
Scala Cheat Sheet

Topic Description Examples

Comments Help you understand and document your code. //single line comment

/*
Multi-line comment
ya da ya da
*/

Types Any value needs to have a clearly specified type. • The value 2 is of type Int
• The value 2.43 is of type Double
• The value true is of type Boolean
• The value 'a' is of type Char
• The value “a” is of type String

Variables Variables hold values or references to where values are
stored in memory. Variables can be immutable (val) or
immutable (val). The scope of variables depends upon
the scope in which they are defined.

val x: Int = 5

var y: Int = 6
y = 7//reassingment

Assignment
Operator

Equals sign sets the variable on the left to the value of
the expression on the right

y = 7

Maths
Operators

Just as you'd expect... Addition (+)
Multiplication (*)
Subtraction (-)
Division (/)
Modulus(%)

Comparison
Operators

All good, but pay heed to equality operator (two
equals signs in a row)

< (less than)
> (greater than)
<= (less than or equal to)
>= (greater than or equal to)
== (test for equality)

Logical
Operators

Not (!)

And (&&)

Or (||)

if (!playing)//if not playing is true

if (alive && playing)//both must be true

if (alive || playing)//if alive or playing are true

Functions Enables you to break your code up into logical
functional modules.

//a function that takes no parameters and returns nothing
def printHi(): Unit = println(“Hi”)

//or multi-line version
def printHi(): Unit = {
 println(“Hi”)
 println(“There”)
}

//a function that takes parameters but returns no value
def print(message: String): Unit = {
 println(message)
}

//a function that takes parameters and returns a value
def percent(score: Double, total: Double): Double {
 (score/total)*100
}

//a function call
val p: Double = percent(30, 40)

Conditional
Statement - If

Handle logical branching – if some condition is true
then do something, if not then do something else.
Conditions can be embedded.

if (someConditionEqualsTrue) {
 doSomething
} else {
 doSomethingElse
}
//OR
if (someConditionEqualsTrue) {
 doSomething
} else if (someOtherConditionEqualsTrue){
 doSomethingElse
} else {
 doSomethingElseAgain
}

Conditional Another way of handling logical branching. You someVariable match {

Statement –
Match Case

indicate the variable that you are checking. Then each
case statement indicates possible values for the
variable and then something to happen should that
condition be true.

 case someValue => doSomething
 case someOtherValue => doSomethingElse
 case someOtherValue => doSomethingElseAgain
 case _ => catchAnyOtherConditions
}

Arrays Store sets of things. The first item in an array is at
index 0. The last item is at the length of the array – 1.

//declare and assign values
val birds: Array[String] = Array(“hen”, “duck”, “emu”)

//declare and then assign values
val birds:Array[String] = new Array[String](3)
birds(0) = “hen”
birds(1) = “duck”
birds(2) = “emu”

val firstItem: String = birds(0)
val lastItem: String = birds(birds.length-1)

While Loop Basic looping mechanism – only use for main game
loop. Need to make sure that the specified condition
(here 'playing') can be set to false otherwise the loop
never ends (infinite loop).

while(playing) {
 doWhatever
}

For Loop More sophisticated looping mechanism. The for
keyword is followed by a parenthetical statement. On
the right side of this statement is a variable that takes
on each value in the sequence indicated on the right. I
read the '<-” as an arrow (put the value at right into the
variable at left).

//looping from start index to finish index
for(i<-0 to 99) println(i)

//looping through an array
for(bird<-birds)println(bird)

//note if you have multiple statements needed for each //loop
iterations, the write:
for(bird<-birds) {
 whatever
 whatever
}

For Each Another more advanced looping mechanism. Works
with arrays and other types of sequences. You indicate
a function that should run for each item in a sequence.

val a: Array[String] = Array("b", "c", "d")

//print out all the values
a.foreach(println)

//longer winded means of doing the same
a.foreach(arg: String) => println(arg)

//or if you have predefined function (f)
a.foreach(f)

Import Classes Import classes to use in your program. You have to
provide the full package path.

//import specific class
import package.subpackage.ClassName

//import all classes in subpackage
import package.subpackage._

Map Store key-value pairs import scala.collection.mutable.Map
val collection: Map[String, Boolean] = Map("key" -> false, "dagger"
-> true, "ring" -> false)

println(collection("key"))//prints false

Random Import the Random class. Create a new instance of
Random. Establish a maximum value. Calculate a
random value between 0 and one short of the
maximum value.

import scala.util.Random
val random: Random = new Random()
val maxNum: Int = 6
val ranNum: Int = random.nextInt(maxNum+1)

User Input Whenever you read the Console input the program
waits until you enter something and hit return.

//get the input character
val inputChar: Char = Console.readChar()

//get the input String on a single line
val inputString: String = Console.readLine().trim

Classes Classes contain fields (attribute variables) and
methods (functions).

//create class
Class Dog (var name: String) {
 def bark(): Unit = println(“woof, woof!”)
}
//create an instance of Dog and test
val dog: Dog = new Dog(“Fido”)
dog.name //prints out “Fido”
dog.bark //prints out “woof, woof!”)

