


learning ==
objectives =€

+ understand the role of an operating system
» understand the role of interpreters and compilers

+ understand the role of runtime systems ¢ libraries



what's system software?

application software consists in programs that help
to solve a particular computing problem,
e.g., write documents, browse the web, etc.

system software consists in programs that sit
between application software and the hardware,
providing common services to application software



examples of
system software

< oPeraﬁng s1s1’ems, game engines
+ virtual machines and interpreters

o language runtimes, standard hbraries



bits of history
it

no system software °
batch systems

multi-user & ’rime-sharmg
personal desktop computers

distributed s~,sfems

mobile s~,s‘|’ems

the
sharing era

= the
personal era

{

A

4 the
~ communication era

the digital

e/ transformation era

ubiquitous systems




no systems software

+ 1940s: programming based
on dials £ switches

+ 1950s: single user, punched
cards, paper tape

Coame|2 |

staTevent i FORTRAN STATEMENT 1wexrnicaTion
wouser |3

0000000 0 (] 0000000
iy cslir s RN DN AT AN RN RN AR DU NN QU CE A AR ED USRI RN NN COKERO RO RIS R NN NN R
R R R R N RN NN RN R E RN R R AR RN R R NN RERRRNE

|
2§222202222222222222222222222222222222222222222222222222222222222222222222R22222122
333330301 33333323233333322333333333333233332333333332333333323233333333333B3333323
1
qtltll(l((ll‘l4llldlll((l(44‘4441((I(llll4‘l(l4‘44444(44!44‘444444!1‘(‘4‘4!!4‘4‘

S5 555555555555 5555555555555555555555555555555555555555555555555555555555/555555583

4665!E55E55SSSS‘SS55G6GB‘GGSS(SSEGS(SSSGGCISSE66‘5ESSGSiﬁ‘GSGSGESGC(S!SSG“SEB“

IRER NN RERRERERRERER R ERER LR AR AR RN R R DR RERRRRRRRRRRERRRRRRRRRREREIIERRERRR
483!! S88608E08883685808088835882888008086503888830388808008880808882888008888820458
i!,9!9!99’9!l!!!99!99!!!!!l!,!i!!!!!!!!Q9!!:!!!!99!S!!!S!l!i!’!!!!!!!!!S!!

" L

aw 14

slssss
I sl A RN DO NB DU NE RN NBEDAARNDDAB RN U RGN COHGEOUORNINOUBRIAN RN COUGHOUUNTI DD DN I NS
snnis




kwos  batch S\,S‘f ems

-ggpe - S¥:t2m ot (@) put cards into reader
Card ta%e ; i . t:;)eu (b) read cards to tape
) r !@ S| ) 5|(2)| Printer (c) put input tape on computer
E' O 1.9 ]S, o (d) perform the computation
(AT | (T (TG (€) put output tape on printer
iInput computer output (f) print output tape on paper

(@) (b) () (d) (e) (f)

* first uni-programmed batch systems —

. . . . program
m wait — wait — wait — wait |
» time

+ then multi-programmed batch systems g

m > program A program A
wait m wait m wait run
» program B
wait it
LUl - m_> program C
ETRCTIRTRCTIRY - ETIETE A
combined

program B




19705 mul’ri-user £ time-sharing

- Ke ‘(hoﬁpsoﬁ ¢Denms Ritchie @ Bell Labs/

+ 1960s: disasters... but great learning & innovations
o 0S/360: yJears behind schedule, shipped with 1000 known bugs
o Multics: started in 1963, working in 1969, far too complex

+ 1970s: finally mastering complexity thanks to:
O higher level structured languages (Rigol, C, Pascal, etc.)
o portable operating systems code (C was invented for that)
o stacking layers (kernel, compilers, libraries, etc.)



1980 1990 2000 2010 Time

_" FreeBSD 9.1 I

BSD family | NetBSD 6.0.1 |

L»‘ OpenBSD 53 |

~»{ BSD (Berkeley Software Distribution) 4.4 |
Bill Joy

—| sun0s 414 |

Darwin
»| NextStep 3.3
i Mac OS X 10.84 |

Apple

i f
Microseft/SCO GNU/Hurd K16 _

»-
Richard Staliman .'PI GNU/Linux 3‘10.9|
F[Mlnixi Linus Torvalds 321
Andrew S. Tanenbaum o

Research UNIX 105 |

Bell Labs: Ken Thompson, , ]
Dennis Ritchie, et al. | Commercial UNIX I UnixWare

AT&T L Univel/SCO
» Solaris 111111 |

Sun Microsystems

System 11l & V family [»|_Hp-ux 11iv3 |

— 71711 |
IBM

> IRIX 6530 |
5G|

+ after the Multics “disaster”, Ken Thompson, Dennis Ritchie ¢ others decided
to redo the work on a much smaller scale at Bell Labs

+ in 1972, Unix was rewritten from assembw Ianguage to C programming
language, resulting in the first portable operating system

+ in 1915, Ken Thompson was on sabbatical at Berkelesl and worked with Bill
Jo\,, then a graduate student, which eventually lead to BSD Unix

+ in 1980, the DRARPA project chose BSD Unix as basis for DARPANet

+ in 1982, Bill Joy joined Sun Microsystems six months after its creation as full
co-founder and extended BSD Unix to make it a networked operating system



Q mcn)processor IS Q comPufer processor mfegrahng all
functions of a central processing urm‘ on a single ch|p

the number of ’rrannsh)rs in a dense mfegra'recl

cw*curt doubles appromma‘relxl everxl ‘Iwo ~|ears

+ this is unique across all engineering £fields

+ transportation increased speed from 20 km/h (horse) to 2'000
km/h (concorde) in 200 years but the computer industry has
been doing this every decade for the past 60 years

+ the advent of the microprocessor triggered the decline of
mainframes and led to the personal computer revolution



writing system software is about
mas’rering exponenﬁal comPlexH’s,

Rs long as there were no machines, programming was no problem at all; when
we had a few weak computers, programming became a mild problem and now
that we have gigantic computers, programming has become an equally gigantic
problem. In this sense the electronic industry has not solved a single problem, it
has only created them - it has created the problem of using its products.

Edgster Dijkstra, The Humble
Programmer. Communication of the
RCM, vol. 1S, no. 10. October 1972.
Turing Rward Lecture.

the industry
1S how going

multicore

S

| Processor

ol




1980s: one man, one comPui'er

o workstation, personal computers 2000s: my phone is my computer
© graphical user interfaces o smartphones £ tablets as computers
O generalization of wireless networks

1990s: the network is the computer

0 the Internet accessible to all 2010s: ever11'hing s a comPufer
O distributed operating systems o smart objects £ the \nternet of things
o personal networks connected to the cloud



oPemﬁng s~,s‘rem

!mmmm#
gﬁt L AT
mmmmg

controls the access to hardware resources (cpu,
memory, input/output devices, etc.) and acts
as an interface with application software



s~,s’rem

processor modes

+ kernel mode (s1s1'em)

{ libraries | runtimes | interpreters } + user mode (application)

ma:x:az.u e ——— W“

system calls ' M;;w 3 wmw‘;r*g

kernel

a"f‘a"
A i P"q ?'“i

MAMﬂMﬁ 4

.E‘ 7

- @k I

-

E/‘
hardware

user space
accessed in

application ; [ user mods
software y . E

accessed in
kernel mode




oPera’ring s~,s1’em

resources managed bx, 0perahng s1sfems

+ Cpu: process managemen‘l’

ke~,board mouse, display

touch screen, haptic m'terface network

printer, audio device, connectors (usb, dvi, etc.)
compass, accelerometer, global posiﬁoning s~,s‘tem

» input/output: i/0 management = - et..

* Memory: memory managemen‘l'

¢ ¢ ¢ 9

» storage: storage and file management

realiﬂ abstraction
(ph1sical resources) (virtual resources)

n parallel cores m concurrent threads, with m > n

subset of 2k addressable memory full 2k addressable memory
on a k bits machine, e.g., for k = 64, for k = 64, this is 16 exabytes
memor‘, this is typically 8 to 32 gigabytes = ]6 x 106 terabytes = 16 x 10V gigabytes

in addition, each thread can access the full 2k addressable memory as if it was for its exclusive use

sforage hard disk drive (hdd), solid state drive (ssd), usb keys, etc... file system offering persistency

network i network interfaces, e.g., wifi, ethernet J network connections, with with j > i




executions and interpreters

concepf examPles
PYOQYGMP\ / \z<—z+1/ an addrho\l<—z+1/
. g wn’n‘en n
written in
language L L | =0 PY“‘"’” | ‘Co“‘)“ var 1=0;
swift

B oPerahngs\,rl'emos
controlling machine
execuﬁng Ianguage M

Samsung S MachBook Pro Oracle Server

M [ running Android  running 0S X running Solaris
\/ ' on ARM on \ntel on SPARC

machine language M & instruction set & b11'e code

solaris
SPARC




executions and interpreters

concep1’ examPles
ProgYGMP\ / \z<—z+1/ an addrho\l<—z+1/
S ' wnh‘en in
written in
language L | L o, | Pithon | scala oo
running on swift
machine L L

N

program Ianguage must
match machine language

soLaris

(e SPARC

‘ Samsung S7 MacBook Pro Oracle Server
I running RAndroid running 0sS X running Solaris
we forgef about the on ARM on \ntel on SPARC

operating system for now




executions and interpreters

concepf examPles
PYOQYGMP\ / \l(—l+l/ an add“ho\l<—1+l/
e -' wn’n‘en in
written in
Ianguage L L ; 1 - (1) » P1‘|’h0n scala var 1 - ({,
running on
machine L L

program Ianguage must
match machine language

we forget about the
operating system for now




executions and interpreters

concept | examples
P ‘ P
PYOQYQMP\ / \i<—i+1/ anadd“ho\z(—z+l/
written n

written in |
language L L i 1 - (1) » P1“’h0n ‘ scala var 1 - ({,
running on L @
in’rerpre’rer L

M SPARC

running on
machine M M

an interpreter d1namicall1 translates
Ianguage L nto Ianguage ™M

solution!




executions and interpreters

concept | examples
P \ P
PYOQYQMP\ / \l<—l+1/ an addrho\z<—z+l/
wnh‘en n
written n ;: l
language L L B P*:;"’" W ‘;“ o i
running on L =3
interpreter L -
M i@
intel)

running on
machine M M

an interpreter d1namicall1 translates
Ianguage L nto Ianguage ™M

N




executions and interpreters

concep‘l’ ‘ examPles
PYOQYGMP\ / \i<—i+1/ m"addrh()\z<—z+1/
written n
written n F l
§ - scala |var i = 0;
language L L | - p1;hon ‘ ! el
running on L !
interpreter L S,
M ] Java bytecode
JGVG
running on virtual J <§>
machine M M machine | 1 java bytecode
SPARC
an interpreter dynamically transiates interpreter & emulator
language L into language M & virtual machine SPARC

~._




what's a compiler

a program that translates
human-understandable source code to
machine-understandable bx,fe code

0J010010100101011000100101011001101001110011111001101010...

swift compiler

h

wy
WA
A

il
VIV

scala compiler

i80011101100010010101100110100111001110011010...



what's a compiler

concep‘l’ examPles

compiler translating ‘ & RN <|@

to «
source target | /‘) =
language S - L lanquage | @t/el ! byf:ﬁj e
M intel.
i i IS 1S a cross-compiler
implemented in M th P

(inteD) \/@
/5 compilation | execution
@ time | time




what's a compiler

the example of java

quick quick quick
sort sort sort

¢ [« <[ « <
< < bytecode bytecode ’ bytecode
7 (intel)‘: L %(g)
the javac the )ava by?”d
command (intel‘)’ command —
\/ (mtel)
(intel“)
\/



what's a compiler

the example of java

o —

quick quick quick
sort sort sort

! é-{) é-{) | | g)
bytecode bytecode g bytecode

7/ (intel)*: . g,

the scalac the scala by?”d
command intel, command
~— intel)

Could we use the java command
instead of the scala command?




static vs. dx,namic

RANSLATION

the translation occurs at compile time, before
the execution, while the program is static

———— e —————— e e ——— = — = = — — — ——— _ __ — __ _ _____ __— T o=

NTERPRETATION

the interpretation occurs at run time, during
the execution, while the program is dynamic




» What are runtime
. systems £ libraries?

a library contains predefined bricks (functions,
objects, etc.) that help create software, e.g.,
strings, dates, lists, input/output functions, etc.

a runtime system is the mortar that glues the
various parts of software during execution

= where is args stored? }._—-_z‘

: . : g , 5
where does def rTImn at:gs rray Strl*w:ng where do Array ¢
println(...) >pr1nt1nA Hello, world! String come from ?

come from?

object HelloWorld

how 15 “Hello, world!”
passed to printin(..)?




what are runtime
systems & libraries?

where s args stored? }

object HelloWorld
def main(Cargs

Array[String where do Array f'

where does : 7 o
—— println("Hello, world! String come from ?

println(...) \
come from?

how 15 “Hello, world!”
passed to printin(..)?

, written in ]
quick quick
sort ! sort
é{) scala | ;éf/)
Java | Java
bytecode %} bytecode
‘ ‘ —
cg) x cg)
Java Java
bytecode bytecode
- ) the scala runtime the java runtime - )
intel system & library system & library intel




