
Remote Method
Invocation

Benoît Garbinato

Remote Method Invocation © Benoît Garbinato

Fundamental idea (1)
Rely on the same programming paradigm
for distributed applications as for
centralized applications

In procedural languages, we will rely on
the notion of Remote Procedure Call (RPC)

In object-oriented language, we will rely on
the notion of Remote Method Invocation (RMI)

Remote Method Invocation © Benoît Garbinato

Goals of this lesson

Learn about the concepts behind remote
method invocations / remote procedure calls

Learn how these concepts are implemented
in the Java distributed platform

Remote Method Invocation © Benoît Garbinato

Fundamental idea (2)

A remote method (procedure) is transparently invoked
(called) across the network, as if it was local

client server

call / invocation

Process BProcess A

Remote Method Invocation © Benoît Garbinato

RPC: some history
1979 Bill Joy introduces the “Berkeley Enhancements”, mainly interprocess

communication (IPC) facilities. The modern network Unix is born (BSD).

mid 80’s Sun Microsystems uses BSD Unix as operating system for their
workstations. They extends it with RPC, on top of which they build NFS and
NIS (later on NIS+).

1988 The Open Software Foundation (OSF) is formed to develop a portable open
system platform, known as the Distributed Computing Environment (DCE).
The latter proposes DCE RPC as basic communication mechanism.

mid 90’s The Object Management Group (OMG) follows the same approach to devise
the Common Object Request Broker Architecture (CORBA) for object-based
middleware. At the same time, Sun greatly simplifies & extends the RMI
paradigm its Java & Jini platforms.

Today Web Services are a widespread approach to invoke remote services on the web
but they are really just a web-flavored version of the good old RPC/RMI
paradigm, using HTTP & XML/JSON.

Remote Method Invocation © Benoît Garbinato

A local method invocation

parameter 1
parameter 2

...
parameter n

result

client server

call stack

parameters

result

result = server.foo(parameters)

stack frame of foo(...)

Remote Method Invocation © Benoît Garbinato

A remote method invocation

network

client server

client stub

transport

server stub

transport

parameters

request request

parametersresult result

reply reply

Remote Method Invocation © Benoît Garbinato

The notion of proxy
A proxy is the representative of a server
object in the address space of the client

A proxy implements the same interface
as the server (but not in the same way)

client proxy server

foo(...)
foo(...) this is where the

real work is done
client space server space

Remote Method Invocation © Benoît Garbinato

Java RMI
In Java, Remote method invocation is integrated
in the standard class library, via packages such
as java.rmi, java.rmi.server, etc.

In addition , Sun’s Java Development Kit (JDK)
includes a set of tools for supporting RMI, e.g.,
rmic, rmiregistry, etc.

We can distinguish three distinct times when
building rmi-based applications, namely
development, deployment and execution.

Remote Method Invocation © Benoît Garbinato

Execution time
1. The server object registers its name & proxy

in the naming service (rmi registry)

2. The client object obtains a proxy of the
server object via that naming service

3. The client object can then invoke the server
proxy, which will then forward the
invocation to the server object

Remote Method Invocation © Benoît Garbinato

Server side: create & bind

public class CalendarApp {
 ...
 public static void main(String[] args) throws Exception {
 String theName= "Calendar";
 CalendarServer theServer= new CalendarServer();

 Naming.rebind(theName, theServer);
 System.out.println("Calendar service is running!");
 }
}

Remote Method Invocation © Benoît Garbinato

Client side: lookup & use
public class CalendarClient {
 ...
 public static void main(String[] args) throws Exception {
 String calServName= "//www.acme.com/Calendar";
 CalendarService calServ=
 (CalendarService) Naming.lookup(calServName);

 calServ.createCalendar("James");
 Collection allCals= calServ.getCalendars();
 DayCalendar dno= calServ.getCalendar("Dr. No");
 String[] elist= dno.listEvents();
 }
}

Remote Method Invocation © Benoît Garbinato

Calendar Application
client rmi registry calendar service

James' calendar

Dr. no's calendar

lookup(...)

rebind(...)

 new DayCalendarImp("James")createCalendar ("James")

getCalendar ("Dr.No")

listEvents()

listEvents()

proxy

Remote Method Invocation © Benoît Garbinato

Development time
1. Define the interface of the remote service

2. Implement the client and server classes in
a decoupled way, thanks to the interface

3. Use javac to compile all above sources

4. Use the rmic compiler to create the proxy of
the remote class for you

Remote Method Invocation © Benoît Garbinato

Typical remote interfaces

import java.util.*;
import java.rmi.*;

public interface DayCalendar extends Remote {
 public boolean isFree(Date date) throws RemoteException;
 public DayEvent plan(DayEvent event) throws RemoteException, CalendarException;
 public String[] listEvents() throws RemoteException;
 public String getName() throws RemoteException;
}

import java.util.*;
import java.rmi.*;

public interface CalendarService extends Remote {
 public DayCalendar createCalendar(String name) throws RemoteException, CalendarException;
 public DayCalendar getCalendar(String name) throws RemoteException, CalendarException;
 public ArrayList getCalendars() throws RemoteException;
 public boolean exists(String name) throws RemoteException;
}

Remote Method Invocation © Benoît Garbinato

A typical remote class
public class CalendarServer extends UnicastRemoteObject implements CalendarService {
 private Hashtable calendars;

 public CalendarServer() throws RemoteException {
 calendars= new Hashtable();
 }
 public DayCalendar createCalendar(String name) throws RemoteException, CalendarException {
 if (calendars.containsKey(name)) throw new CalendarException(name + "\" already exists.");
 DayCalendar newCal= new DayCalendarImpl(name);
 calendars.put(name, newCal);
 return newCal;
 }
 public DayCalendar getCalendar(String name) throws RemoteException, CalendarException {
 if (!calendars.containsKey(name)) throw new CalendarException(name + "\" does not exist.");
 return ((DayCalendar) calendars.get(name));
 }
 public ArrayList getCalendars() throws RemoteException {
 return new ArrayList(calendars.values());
 }
 public boolean exists(String name) throws RemoteException {
 return calendars.containsKey(name);
 }
}

Remote Method Invocation © Benoît Garbinato

Argument passing rules
1. An argument or a return value can be a primitive

type, a local serializable object (i.e, implementing
java.io.Serializable), or a remote object.

2. A primitive type value is passed by copy.

3. A local object is also passed by copy, using
standard object serialization.

4. A remote object is passed by reference, i.e., its
proxy is passed rather than the object itself.

Remote Method Invocation © Benoît Garbinato

Deployment time
1. Start the rmi registry
2. Start the server process
3. Start the client process

server
process

rmi
registry

server machine

 CalendarServer_Stub

 CalendarException

 CalendarService

 DayCalendar

 DayEvent

 DayCalendarImpl

 CalendarServer

 DayCalendarImpl_Stub

client
process

client machine

 CalendarServer_Stub

 CalendarException

 CalendarService

 DayCalendar

 DayEvent

 CalendarClient

 DayCalendarImpl_Stub

①

②

③

Remote Method Invocation © Benoît Garbinato

Checkup
On the server we have:

CalendarServer theServer= new CalendarServer();
whereas on the client we have:

CalendarService calServ=
 (CalendarService) Naming.lookup(calServName);

why this difference?

Where are calendars located?

How does the client get access to calendars?

How do we communicate with the rmi registry ?

Remote Method Invocation © Benoît Garbinato

RMI callbacks (1)
A remote object does not need to be registered
in the naming service to be remotely
accessible, e.g., DayCalendarImpl.

The client can also make an object remotely
accessible to the server, allowing the latter to
asynchronously call back the client, e.g.,
to notify the client that a new event was
scheduled on some calendar.

Remote Method Invocation © Benoît Garbinato

RMI callbacks (2)
public interface CalendarListener extends Remote {
 public void eventPlanned(DayEvent e) throws RemoteException;
}

public interface DayCalendar extends Remote {
 public boolean isFree(Date date) throws RemoteException;
 public DayEvent plan(DayEvent event) throws RemoteException, CalendarException;
 public String[] listEvents() throws RemoteException;
 public String getName() throws RemoteException;
 public void addListener(CalendarListener l) throws RemoteException;
}

public class CalendarClient extends UnicastRemoteObject implements CalendarListener {
 ...
 public static void main(String[] args) throws Exception {
 String calServName= "//www.acme.com/Calendar";
 CalendarService calServ= (CalendarService) Naming.lookup(calServName);
 DayCalendar dno= calServ.getCalendar("Dr. No");
 CalendarListener calist= new CalendarClient();
 dno.addListener(calist);
 dno.plan(new DayEvent(new Date(), "Conquer the world"));
 }
 public void eventPlanned(DayEvent e) throws RemoteException {
 System.out.println("--> New event planned: " + e);
 }
}

Remote Method Invocation © Benoît Garbinato

RMI callbacks (3)
public class DayCalendarImpl extends UnicastRemoteObject implements DayCalendar {
 private TreeSet eventSet;
 private ArrayList listeners;
 ...

 public void addListener(CalendarListener l) throws RemoteException {
 listeners.add(l);
 }
 private void notifyListeners(DayEvent e) {
 Iterator iter= listeners.iterator();
 while (iter.hasNext())
 try {
 ((CalendarListener) iter.next()).eventPlanned(e);
 } catch (RemoteException re) { System.err.println("Notification failed"); };
 }
 public DayEvent plan(DayEvent event) throws RemoteException, CalendarException {
 if (eventSet.contains(event)) throw new CalendarException("The date is not free");
 eventSet.add(event);
 notifyListeners(event);
 return event;
 }
 ...
}

client 1 Dr. no's calendar
addListener(this)

client 2

plan(new Event(...))
eventPlanned(...)

Remote Method Invocation © Benoît Garbinato

Dynamic code download (1)
The Java platform allows for the
dynamic download of classes from
any URL (Uniform Resource Locator)

Remote Method Invocation © Benoît Garbinato

Dynamic code download (2)
The proxy is located on the client but it
conceptually belongs to the server

Because we have a Java Virtual Machine
on both the server and the client, it is
possible to have the proxy class move from
the server to the client at runtime
(dynamic code download)

Dynamic code download can be used not
only for proxies but for any Java class

Remote Method Invocation © Benoît Garbinato

server
process

rmi registry

server machine

 DayEvent

 DayCalendarImpl

 CalendarServer

 CalendarServer_Stub

 CalendarException

 CalendarService

 DayCalendar

 DayCalendarImpl_Stub

client
process

client machine

 CalendarException

 DayCalendar

 DayEvent

 CalendarClient

web server

 CalendarListener

web server

 CalendarService

 CalendarListener

 CalendarClient_Stub

Dynamic code download (3)
②

③

java -Djava.rmi.server.codebase=http://server.com/ ...

java -Djava.rmi.server.codebase=http:/client.com/ ...

①④

⑤

this is added to the classpath

Remote Method Invocation © Benoît Garbinato

Security viewpoint
From a security viewpoint, downloading
classes is a critical action (i.e., potentially
dangerous)

For this reason, when code download is
activated (via the java.rmi.server.codebase
property), the Java Virtual Machine requires
a security manager to be installed

The security policy enforced by the security
manager can be expressed declaratively in a
security policy file

Remote Method Invocation © Benoît Garbinato

Security manager & policy

Java runtimeSome object SecurityManager AccesController

critical system call

check

checkPermission()

java -Djava.security.policy=my.policy ...

grant {
 permission java.net.SocketPermission "*:1024-65535", "connect,accept";
 permission java.net.SocketPermission "*:80", "connect,accept";
};

grant {
 permission java.net.SocketPermission "server.com:1024-65535", "connect,accept";
 permission java.net.SocketPermission "server.com:80", "connect,accept";
};

if (System.getSecurityManager() == null)
 System.setSecurityManager(new RMISecurityManager());

Source code:

Command line:

Policy files:
(my.policy)

Runtime:

cl
ie

n
t

se
rv

er

Remote Method Invocation © Benoît Garbinato

Distributed Garbage Collection
The Java platform transparently extends
garbage collection to distributed objects. This
extension is known as Distributed Garbage
Collection (DGC).

A remote object is collected when there no longer
exists any remote or local references to it

Any object referenced by the naming service
(rmi registry) is not collected

Remote Method Invocation © Benoît Garbinato

Unreferenced vs. finalized
By implementing the Unreferenced interface, a
remote object can ask to be notified when there no
longer exists any remote references to it

In the unreferenced() method, the remote object is
given the opportunity to release some resources,
e.g., the remote reference on a another remote object

called by the distributed garbage collector

called by the local garbage collector

public class DayCalendarImpl extends UnicastRemoteObject implements DayCalendar, Unreferenced {
 ...
 public void unreferenced() {
 System.out.println("-> Oups, I am no longer remotely referenced!");
 }
 protected void finalize() throws Throwable {
 System.out.print("This time, I am really about to be garbage collected...”);
 System.out.print("so bye bye cruel world!");
 }
}

Remote Method Invocation © Benoît Garbinato

Limitations of DGC
An implementation of DGC should ensure

Safety, which implies not collecting too early
Liveness, which implies eventually collecting

Due to its inherent decentralized nature, the
implementation of DGC is based on reference
counting, which poses several issues:

It does not deal properly with circular references
It does not deal properly with asynchronous systems

Partial solution: the notion of lease

Remote Method Invocation © Benoît Garbinato

The notion of lease
A lease is a remote reference with a validity
limited in time

In Java, remotes references are actually leases

If the client does not renew its lease before
the associated timeout expires, the reference
counter on the server side is decremented

Leases are automatically managed for you,
i.e., the renewal is automatic as long as the
client is alive and the remote reference exists

