Business Tier
Data Persistence

Benoit Garbinato
M’""{L ‘ HEC ‘ dopl a b‘ distributed object programming lab

The EJB model

YN DOP Lab
P a Alle E\ huip: / fwww.nec.unil.cn/dop/Pages /cours jids /e @ ~ O -
~ | Applet Container Web Container EJB Container

Applet — JSP @

idiip

Introduction to Distributed Systems > Home

1h's course several wols ‘or orogramming distributed apolications. See
for more datails.

We presant in

o Lactures will take place in each Monday fom 10 15.12:00

* Exercises will take paca in Moncay *om 5-13:00
The exertisas, the bonus and fie final grade will be availabie Java SE
newsgroun is available The 8ssistants will nswer your posts as soon
as possible

SOAIS GBM

$10j08UU0D
SOAIS B
S10]02ULU0D

Application Client

Midlet Container
Container

Application
Client

Persistent
Storage

SOAIS GO

O .
v R
web tler busLiness tier

OOpl grr b

I d Y Id
client tier

Business Tier | Data Persistence © Benoit Garbinato

Persisting objects

O Toensure persistevwe basioaug means to ensure the

duwrabtlity property of transactions

O tcan be done via object sertalization but:

p no easy navigation and querying of the object graph
p wo support of legacy persistent data, stored L relational databases

O The object-relational mapping approach:

p How should we persist a graph of objects tnto a relational
database, and what is the reference model?

» What happens to ﬁeLds, constructors § wmethods ?

» How do manage complex relationships between objects?

object-

AccountBean relational
mapping

Business Tier | Data Persistence © Benoit Garbinato

Object-relational mapping

primarg key & unioue Ldentifier

humber) e
@ountB@ balance ¢~
owner ¢~

Ruestion: how Ls the mapping downe ?

Business Tier | Data Persistence © Benoit Garbinato d O p I 3
a

Solutions in the Java platform

O The)ava Persistence APL...

» ... is more recent(2006) and merges several previous efforts

» ... Ls available tn both the Java Standard Editions (Java SE)
and the Java Enterprise Edition (Java EE) platforms

» ... isportable across operating systems

» ... relies on the notion of entities

g

. came first, as part of the E/B programming moolel
. Ls also portable across operating systems

The ew’ci’cg bean meodel...
4
4
» ... isstill valid, i.e., not deprecated

entitles # ewtitg beans

Business Tier | Data Persistence © Benoit Garbinato d O p
[ESFEGH o

What is an entity?

O An entity is a PoJO (Plain oOld Java Object), not an EJB
O tls not remotely accesstble (unlike sesston or ewtitg beans)

It represents data stored L a relational database

a
O (t provides basic methods to manipulate that data
a

It has a persistent Ldentity (primary key) that is distinet
from its object reference (tn memory)

O tts lifetime may be completely independent of the
application lifetime tn which Lt Ls used

O The persistence aspect is managed via annotations and
calls to the persistence provider API

Business Tier | Data Persistence © Benoit Garbinato d O p
[ESFEGH o

Persistence provider

The Java Persistence AP defines the notion of
persistence provider, which...

» ... Ls responsible for the object-relational mapping
» ... complies with a Service Provider Interface (SPI)

[application code (using entities) }

=

- Java Persistence APL
persistent provider
[

- Java Persistence SPL
runtime environment }

The SPI s what makes the persistence provider pluggable
tnto both the Java SE and EE runtime environments

In Java EE, the runtime is simply the EJB 3.0 container
The object-relational mapping Ls transparent to entities

Business Tier | Data Persistence © Benoit Garbinato

dop: : ;

A typical entity

@Entity
@Table(name = "ACCOUNT™)
public class Account implements Serializable { public Integer getAcctnumber() {

@Id return acctnumber;
P < @Column(name = "ACCTNUMBER", nullable = false) }
private Integer acctnumber;

why Ls Lt sertalizable ?

leeg

public void setAcctnumber(Integer acctnumber) {
@Column(Cname = "NAME™) this.acctnumber = acctnumber;
private String name; }

(N

AW)
<
S
3
-
<
a-

@Column(name = "BALANCE™) public void deposit(int amount) {

private Integer balance; balance += amount;

ks

public Account() {
this.acctnumber = public int withdraw(int amount) {

(int) System.currentTimeMillis(); if (amount > balance) return 0;

this.balance = 0; else {

} balance -= amount;

return amount;

public Integer getAcctnumber() {
return acctnumber;

}

CREATE TABLE ACCOUNT(ACCTNUMBER INT PRIMARY KEY, NAME VARCHAR(256), BALANCE INT);

Business Tier | Data Persistence © Benoit Garbinato dUp_
[ESFEGH o

Relationship management

@Entity
@Table(hame = "ACCOUNT™)
public class Account implements Serializable {

@0neToMany(mappedBy = "account",
cascade = {CascadeType.PERSIST, CascadeType.REMOVE})
private Collection<Order> orders;

@Entity
@Table(name = "ORDER™)
public class Order implements Serializable {

@ManyToOne
@JoinColumn(name = "ACCOUNT™)
private Account account;

Business Tier | Data Persistence © Benoit Garbinato

Using an entity (1)

O Stince entltles cannot be accessed remotely, they are
typieally deployed together with €JBs using them

O Before using an entity, an EJB must first retrieve it
from the persistence context

O The persistence context is part of the persistence provider
APl and responsible for the connection with the database

O The persistence context ts materialized via the
EntityManager interface (AP1)

Business Tier | Data Persistence © Benoit Garbinato d O p | 3
a

Using an entity (2)

@Stateless
@TransactionManagement(javax.ejb.TransactionManagementType.CONTAINER)
public class BankBean implements BankRemote {

@PersistenceContext

"{ private EntityManager manager;

public Account openAccount(String ownerName) {
Account account = new Account();
account.setName(CownerName);

J manager.persist(account);
return account;

dependency vajeotiow

}

public void deposit(int accountNumber, int amount) {

P Account account = manager.find(Account.class, accountNumber);
account.deposit(amount);

¥

public void close(int accountNumber) {
P Account account = manager.find(Account.class, accountNumber);
$ manager.remove(account);

}

}

Business TTer | Dala rFersinicnce ©

why do we have to fuind the entity n every method ?

Transaction boundaries

a After the manager.persist(account) call, the
account entity s scheduled for betng
sy nehrontzed (writtew) to the database

O The ewtitg will actually be writtem whew the
current transactlon commuLts

O until them, we sa Yy that the ewtitg LS LIL
managead state

Business Tier | Data Persistence © Benoit Garbinato d O p | 3

Entity possible states

new The entity was just created but is not yet bound to a persistent identity
n the database or to a persistent context

managed The entity has a persistent Ldentity in the database, is currently bound
to a persistewt context and Ls scheduled to be sy nehrontzeod with the
database.

detached The ew’ci’cg has a persls’cew’c Ldew’ci’cg but ts not currently bound to a
persi,s’cewt context.

removed The ewtitg Ls currently bound to a Persistewt context and scheduled for
removal from the database.

_persi=tO—" (new Je——mmo
N\

Q remove())(
managed removed)
refresh() 9)(persist() A\

% detached)

i i i per‘sistence or current
Business Tier | Data Persistence © Beno D neaction contaxtiands

Entity lifecycle callbacks

@Entity

@Table(name = "ACCOUNT™)

public class Account { @PostRemove
@PrePersist vold postRemove()
vold prePersist()

@PreUpdate

@PostPersist vold preUpdate()

vold postPersist() { ... }

@PostUpdate

@PreRemove vold postUpdate() { ...

volid preRemove()

@PostLoad

void postLoad()

Business Tier | Data Persistence © Benoit Garbinato

Entity lookup and queries

O Apart from the straightforward find-by-primary-key query,
automatically managed via the EntityManager. findQ method,
we can perform more general guertes to fina entities

O This s downe via the Query tnterface, another Rey element
of the persistence provider API

O Queries are expressed using the Java Persistence Query
Language (JP-RL), inspired from E/B-QL (BB 2.1)

O JP-QL has a sywntax similar to SRL but :
p it manipulates objects rather thaw rows § columns

p it is really portable across various implementations

Business Tier | Data Persistence © Benoit Garbinato d O p | 3

Examples of queries

0 ®uertes can etther be dunawie or statie
O Static quertes are also knowwn as named gueries

@Stateless
@TransactionManagement(javax.ejb.TransactionManagementType.CONTAINER)
public class BankBean implements BankRemote {

@PersistenceContext
private EntityManager manager;

d yna mice query

public List<Account> listAccounts() {
> Query query = manager.createQuery("SELECT a FROM Account a");

¢ mamwedcquﬁrg return query.getResultList();

@Entity
@Table(name = "ACCOUNT™)

@NamedQueries({
P @NamedQuery(name = "findByAcctnumber", query = "SELECT a FROM Account a WHERE a.acctnumber = :acctnumber"),

P @NamedQuery(name = "findByName", query = "SELECT a FROM Account a WHERE a.name = :name"),
P @NamedQuery(name = "findByBalance", query = "SELECT a FROM Account a WHERE a.balance = :balance")})
public class Account implements Serializable {

3

Extended persistent context

O vkl now, we only saw tra wsaotiow-saopeol persistewt contexts,
L.e., ones that end whew the enclosing transaction ends

O At this point, all entities in the persistent context become detacheo
(from the database)

O Transaction-scoped persistent contexts are fine for stateless
session beans, because the stateless bean cannot keep references to
entities across method calls, and hence does a Lookup prior to any
entity manipulation

O For stateful session beans however, we need an extended persistent
context, L.e., one where entities remain managed
across methods calls

Business Tier | Data Persistence © Benoit Garbinato d O p | 3
a

The session facade pattern

@Stateful

public class AccountBean implements AccountRemote {
@PersistenceContext(type = PersistenceContextType.EXTENDED)
private EntityManager manager;

private Account account = null;
’, tt » t
public void open(int accountNumber) { ! llLS Pa Ernv CONSLSTS

account = manager.find(Account.class, accountNumber); LA ha\/iwg Qa (YCVWOtC)
if (account == null) {

account = new Account(); state-(:ut S&SSLDW beaw
manager .persist(account);

} act as front-end for a

} ,
public void deposit(int amount) { Won-rémote thbtg

1f (Caccount == null) throw new IllegalStateException();
account.deposit(amount);

}
public String getName() {
1f (account == null) throw new IllegalStateException();

return account.getName();

Persistence units

O entities are packaged and deployed in persistence units

O A persistence unit is a logieal grouping of entity classes,
object-relational mapping wmetadata, ano PossLbLg
database configuration information

O f there Ls more than one persistence units in an
application, we need to explicitly reference it tn the

@PersistenceContext anwnotation

@Stateful
public class AccountBean implements AccountRemote {

private Account account = null;
@PersistenceContext(type = PersistenceContextType.EXTENDED, |unitName = "Banking")
private EntityManager manager;

Busine

