Remote Method
Invocation

Benoit Garbinato
Uoil_ | HEC | dop: : -

distributed object programming lab

Fundamental idea (1)

0O Rely on the same programming paradigm
for distributed applications as for
centralized applications

O n procedural lLanguages, we will rely on
the notton of Remote Procedure call (RPC)

O (n object-oriented language, we will rely on
the notion of Remote Method Invocation (RMI)

Remote Method Invocation © Benoit Garbinato d O) p | X
a

Goals of this lesson

O Learn about the concepts behind remote
method Lnvocations / remote procedure calls

O Learn how these concepts are impLemew‘ced
i the Java distributed platform

Remote Method Invocation © Benoit Garbinato

| client |

call / invocation

Process A ' ' Process B

A remote method (procedure) LS transparently Lnvoked
(called) across the network, as Lf it was Local

Remote Method Invocation © Benoit Garbinato d O p
[kt

RPC: some history

1959 BLLLJog tntroduces the “Berkeleyy Enhancements”, maiwLH Lnterprocess
communication (IPC) factlities. The modern network Unix is born (BSD).

mid 80's Sun Microsystems uses BSD Unix as operating system for their
workstations. They extends it with RPC, on top of which they build NFs and
NIS (lLater on NIS+).

1988 The Open Software Foundation (OSF) s formed to develop a portable open
:c.'%stem platform, knowwn as the Distributed Computing Environment (BCE).
e Latter proposes DCE RPC as basie communication mechanism.

mLol 90’s The Ob\j@c’c Management Growp (oMGg) foLLows the same approach to devise
the Common Object Request Broker Architecture (CORBA) for object-baseol
middleware. At the same time, Sun greatly simplifies § extends the RMI
paradigm its Java §_Jinl platforms.

Today Web Services are a widespread approach to tnvoke remote services on the web
but they are really just a web-flavored version of the good old RPC/RMI
paradigm, using HTTP § XML/)SON.

Remote Method Invocation © Benoit Garbinato d O) p | X
a

A local method invocation

call stack

| |

| result : 4
| para meter 1
para meter 2

para meter n

—

para meters

Remote Method Invocation © Benoit Garbinato

A remote method invocation

client server
parameters result ey parameters

client stulb server stub
N - ‘ﬁ
tra wsport tra wspor’c

request reply reply request
nwetwork

N ~

Remote Method Invocation © Benoit Garbinato d O) p | X
a

The notion of proxy

O A proxy is the representative of a server
object iw the adoress space of the client

O A proxy implements the same tnterface
as the server (but not tn the same way)

client space

foo(...)

| client \ | proxy \

'T'

‘ Serveér \

|

)

this Ls where the
real work Ls downe

SErver S‘PDI ce

Remote Method Invocation © Benoit Garbinato

dop: : :

O (n)ava, Remote method Lnvocation is tntegrateol
LA the standard class Library, via packages such
as Java rmi, Java rmlL.server, ete.

In addition , Sun’s Java Development Kit (JBK)
neludes a set of tools for supporting RML, e.g.,
rmlic, rmwcgtstrg ete.

We can distingulish three distinct times when
building rmi-based applications, namely
development, deployment and execution.

Remote Method Invocation © Benoit Garbinato d O) p | X
a

The server object registers its name § proxy
i the naming service (rml reglstry)

The client object obtains a proxy of the
server object via that naming service

The client objeot can thew tnvoke the server

proxy, which will thew forward the
Lnvocation to the server object

Remote Method Invocation © Benoit Garbinato d O p | o

Server side: create & bind

public class CalendarApp {
public static void main(String[] args) throws Exception {
String theName= "Calendar";
CalendarServer theServer=-new CalendarServer();

Naming.rebind (theName, theServer);
System.out.println("Calendar service 1is running!");

Remote Method Invocation © Benoit Garbinato

Client side: lookup & use

public class CalendarClient ({

public static void main(String[] args) throws Exception {
String calServName= "//www.acme.com/Calendar";
CalendarService calServ=
(CalendarService) Naming.lookup(calServName) ;

calServ.createCalendar("'James");

Collection allCals= calServ.getCalendars();
DayCalendar dno= calServ.getCalendar('Dr. No");
String[] elist= dno.listEvents();

Remote Method Invocation © Benoit Garbinato d O) p | X
a

Calendar Application

| client | |rm£ rw)istrg | | calendar service | | Dr. no's calendar |
1 |

I rebind ()

>

Lookup(...)

T createcalendar (")ames")

y new Paycalendartmp (James”)

- ' |James‘ calendar |
|
|

(s

getcalendar ("Dr.No")

Listevents ()

|
ListBvents ()

Remote Method Invocation © Benoit Garbinato

Development time

1. Define the interface of the remote service

2. Implement the client and server classes tn
a decowpled way, thanks to the tnterface

3. Msejavac to compile all above sources

4. Use the rmie comptler to create the proxy of
the remote class for you

Remote Method Invocation © Benoit Garbinato d O) p | X
a

Typical remote interfaces

import_java.util.*;
import java.rmi.*;

public interface CalendarService. extends Remote {
public DayCalendar createCalendar(String name). throws RemoteException, 'CalendarException;
public DayCalendar getCalendar(String name) throws RemoteException, CalendarException;
public ArrayList getCalendars() throws RemoteException;
public boolean exists(String name) throws RemoteException;

import java.util.*;
import java.rmi.*;

public interface DayCalendar extends Remote ({
public boolean isFree(Date date) throws RemoteException;
public DayEvent plan(DayEvent event) throws RemoteException, CalendarException;
public string[] listEvents() throws RemoteException;
public string getName() throws RemoteException;

Remote Method Invocation © Benoit Garbinato d O) p | X
a

A typical remote class

public class CalendarServer _extends UnicastRemoteObject implements CalendarService {
private Hashtable calendars;

public CalendarServer() throws RemoteException {
calendars= new Hashtable();

}
public DayCalendar createCalendar(String name) throws RemoteException, CalendarException {

if (calendars.containsKey(name)) throw new CalendarException(name + "\" already exists.");

DayCalendar newCal= new DayCalendarImpl (name);
calendars.put(name, newCal);
return newCal;

}
public DayCalendar getCalendar(String name) throws RemoteException, CalendarException ({

if (!calendars.containsKey(name)) throw new CalendarException(name + "\" does not exist.");
return ((DayCalendar) calendars.get(name));
}
public ArrayList getCalendars() throws RemoteException {
return new ArraylList(calendars.values());
}
public boolean exists(String name) throws RemoteException {
return calendars.containsKey (name);

}

Remote Method Invocation © Benoit Garbinato

| 1
=
&
S v = N - o N - e - e o N o N - e =N = = 4

E |
- . - = = = = = = = = = =
L]
-

Argument passing rules

. Awn argument or a return value can be a priml’cl\/e
type, a local sertalizable objcot (L.e, tmplementing
Java.io.Serializable), or a remote object.

A primitive type value Ls passed b Y copy.

A Local object is also passed by copy, using
standaro object serialization.

A remote object Ls passed by reference, L.e., Lts
proxy is passed rather than the object itself.

Remote Method Invocation © Benoit Garbinato d O) p | X
a

Deployment time

| Start the vt registry
2. Start the server process
3. Startthe client Process

@ CalendarService
[—
Ej < calendarServer Stub

z Da 5caLewdar
rmiL

calendarseni L L
enodarservice \ regbs’crH caLewalarExceptLow

calendarserver Stub
& erver_ Dagevewt

DaaCaLewdar

Da 5caLewolarlmpL

S, S,
—

calendarexception
XCEP — Calendarserver

DayEvent Java Java

calendarclient client Server K
process process

Payca lendartmpl_stub)

Remote Method Invocation © Benoit Garbinato d O p |

payca lendartmpl_stub

o [glao!

Ow the server we have:
CalendarServer theServer= new CalendarServer();
whereas on the client we have:

CalendarService calServ=
(CalendarService) Naming.lookup(calServName);

why this difference?

where are calendars Located?
How odloes the client get access to calendars?

How do we communicate with the rmi regustry ?

Remote Method Invocation © Benoit Garbinato d O) p | X
a

RMI callbacks (1)

O A remote objeot does not need to be registered
n the naming service to be remotely
accessible, e.9., Paycalendartmpl.

The client can also make an object remotely
accessible to the server, allowing the Latter to
asywnchronously call back the client, e.g.,
to wotiﬁj the client that a new event was
scheduled on some calendar.

Remote Method Invocation © Benoit Garbinato d O) p | X
a

RMI callbacks (2)

public interface CalendarListener extends Remote {
public void eventPlanned(DayEvent e) throws RemoteException;
}

public interface DayCalendar extends Remote {
public boolean isFree(Date date) throws RemoteException;
public DayEvent plan(DayEvent event) throws RemoteException, CalendarException;
public string[] listEvents() throws RemoteException;
public String getName(.). throws RemoteException;
public void addListener(CalendarListener 1) throws RemoteException;

}

public class CalendarClient extends UnicastRemoteObject implements CalendarListener ({

public static void main(String[] args) throws Exception {
String calServName= "//www.acme.com/Calendar";
CalendarService calServ= (CalendarService) Naming.lookup(calServName) ;
DayCalendar dno= calServ.getCalendar("Dr. No");
CalendarListener calist=-new-CalendarClient();
dno.addListener (calist);
dno.plan(new DayEvent(new Date(), "Conquer the world"));
}
public void eventPlanned(DayEvent e) throws RemoteException {
System.out.println("--> New event planned: " + e);

}
}

Remote Method Invocation © Benoit Garbinato

RMI callbacks (3)

public class DayCalendarImpl extends UnicastRemoteObject implements DayCalendar {
private TreeSet eventSet;
private ArrayList listeners;

public void addListener(CalendarListener 1) throws RemoteException {
listeners.add(1l);
}
private void notifyListeners(DayEvent e) {
Iterator iter= listeners.iterator();
while (iter.hasNext())
try {
((CalendarListener) iter.next()).eventPlanned(e);
} catch (RemoteException re) { System.err.println("Notification failed"); };
}
public DayEvent plan(DayEvent event) throws RemoteException, CalendarException ({
if (eventSet.contains(event)) throw new CalendarException("The date is not free");
eventSet.add(event);
notifyListeners(event);
return event;

client 1 Dr. no's calendar client 2
e addLListener (this) ,

= T;] plan (new Event(...))

eventPlanwned(...) D(D

Remote Method Invocation © Benoit Gar| ' !

Dynamic code download (1)

O The java platform allows for the
dyna mic download of classes from
any URL (Uniform Resource Locator)

Class Loader Java Class

Java Bytecode ¢ Libraries
Source erifier
(.java)

Java Java

Bytecodes Virtual

Java
Compiler

move locallv ﬁ D Machine
y

or through
network

Java

Java ¢
Bytecodes Operating System

(.class) ¢

Hardware

Remote Method Invocation © Benoit Garbinato

Dynamic code download (2)

O The proxy Ls located on the client but it
conceptually belongs to the server

O Because we have a Java Virtual Machine
on both the server and the client, Lt Ls
posstble to have the proxy class move from
the server to the client at runtime
(dy nawte code dowwnload)

O pywawmie code download can be used not
only for proxies but for any java class

Remote Method Invocation © Benoit Garbinato d O p |
a

Dynamic code download (3)

Java<njava.rmi.server.codebase=http://server.com/

@@

rmi registry

[ava=B|ava.rml.server.codebase =http:/client.com/
J 3

calendarservice

calendarserver Stub

caLewalarcLiewt_Stub \ }M M< Dagcatewdar

web server web server

, g ——— B
calendartListener @ @ calenda rException
I ——

calendarservice paycalendartmpl_stub '

I —— ,
DagcaLewdar @ (@ calendarlistener
s | | = S, |
— Py
— . e
ERZEa [3 Java Pageaiendorie.
cananrci R cerver |

‘PVDGCSS ‘PYDGCSS

Remote Method Invocation © Benoit Garbinato d O p |

o [glao!

Security viewpoint

O From a securi’ca viewpoint, downloading
classes Ls a critiecal action (L.e., potethaLLg
dawngerous)

O For this reason, whew code dowwnload Ls
activated (via the java.rmi.server.cooebase
property), the java Virtual Machine requires
a security manager to be Lnstalled

O The security policy enforeed by the security
manager can be expressed declaratively tn a
security policy file

Remote Method Invocation © Benoit Garbinato d O p |

Security manager & policy

Source code:

command Line:

'PoLLc;j files:
(my .poLLcﬁ)

Rruntime:

if (System.getSecurityManager() == null)
System.setSecurityManager (new RMISecurityManager());

Jjava -pjava.security.policy = my.policy

grant {
permission java.net.SocketPermission "server.com:1024-65535", "connect,accept";
permission java.net.SocketPermission "server.com:80", "connect,accept";

5

grant {
permission java.net.SocketPermission "*:1024-65535", "connect,accept";
permission java.net.SocketPermission "*:80", "connect,accept";

g

Remote Method Invocation © Benoit Garbinato d O p |

[__Some object | SecurityManager AccesController
| |

|
e |
critical system call |

checkPermission()

o [glao!

Dlstrlbuted Garbage Collectlon

O The)ava pLatform transparently extends
garbage collection to distributed objects. This
extemsion Ls Rnown as Distributed Garbage
Ccollection (DGL).

O A remote object is collected whew there no Llonger
exists any remote or Local references to it

O Awny object referenced by the naming service
(rmet registry) Ls not collected

Remote Method Invocation © Benoit Garbinato d O p |

Unreferenced vs. finalized

O BY wmplementing the Lnreferenced tnterface, a
remote object can ask to be notified whew there no
longer extsts any remote references to Lt

O n the unreferenced () method, the remote object is

given the opportunity to release some resources,
e.9., the remote reference on a another remote object

public class DayCalendarImpl extends UnicastRemoteObject implements DayCalendar, Unreferenced {

public void unreferenced() {
System.out.println("-> Oups, I am no longer remotely referenced!");
}

protected void finalize() throws Throwable ({

System.out.print("This time, I am really about to be garbage collected...”);
System.out.print("so bye bye cruel world!");

}
}

Remote Method Invocation © Benoit Garbinato

dop: : :

Limitations of DGC

O Awn tmplementation of PGC should ensure

0 sa{e’cg, which tmplies not collecting too early
O CLiveness, which implies eventually collecting

O Due to tts tnherent decentralized wature, the
implementation of DGC Ls based own reference

counting, which poses several Lssues:

O It does not deal properly with cirewlar references
0O it does wot deal properly with asywehronous systems

O Partial solution: the notion of Lease

Remote Method Invocation © Benoit Garbinato d O) p | X
a

The notion of lease

O A lease Ls a remote reference with a validity
Limeited tn time

O n)ava, remotes references are actually leases

O f the client does not renew Lts Lease before
the associated timeout e)qaires, the reference
counter on the server stoe Ls decremented

O Leases are automatwaLLg managed for You,
L.e., the renewal Ls automatic as long as the
client Ls alive and the remote reference exists

Remote Method Invocation © Benoit Garbinato d O) p | X
a

