Scala Cheat Sheet

Topic Description Examples
Comments Help you understand and document your code. //single line comment
/*
Multi-line comment
ya da yada
*/
Types Any value needs to have a clearly specified type. . The value 2 is of type Int
. The value 2.43 is of type Double
. The value true is of type Boolean
. The value 'a' is of type Char
. The value “a” is of type String
Variables Variables hold values or references to where values are | val x: Int=5
stored in memory. Variables can be immutable (val) or
immutable (val). The scope of variables depends upon | var y: Int = 6
the scope in which they are defined. y = 7//reassingment
Assignment Equals sign sets the variable on the left to the value of |y =7
Operator the expression on the right
Maths Just as you'd expect... Addition (+)
Operators Multiplication (¥*)
Subtraction (-)
Division (/)
Modulus(%)
Comparison All good, but pay heed to equality operator (two < (less than)
Operators equals signs in a row) > (greater than)
<= (less than or equal to)
>= (greater than or equal to)
== (test for equality)
Logical Not (1) if (!playing)//if not playing is true
Operators
And (&&) if (alive && playing)//both must be true
Or (|) if (alive || playing)//if alive or playing are true
Functions Enables you to break your code up into logical //a function that takes no parameters and returns nothing
functional modules. def printHi(): Unit = println(“Hi”)
//or multi-line version
def printHi(): Unit = {
println(“Hi”)
println(“There”)
}
//a function that takes parameters but returns no value
def print(message: String): Unit = {
println(message)
}
//a function that takes parameters and returns a value
def percent(score: Double, total: Double): Double {
(score/total)*100
}
//a function call
val p: Double = percent(30, 40)
Conditional Handle logical branching — if some condition is true | if (someConditionEqualsTrue) {

Statement - If

then do something, if not then do something else.
Conditions can be embedded.

doSomething
} else {
doSomethingElse
}

//OR

if (someConditionEqualsTrue) {
doSomething

} else if (someOtherConditionEqualsTrue){
doSomethingElse

} else {
doSomethingElseAgain

}

Conditional

Another way of handling logical branching. You

some Variable match {

Statement — indicate the variable that you are checking. Then each case someValue => doSomething
Match Case case statement indicates possible values for the case someOtherValue => doSomethingElse
variable and then something to happen should that case someOtherValue => doSomethingElseAgain
condition be true. case _=> catchAnyOtherConditions
}
Arrays Store sets of things. The first item in an array is at //declare and assign values
index 0. The last item is at the length of the array — 1. | val birds: Array[String] = Array(“hen”, “duck”, “emu”
//declare and then assign values
val birds:Array[String] = new Array[String](3)
birds(0) = “hen”
birds(1) = “duck”
birds(2) = “emu”
val firstltem: String = birds(0)
val lastltem: String = birds(birds.length-1)
While Loop Basic looping mechanism — only use for main game while(playing) {
loop. Need to make sure that the specified condition doWhatever
(here 'playing') can be set to false otherwise the loop }
never ends (infinite loop).
For Loop More sophisticated looping mechanism. The for //looping from start index to finish index
keyword is followed by a parenthetical statement. On | for(i<-0 to 99) println(i)
the right side of this statement is a variable that takes
on each value in the sequence indicated on the right. 1 | //looping through an array
read the '<-” as an arrow (put the value at right into the | for(bird<-birds)println(bird)
variable at left).
//note if you have multiple statements needed for each //loop
iterations, the write:
for(bird<-birds) {
whatever
whatever
}
For Each Another more advanced looping mechanism. Works val a: Array[String] = Array("b", "c", "d")

with arrays and other types of sequences. You indicate
a function that should run for each item in a sequence.

//print out all the values
a.foreach(println)

/Nlonger winded means of doing the same
a.foreach(arg: String) => println(arg)

/lor if you have predefined function (f)
a.foreach(f)

Import Classes

Import classes to use in your program. You have to
provide the full package path.

//import specific class
import package.subpackage.ClassName

//import all classes in subpackage
import package.subpackage.

Map Store key-value pairs import scala.collection.mutable.Map
val collection: Map[String, Boolean] = Map("key" -> false, "dagger"
-> true, "ring" -> false)
println(collection("key"))//prints false
Random Import the Random class. Create a new instance of import scala.util. Random
Random. Establish a maximum value. Calculate a val random: Random = new Random()
random value between 0 and one short of the val maxNum: Int =6
maximum value. val ranNum: Int = random.nextInt(maxNum-+1)
User Input Whenever you read the Console input the program //get the input character
waits until you enter something and hit return. val inputChar: Char = Console.readChar()
//get the input String on a single line
val inputString: String = Console.readLine().trim
Classes Classes contain fields (attribute variables) and /[create class

methods (functions).

Class Dog (var name: String) {
def bark(): Unit = println(‘““woof, woof!”)
}

/[create an instance of Dog and test
val dog: Dog = new Dog(“Fido”)
dog.name //prints out “Fido”
dog.bark //prints out “woof, woof!”)

