abstract
classes &

' ear ni n g algorithms

your software

o bjec*ives system software

hardware

+ learn how 1o define and use abstract classes
+ learn how 1o define types without implementation

* learn about multiple inheritance of types

a mathematical example
representing matrices

ail ai2 e Ql1n

a rectangular array of elements

v
f 6:0 a1 Q22 A2n
arranged in rows and columns S ;

'2 Aml Am?2 Amn

examples 4 9 13 o m xn matrix

1 [3 7 2| |1 11 7 |

i designates the row

3 2 6 3 J designates the column
3X1 matrix 1X3 matrix 3X3 matrix

> —— — —— — — — s - —_— — _— -
S —— — —_ = — —_— R m—TT —— —— e — e e ——— e e ——
—_ B — e ———— e gp— — — — — ———————= _ — - — = ——— ——

— - e

—— = —— —e————— I —_— _———— | = e T ———— —_— —
= — — = — _

—_— —_—

matrices are used in many branches of
ph1sics, math, computer graphics, etc.

linear equation
a11x1 + a12xr2 = by

Lo a1 aie| - 1| 7 |b1
— ——— — A¥X¥ =0 where A = T = b =
a21%1 + G22T2 = by a21 A22] £ _bz_

representing matrices

sParse matrix

one with most of its
elements equal to zero

S

—_ =

e _ e = — e —— e

= _____ - — = —_ — — —

square matrix

I P

one with equal number
of rows and columns

dense matrix

one with most of its
elements not equal to zero

—_ - —_— e = e T ———— — —_— — —_— —_— - — — - — = - -

dlagonal ma’rrlx

one with all oﬂ-diagonal
elements equal to zero

— d;; =0ifi #jVi,j€{1,2,...,n}
an | by bz -+ by | (a3 +b1 aip+bis - al +Hbin
- Qop bor by - Doy az1 +b21 a2 +bp - ag, + by
I et
Amn _ bml bm2 T bmn i Q1 T+ bml Am2 + bm2 R A bmn _

addition
a1 Qg -
az1 a2
A+B-= .
1 3] 0 O '[1+0 340 LOml Om2 -
1 01 +|7 5| =11+7 045
1 2] 2 1 14+2 241

A and B must have the same number of rows and columns

, b12

- b2,2

|

s

Oler==17[7
| LRt

Bi11 B Bip
Bo1 Ba Bay,
-Bml Bm2 Bmp

AA

<

represenﬁng matry

ces

_ w7 AN AN A%+ A+
> D> S | _ [DEDEE D7D
VYV X = | VYE+-VE+ V%1 V%+

|- |]EHdE Q+<A%

-
4x3 3x2 4x2
t) 1 T
{(AB)ll (AB), (AB),, m

AB =

(AB)y; (AB)y

(A1:3)2p (AB)Z]

: (Aﬁ)np

S K o

Q T ®

|

I N

3 R 2
e 8 8
e Q o
E 3 o

)

)|

acx+b\+cp aB+bu+co

pa+gA+rp pB+qu+ro

(ua—l—v)\—l—wp uf + vu + wo

pa+op—+Tu pb+ oq+ TU

aa+ Bp+yu ab+ Bg+ v
Aa+ pup+rvu Ab+ uq+ vv

multiplication

ay + bv + ct
DY +qU+TT
uy + vv + wrt

ac + PBr + yw
Ac + ur + vw

pc + or + Tw

represenhng matrices

class Matrix(private val rows: Int, private val cols: Int) {
if (rows <= 0)
throw new IllegalArgumentException("A matrix must have a positive number of rows")
if (cols <= 0)
throw new IllegalArgumentException("A matrix must have a positive number of columns")

private var matrix = Array.ofDim[Int] (rows, cols)

def this(rows: Int, cols: Int, mtx: Arrayl[Array[Int]]) { var m = new Matrix(3,3)
this(rows,cols) m.print()

for (i <- @ to rows - 1)
mtx(i).copyToArray(matrix(i)) val mtx : Array[Array[Int]] = Array(Array(2, 4, 6) , Array(3, 6, 9))

} m = new Matrix(2,3,mtx)
m.print()

def numOfRows: Int = this.rows

def numOfCols: Int = this.cols

def apply(i: Int, j: Int): Int = matrix(i)(j) Matr
def update(i: Int, j: Int, v: Int) = matrix(i)(j) = v d ng@ 0
def print: Unit = { o 0 0
println(this.getClass.getSimpleName) O 0 0
for (i <- @ to this.numOfRows - 1) A :
Console.print("| ") Matrix
for (j <= @ to this.numOfCols - 1) { | 2 4 6 |
Console.print(s"${this(i,j)} ") | 3 6 9 |

}
printin("|")

in the following, we assume that indices go
from 0 t0 n—1 rather than 1 to n

represen’rmg matrices

class Matrix(private val rows: Int, private val cols: Int) {
if (rows <= 0)
throw new IllegalArgumentException("A matrix must have a positive number of rows")
if (cols <= 0)
throw new IllegalArgumentException("A matrix must have a positive number of columns")

private var matrix = Array.ofDim[Int] (rows, cols)

defh’ghis(rows:lInt, cols: Int, mtx: Arrayl[Array[Int]]) { val mtx : Array[Array[Int]] = Array(Array(2, 4, 6) , Array(3, 6, 9))
this(rows,cols) m = new Matrix(2,3,mtx)

for (i <— @ to rows - 1) m.print()
mtx(1i).copyToArray(matrix(i))
} println(s"m(9,0) = ${m(0,0)}"); m(0,0) = 7; println(s"m(0,0) = ${m(0,0)}")
m.print()
def numOfRows: Int = this.rows
def numOfCols: Int = this.cols

def apply(i: Int, j: Int): Int = matrix(1i)(j)

def update(i: Int, j: Int, v: Int) = matrix(1)(j) = v Matrix
2 4 0
def print: Unit = { | 3 6 O |
println(this.getClass.getSimpleName) | |
for (i <- @ to this.numOfRows - 1) { m(Q,0) 2
Console.print("| ") m(Q,0) = 7
for (j <- @ to this.numOfCols - 1) { Matrix
Console.print(s"${this(i,j)} ")
} 7 4 6 |
println(™|") | 3 6 9 |

} . —

1 l

represenﬁng matrices

def +(other: Matrix): Matrix = {
if (this.numOfRows != other.numOfRows || this.numOfCols != other.numOfCols)
throw new IllegalArgumentException("Matrices must have the same number of rows" + " and columns when added")

val result = new Matrix(this.numOfRows, this.numOfCols)

for (i <- @ to this.numOfRows - 1; j <- @ to this.numOfCols - 1)
result(i,j) = this (i, j) + other(i, j)
return result

}

def *x(other: Matrix): Matrix = {
if (this.numOfCols != other.numOfRows)
throw new IllegalArgumentException("The number of columns in the first matrix must be" +
"equal to the number of rows of the second matrix when multiplied")

val result = new Matrix(this.numOfRows, other.numOfCols)

for (i <- @ to result.numOfRows — 1; j <— @ to result.numOfCols - 1) {
var entry: Int = 0

for (k <= @ to this.numOfCols - 1)

entry = entry + this (i, k) * other(k, j)
result(i,j) = entry

I ™m
return result

(AB);; =) AuBy;
k=1

—

sparse matrices

class SparseMatrix(private val rows: Int, private val cols: Int) A var m = new Matrix(3,3)
if (rows <= 0) m.print()
throw new IllegalArgumentException("A matrix must have a positive number of rows") S—
if (cols <= 0)
throw new IllegalArgumentException("A matrix must have a positive number of columns')

private var map = scala.collection.mutable.Map[(Int,Int),Int]()

def this(rows: Int, cols: Int, mtx: Map[(Int,Int),Int]) {
this(rows,cols)
map = collection.mutable.Map(mtx.toSeq: _x*)

}

def numOfRows: Int = this.rows
def numOfCols: Int = this.cols val mtx = scala.collection.immutable.Map((6,6) —> 6, (3,3) —> 3)
_ _ o m = new Matrix(10,10, mtx)
def apply(i: Int, j: Int): Int = map.getOrElse((1,3),0) m.print()
def update(i: Int, j: Int, v: Int): Unit = this.map((i,j)) = v
def print: Unit = {
println(this.getClass.getSimpleName) SparseMatrix
for (i <-= @ to this.numOfRows - 1) { O 0 0 0 0 0 0 0 0 O
Console.print("| ") O 0 0 0 0 0 0 0 0 0
for (j <- @ to this.numOfCols - 1) { o 06 0 0 06 0 0 0 0 0O
\ Console.print(s"${this(i,j)} ") 8 8 8 8 8 8 8 8 8 8
- non O 0 0 06 0 0 0 0 0 0
) printin(*[™) ® 0 0 0 0 0 6 0 0 0
O 0 0 0 0 0 0 0 0 0
b © 0 0 0 0 0 0 0 @ 0
o 0 0 0 0 0 0 0 0 0

|

oblem

class SparseMatrix(private val rows: Int, private val cols: Int) {

PY

class Matrix(private val rows: Int, private val cols: In

if (rows <= 0) if (rows <= 0)
throw new IllegalArgumentException("A matrix must have a positive num throw new IllegalArgumentException("A matrix must have a positive number of rows")
if (cols <= 0) if (cols <= 0)
throw new IllegalArgumentException("A matrix must have a positive num throw new IllegalArgumentException("A matrix must have a positive number of columns")
private var matrix = Array.ofDim[Int](rows, cols) private var map = scala.collection.mutable.Map[(Int,Int),Int]()
def this(rows: Int, cols: Int, mtx: Arrayl[Array[Int]l]) { def this(rows: Int, cols: Int, mtx: Map[(Int,Int),Int]) {
this(rows,cols) this(rows,cols)
for (i <- @ to rows - 1) map = collection.mutable.Map(mtx.toSeq: _x)
mtx(i).copyToArray(matrix(i)) }
I3
def numOfRows: Int = this.rows def numOfRows: Int = this.rows
def numOfCols: Int = this.cols def numOfCols: Int = this.cols
def apply(i: Int, j: Int): Int = matrix(i)(j) def apply(i: Int, j: Int): Int = map.getOrElse((i,j),0)
def update(i: Int, j: Int, v: Int) = matrix(i)(j) = v def update(i: Int, j: Int, v: Int): Unit = this.map((i,j)) =
def print: Unit = { def print: Unit = {
println(this.getClass.getSimpleName) println(this.getClass.getSimpleName)
for (i <- @ to this.numOfRows - 1) { for (i <- @ to this.numOfRows - 1) {
Console.print("| ") Console.print("| ")
for (j <- @ to this.numOfCols - 1) { for (j <- @ to this.num0OfCols - 1) {
Console.print(s"${this(i,j)} ") Console.print(s"${this(i,j)} ")
s I3
println("|") println("|")
I3 s
I3 I3

code duplication... againt

problem

can we blend dense and sparse matrices?

def x(other: Matrix): Matrix = {
if (this.numOfCols != other.numOfRows)
throw new IllegalArgumentException("The number of columns in the first matrix must be" +
"equal to the number of rows of the second matrix when multiplied")

val result = new Matrix(this.numOfRows, other.numOfCols)

for (i <- @ to result.numOfRows - 1; j <- @ to result.numOfCols - 1) {
var entry: Int =0

for (k <= @ to this.numOfCols - 1)

entry = entry + this (i, k) % other(k, j)
result(i,j) = entry

}

return result def x(other: SparseMatrix): SparseMatrix = {
1 if (this.numOfCols '= other.numOfRows)

throw new IllegalArgumentException("The number of columns in the first matrix must be" +
"equal to the number of rows of the second matrix when multiplied")

val result = new SparseMatrix(this.numOfRows, other.numOfCols)

for (i <- @ to result.numOfRows - 1; j <- @ to result.numOfCols - 1) {
var entry: Int = 0

for (k <= @ to this.numOfCols - 1)
entry = entry + this (i, k) * other(k, j)
result(i,j) = entry

}

return result

} incomPa’rible ’qpes

update o
print

_ + operator)
* operator SparseMatrix
matrix map

apply apply
update update

yes, but... R

the superclass delegafcs the internal
represen’mﬁon t0o 1ts subclasses

s0 methods apply and update have
no default or shared implementation

these methods are abstract in the superclass

AbstractMatrix

abstract

print
+ operator :
* operator SparseMatrix

matrix map
abstract class AbstractMatrix {
. . apply apply
def apply(i: Int, j: Int): Int update update
def update(i: Int, j: Int, v: Int)

def +(other: AbstractMatrix): AbstractMatrix = {
if (this.numOfRows != other.numOfRows || this.numOfCols != other.numOfCols)
throw new IllegalArgumentException("Matrices must have the same number of rows and columns when added")

val result = new DenseMatrix(this.numOfRows, this.numOfCols)

for (i <- @ to this.numOfRows - 1; j <- @ to this.numOfCols - 1)
result(i,j) = this (i, j) + other(i, j)

return result

}

def x(other: AbstractMatrix): AbstractMatrix = {
if (this.numOfCols !'= other.numOfRows)
throw new IllegalArgumentException("The number of columns in the first matrix must be equal" +
" to the number of rows of the second matrix when multiplied")

val result = new DenseMatrix(this.numOfRows, other.numOfCols)
for (i <- @ to result.numOfRows - 1; j <— 0 to result.numOfCols - 1) {
var entry: Int = 0
for (k <- @ to this.numOfCols - 1)
entry = entry + this (i, k) * other(k, j)

resultli,j) = entry wlﬂ use DenseMatrix, not SparseMatrix?

h —

return result [

Y - could we come with a better scheme?

AbstractMatrix

apply

abstract

print
+ operator :
* operator SparseMatrix

matrix map
apply apply
update update
diagonal
class DiagonalMatrix(private val n: Int) extends AbstractMatrix A{ apply
update

private var diagonal : Array[Int] = Array.fill(n){ 0 }

def this(n: Int, diag: Array[Int]) {
this(n)
this.diagonal = diag

I3
def apply(i: Int, j: Int): Int = if (i '= j) @ else diagonal(i)

def update(i: Int, j: Int, v: Int): Unit = {
if (i == j)
this.diagonal(i) = v

else (i '= 3§ & v '= 0)
throw new IllegalArgumentException("A diagonal matrix should only" + " have zeros outside its diagonal")

what it all methods
could be abstract?

identity matrix 0 1.0 - 0

o 01 --- 0

AXIl, = I XA =A

class IdentityMatrix(private val n: Int) extends AbstractMatrix {
def apply(i: Int, j: Int): Int = if (i == j) 1 else 0
def update(i: Int, j: Int, v: Int): Unit = {
if (i !'= j & v = 1)
throw new IllegalArgumentException("A unity matrix can only have ones on its diagonal"')

}

override def x(other: Matrix): Matrix = other.duplicate

override def +(other: Matrix): Matrix = {
val result = other.duplicate
for (i <- @ ton - 1)
result(i,i) = result(i,i) + 1
return result
}
}

~ soluthion

e
| ’ a‘ || s trait Matrix {
def numOfRows(): Int
def numOfCols(): Int
def apply(i: Int, j: Int): Int
def update(i: Int, j: Int, v: Int)
1 def +(other: Matrix): Matrix

def x(other: Matrix): Matrix

def print
apply
update
print

) + operator
AbstractMatrix * operator
}

abstract class AbstractMatrix extends Matrix { ...

print class DenseMatrix(...) extends AbstractMatrix { ... }

+ operator
* operator

Z?X class SparseMatrix(...) extends AbstractMatrix { ... }
_ P _ = class DiagonalMatrix(...) extends AbstractMatrix { ... }
matrix map diagonal
apply apply apply
update update update class UnityMatrix(...) extends Matrix { ... }

AbstractMatrix

5

print

+ operator
* operator

5

interface

UnityMatrix

apply
update
print
+ operator
* operator

SparseMatrix DiagonalMatrix

matrix map diagonal
apply apply apply
update update update

— . =
public interface Matrix { <
int numOfRows () ;
int numOfColumns();
int get(int i, int j);
void set(int i, int j, int v);
Matrix add(Matrix other);
Matrix multiply(Matrix other);
void print();
abstract class AbstractMatrix implements Matrix { ... }
class DenseMatrix(...) extends AbstractMatrix { ... }
class SparseMatrix(...) extends AbstractMatrix { ... }
class DiagonalMatrix(...) extends AbstractMatrix { ... }

class UnityMatrix(...) implements Matrix { ... }

it's time fo...

a class defines a type £ provides an implementation for it

a subclass defines a subtype £ provides an implementation for it

a type is just a specification .
an abstract class defines a type £

in scala, a trait allows you to define provides a partial implementation for it
‘rﬂ)es without an iMPlemenfaﬁon B— -

in java, an interface forces you o
in switt, the notion of define types without an implementation
proh)cols 15 similar 1o traits — —

a class can inherit from only one

in python, this notion has no equivalent class but from multiple traits /
due to the absence of static typing interfaces / protocol

