"),
@NamedQuery(name = "findByName", query = "SELECT a FROM Account a WHERE a.name = :name"),
@NamedQuery(name = "findByBalance", query = "SELECT a FROM Account a WHERE a.balance = :balance")})

public class Account implements Serializable {
 ...
}

d
y

n
am

ic
 q

u
er

y

named query

Business Tier | Data Persistence © Benoît Garbinato

Extended persistent context
Until now, we only saw transaction-scoped persistent contexts,
i.e., ones that end when the enclosing transaction ends

At this point, all entities in the persistent context become detached
(from the database)

Transaction-scoped persistent contexts are fine for stateless
session beans, because the stateless bean cannot keep references to
entities across method calls, and hence does a lookup prior to any
entity manipulation

For stateful session beans however, we need an extended persistent
context, i.e., one where entities remain managed  
across methods calls

Business Tier | Data Persistence © Benoît Garbinato

The session facade pattern
@Stateful
public class AccountBean implements AccountRemote {
 @PersistenceContext(type = PersistenceContextType.EXTENDED)
 private EntityManager manager;

 private Account account = null;

 public void open(int accountNumber) {
 account = manager.find(Account.class, accountNumber);
 if (account == null) {
 account = new Account();
 manager.persist(account);
 }
 }
 public void deposit(int amount) {
 if (account == null) throw new IllegalStateException();
 account.deposit(amount);
 }
 public String getName() {
 if (account == null) throw new IllegalStateException();
 return account.getName();
 }
 ...
}

This pattern consists
in having a (remote)
stateful session bean
act as front-end for a

non-remote entity

Business Tier | Data Persistence © Benoît Garbinato

Persistence units
Entities are packaged and deployed in persistence units

A persistence unit is a logical grouping of entity classes,
object-relational mapping metadata, and possibly
database configuration information

If there is more than one persistence units in an
application, we need to explicitly reference it in the
@PersistenceContext annotation

@Stateful
public class AccountBean implements AccountRemote {

 private Account account = null;
 @PersistenceContext(type = PersistenceContextType.EXTENDED, unitName = "Banking")
 private EntityManager manager;
 ...
}

