computer
architecture

i

learning

your software

system software

objecﬁves

<

+ understand the basics of how a computer works
+ understand the basics of binary computation

+ learn the basics of the Von Neumann architecture

what's a computer?

A — —— T T ———— . — -

=TT YIS

°F 22T 2ol -R-F-Ropog =R R=F oF-T-1-2=2-Rop=F ¥ 1-F 1R RedopaRol i

D000~ OO~ OO0 r O OO OO

PO e e P PO O R R 00RO 00O~~~ -0~

D = .J.JO!OIIOL.@OO!.

188 == =88 RRssRs

cERECLEBREC-

PP rElERP S r O O — -

OrDO0O0

software

hardware

a dual or igin

mathematics

Associative Rules: (pAq) /\r@p/\(q/\r) (pV qVrepV (qVT) p 4 pVa
P q pNd v
Distributive Rules: pA(gVT) & (pANqQ)V (pAT) pV (@A r)e (pV NV T) Q /F 5 F F
Idempotent Rules: pAD<DP pVp<D P T 1; 1:} F F qi; 1;?
Double Negation: ——p &P T F T F F 1;1 T
DeMorgan’s Rules: —(p A q) & P V g —(pV q) & P N—q T T T
Commutative Rules: pANq=4 AD pVq=d vV p / ——
Absorption Rules: pV (pAG) =P pA(PVa) =P 9i
Bound Rules: pANF & F pANT <P pvT =T pVF&Dp 2\1 oo ;
2
Negation Rules: pA ("p) & F pV (—p) & T) = = i)) 7 15
=] 2) 4 5 8\’ Y
S — ———EG—— 16’
n
a1 _ _(n+ 1) n" Lri e
" (n41)! an P
G (DR Tl _ntlon N\ (n)" & == 34
! nl (n+)"t n+1\n+1 :(<1 i=] 1\7\’\ 5
Q'QC|Y 2 — ntl 273 -

what's hardware?

| f

yam

(volatile storage)

(stable storage)

CpU = central processing unt

what's software?

1 — 1+ 1

P — || ——

0
.i

)y]

‘II Il

+ 1

0010010100101011
0001001010100100
1111001101010011

we will come back to these
transformations in the next module

binmrs, computation

base 10

:

e e
K
K
K

[y

-

&
[

10

base 7

680008
ss000

® 6 6 8

72

71

2

base

(@ & &)

XX

3

&

3

U

31

(XX

1

base 2

seledd

note that in a computey; bmarq words are not
only used to represent integer numbers

1939-40

. - =
. . O :
b
B ct w5 N Mo L - *.w * w"
: b tagd " GO 3 ° "
L . o S o)

the “bombe” was an electromechanical
device designed bx, Rlan Turing to
decipher German Enigma-encmpfecl messages

the ENIRC was the first general electronic computer
programs were hard-wired (dials £ switches)

the EDVRC is the first computer to rely on
programs stored in memory

John von Neumann describes the concept of
programs stored in memory in a report about
the EDVRC computer: the Von Neumann

the von Neumann model

'Cc)n g PC: Program Counter
RN 011 B R: instruction Register
| 10110110 B RI-Rn: Register

Memor\,

| Processing Unit
o001 HED

F covoonn |
py 2 TN

‘R § o011 [UIEUIEG]
‘ - s § oo NN
ALU: Arithmetic £ Logic Unit

fetch instruction

Control Unit -
R 0011

1011011008

10110110

decode instruction

Control Unit B

1011011008

10110110

execute instruction

“Control Unit
L oo |

1011011008

10110110

store result

“Control Unit
L oo]

101101100

instruction sets

ADDSD—Add Scalar Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F2 OF 58 /r ADDSD xmm1, xmm2/m64 \Valid Valid Add the low double-
precision floating-point
value from xmmZ2/m64 to
xmmT.
Description

Adds the low double-precision floating-point values from the source operand (second
operand) and the destination operand (first operand), and stores the double-preci-
sion floating-point result in the destination operand.

The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. The high quadword of the destination operand
remains unchanged. See Chapter 11 in the Inte/l® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for an overview of a scalar double-precision
floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] < DEST[63:0] + SRC[63:0];
(* DEST[127:64] unchanged *)

Intel IA-064
[2007]

Motorola 68000
[1980]

ADD

ADD

Add
(M68000 Family)

Operation: Source + Destination — Destination
Assembler ADD <ea> ,Dn

Syntax: ADD Dn, <ea >

Attributes: Size = (Byte, Word, Long)

Description: Adds the source operand to the destination operand using binary addition and
stores the result in the destination location. The size of the operation may be specified
as byte, word, or long. The mode of the instruction indicates which operand is the
source and which is the destination, as well as the operand size.

Condition Codes:

X — Set the same as the carry bit.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Set if an overflow is generated; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EFFECTIVE ADDRESS
MODE REGISTER

1 1 0 1 REGISTER OPMODE

