
iOS Application
Development

A Quick Overview

Benoît Garbinato

iOS Application Development © Benoît Garbinato

Roadmap

The iOS platform overview

Development process & tools

Next steps...

iOS Application Development © Benoît Garbinato

From Mac OS X...

Cocoa
Media

Core Services
Core OS

iOS Application Development © Benoît Garbinato

...to iOS

Cocoa Touch
Media

Core Services
Core OS

iOS Application Development © Benoît Garbinato

Cocoa Touch
Media

Core Services
Core OS

multi-touch events
multi-touch controls
view hierarchies
controllers
web views
image pickers
accelerometer
alerts
etc...

iOS Application Development © Benoît Garbinato

Figure 1-1 Application life cycle

Your code

User taps application icon

main()

UIApplicationMain() applicationDidFinishLaunching:

System asks application to terminate

Application execution terminates

Event
Loop

UIKit

Handle event

applicationWillTerminate:

The Main Function

In an iPhone application, the main function is used only minimally. Most of the actual work needed to run
the application is handled by the UIApplicationMain function instead. As a result, when you start a new
application project in Xcode, every project template provides an implementation of the standard main
function like the one in “Handling Critical Application Tasks.” The main routine does only three things: it
creates an autorelease pool, it calls UIApplicationMain, and it releases the autorelease pool. With few
exceptions, you should never change the implementation of this function.

Listing 1-1 The main function of an iPhone application

#import <UIKit/UIKit.h>

int main(int argc, char *argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

18 Core Application Architecture
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application
Application life cycle

Each application runs in a sandbox
Essentially a callback model, i.e., you have no control over 
the sequence of actions 
executed by application

iOS Application Development © Benoît Garbinato

Nib files are disk-based resource files that store a snapshot of one or more objects. The main nib file of an
iPhone application typically contains a window object, the application delegate object, and perhaps one or
more other key objects for managing the window. Loading a nib file reconstitutes the objects in the nib file,
converting each object from its on-disk representation to an actual in-memory version that can be manipulated
by your application. Objects loaded from nib files are no different than the objects you create programmatically.
For user interfaces, however, it is often more convenient to create the objects associated with your user
interface graphically (using the Interface Builder application) and store them in nib files rather than create
them programmatically.

For more information about nib files and their use in iPhone applications, see “Nib Files” (page 29). For
additional information about how to specify your application’s main nib file, see “The Information Property
List” (page 26).

The Event-Handling Cycle

After the UIApplicationMain function initializes the application, it starts the infrastructure needed to
manage the application’s event and drawing cycle, which is depicted in Figure 1-2. As the user interacts with
a device, iPhone OS detects touch events and places them in the application’s event queue. The event-handling
infrastructure of the UIApplication object takes each event off the top of this queue and delivers it to the
object that best suited to handle it. For example, a touch event occurring in a button would be delivered to
the corresponding button object. Events can also be delivered to controller objects and other objects indirectly
responsible for handling touch events in the application.

Figure 1-2 The event and drawing cycle

Operating
system

Event queue

Application
object

Application

Core objects

In the iPhone OS Multi-Touch event model, touch data is encapsulated in a single event object (UIEvent).
To track individual touches, the event object contains touch objects (UITouch), one for each finger that is
touching the screen. As the user places fingers on the screen, moves them around, and finally removes them
from the screen, the system reports the changes for each finger in the corresponding touch object.

20 Core Application Architecture
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

Event & drawing cycle

your code
is here

iOS Application Development © Benoît Garbinato

Typical application template
import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {
 var window: UIWindow?

 func application(_ application: UIApplication, didFinishLaunchingWithOptions
 launchOptions: [UIApplication.LaunchOptionsKey: Any]?) -> Bool {
 return true
 }

 func applicationWillResignActive(_ application: UIApplication) { ... }

 func applicationDidEnterBackground(_ application: UIApplication) { ...}

 func applicationWillEnterForeground(_ application: UIApplication) { ...}

 func applicationDidBecomeActive(_ application: UIApplication) { ...}

 func applicationWillTerminate(_ application: UIApplication) { ...}
}

iOS Application Development © Benoît Garbinato

Development tools
Xcode for editing your source code,
building user interfaces, compiling

The iOS simulator for testing and
debugging your application

You can also use your real iOS device but
you need to be registered as Apple developer

iOS Application Development © Benoît Garbinato

A typical working session

designing

coding

testing

iOS Application Development © Benoît Garbinato

Next steps...

Get familiar with these tools

Do the iOS app development tutorial

