
abstract
classes &
types

learning
objectives

learn how to define and use abstract classes

learn how to define types without implementation

learn about multiple inheritance of types

hardware

your software

algorithms

system software

a rectangular array of elements
arranged in rows and columns

a mathematical example
representing matrices

examples

3×1 matrix 3×3 matrix1×3 matrix

matrices are used in many branches of 
physics, math, computer graphics, etc.

i designates the row 
j designates the column

A~x = ~b where
a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

linear equation
~b =


b1
b2

�
~x =


x1

x2

�
A =


a11 a12
a21 a22

�

m × n matrix

aij j changes

i
ch

a
n

g
es

n columns

m
 r

ow
s

representing matrices
one with most of its 
elements equal to zero

sparse matrix

A and B must have the same number of rows and columns

one with most of its 
elements not equal to zero

dense matrix

one with equal number 
of rows and columns

square matrix
one with all off-diagonal 

elements equal to zero

diagonal matrix

addition

representing matrices
multiplication

class Matrix(private val rows: Int, private val cols: Int) { 
 if (rows <= 0) 
 throw new IllegalArgumentException("A matrix must have a positive number of rows") 
 if (cols <= 0) 
 throw new IllegalArgumentException("A matrix must have a positive number of columns") 
 
 private var matrix = Array.ofDim[Int](rows, cols) 
 
 def this(rows: Int, cols: Int, mtx: Array[Array[Int]]) { 
 this(rows,cols) 
 for (i <- 0 to rows - 1) 
 mtx(i).copyToArray(matrix(i))  
 }  
 
 def numOfRows: Int = this.rows 
 def numOfCols: Int = this.cols 
 
 def apply(i: Int, j: Int): Int = matrix(i)(j) 
 def update(i: Int, j: Int, v: Int) = matrix(i)(j) = v
 
 def print: Unit = { 
 println(this.getClass.getSimpleName) 
 for (i <- 0 to this.numOfRows - 1) { 
 Console.print("| ") 
 for (j <- 0 to this.numOfCols - 1) { 
 Console.print(s"${this(i,j)} ") 
 }  
 println("|") 
 }  
 }
 ...

representing matrices

var m = new Matrix(3,3) 
m.print()

val mtx : Array[Array[Int]] = Array(Array(2, 4, 6) , Array(3, 6, 9))

m = new Matrix(2,3,mtx) 
m.print()

Matrix
| 0 0 0 |
| 0 0 0 |
| 0 0 0 |
Matrix
| 2 4 6 |
| 3 6 9 |

... in the following, we assume that indices go
from 0 to n–1 rather than 1 to n

representing matrices
class Matrix(private val rows: Int, private val cols: Int) { 
 if (rows <= 0) 
 throw new IllegalArgumentException("A matrix must have a positive number of rows") 
 if (cols <= 0) 
 throw new IllegalArgumentException("A matrix must have a positive number of columns") 
 
 private var matrix = Array.ofDim[Int](rows, cols) 
 
 def this(rows: Int, cols: Int, mtx: Array[Array[Int]]) { 
 this(rows,cols) 
 for (i <- 0 to rows - 1) 
 mtx(i).copyToArray(matrix(i))  
 }  
 
 def numOfRows: Int = this.rows 
 def numOfCols: Int = this.cols 
 
 def apply(i: Int, j: Int): Int = matrix(i)(j) 
 def update(i: Int, j: Int, v: Int) = matrix(i)(j) = v
 
 def print: Unit = { 
 println(this.getClass.getSimpleName) 
 for (i <- 0 to this.numOfRows - 1) { 
 Console.print("| ") 
 for (j <- 0 to this.numOfCols - 1) { 
 Console.print(s"${this(i,j)} ") 
 }  
 println("|") 
 }  
 }
 ...

Matrix
| 2 4 6 |
| 3 6 9 |
m(0,0) = 2
m(0,0) = 7
Matrix
| 7 4 6 |
| 3 6 9 |

val mtx : Array[Array[Int]] = Array(Array(2, 4, 6) , Array(3, 6, 9)) 
m = new Matrix(2,3,mtx) 
m.print()

println(s"m(0,0) = ${m(0,0)}"); m(0,0) = 7; println(s"m(0,0) = ${m(0,0)}") 
m.print()

...

class Matrix(private val rows: Int, private val cols: Int) { 
 
 
 def +(other: Matrix): Matrix = { 
 if (this.numOfRows != other.numOfRows || this.numOfCols != other.numOfCols) 
 throw new IllegalArgumentException("Matrices must have the same number of rows" + " and columns when added") 
 
 val result = new Matrix(this.numOfRows, this.numOfCols) 
 
 for (i <- 0 to this.numOfRows - 1; j <- 0 to this.numOfCols - 1) 
 result(i,j) = this (i, j) + other(i, j) 
 return result 
 }  
 
 def *(other: Matrix): Matrix = { 
 if (this.numOfCols != other.numOfRows) 
 throw new IllegalArgumentException("The number of columns in the first matrix must be" + 
 "equal to the number of rows of the second matrix when multiplied") 
 
 val result = new Matrix(this.numOfRows, other.numOfCols)
 
 for (i <- 0 to result.numOfRows - 1; j <- 0 to result.numOfCols - 1) { 
 var entry: Int = 0 
 for (k <- 0 to this.numOfCols - 1) 
 entry = entry + this (i, k) * other(k, j) 
 result(i,j) = entry 
 }  
 return result 
 }
}

...

representing matrices

class SparseMatrix(private val rows: Int, private val cols: Int) { 
 if (rows <= 0) 
 throw new IllegalArgumentException("A matrix must have a positive number of rows") 
 if (cols <= 0) 
 throw new IllegalArgumentException("A matrix must have a positive number of columns") 
 
 private var map = scala.collection.mutable.Map[(Int,Int),Int]() 
 
 def this(rows: Int, cols: Int, mtx: Map[(Int,Int),Int]) {  
 this(rows,cols) 
 map = collection.mutable.Map(mtx.toSeq: _*) 
 }  
 
 def numOfRows: Int = this.rows 
 def numOfCols: Int = this.cols 
  
 def apply(i: Int, j: Int): Int = map.getOrElse((i,j),0) 
 def update(i: Int, j: Int, v: Int): Unit = this.map((i,j)) = v
 
 def print: Unit = { 
 println(this.getClass.getSimpleName) 
 for (i <- 0 to this.numOfRows - 1) { 
 Console.print("| ") 
 for (j <- 0 to this.numOfCols - 1) { 
 Console.print(s"${this(i,j)} ") 
 }  
 println("|") 
 }  
 }
 ...
}

val mtx = scala.collection.immutable.Map((6,6) -> 6, (3,3) -> 3) 
m = new Matrix(10,10, mtx) 
m.print()

SparseMatrix
| 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 3 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 6 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 |...

sparse matrices
var m = new Matrix(3,3) 
m.print()

SparseMatrix
| 0 0 0 |
| 0 0 0 |
| 0 0 0 |

code duplication... again!... again!

class Matrix(private val rows: Int, private val cols: Int) { 
 if (rows <= 0) 
 throw new IllegalArgumentException("A matrix must have a positive number of rows") 
 if (cols <= 0) 
 throw new IllegalArgumentException("A matrix must have a positive number of columns") 
 
 private var matrix = Array.ofDim[Int](rows, cols) 
 
 def this(rows: Int, cols: Int, mtx: Array[Array[Int]]) { 
 this(rows,cols) 
 for (i <- 0 to rows - 1) 
 mtx(i).copyToArray(matrix(i))  
 }  
 
 def numOfRows: Int = this.rows 
 def numOfCols: Int = this.cols 
 
 def apply(i: Int, j: Int): Int = matrix(i)(j) 
 def update(i: Int, j: Int, v: Int) = matrix(i)(j) = v
 
 def print: Unit = { 
 println(this.getClass.getSimpleName) 
 for (i <- 0 to this.numOfRows - 1) { 
 Console.print("| ") 
 for (j <- 0 to this.numOfCols - 1) { 
 Console.print(s"${this(i,j)} ") 
 }  
 println("|") 
 }  
 }
 ...

class SparseMatrix(private val rows: Int, private val cols: Int) { 
 if (rows <= 0) 
 throw new IllegalArgumentException("A matrix must have a positive number of rows") 
 if (cols <= 0) 
 throw new IllegalArgumentException("A matrix must have a positive number of columns") 
 
 private var map = scala.collection.mutable.Map[(Int,Int),Int]() 
 
 def this(rows: Int, cols: Int, mtx: Map[(Int,Int),Int]) { 
 this(rows,cols) 
 map = collection.mutable.Map(mtx.toSeq: _*) 
 }  
 
 
 def numOfRows: Int = this.rows 
 def numOfCols: Int = this.cols 
  
 def apply(i: Int, j: Int): Int = map.getOrElse((i,j),0) 
 def update(i: Int, j: Int, v: Int): Unit = this.map((i,j)) = v
 
 def print: Unit = { 
 println(this.getClass.getSimpleName) 
 for (i <- 0 to this.numOfRows - 1) { 
 Console.print("| ") 
 for (j <- 0 to this.numOfCols - 1) { 
 Console.print(s"${this(i,j)} ") 
 }  
 println("|") 
 }  
 }
 ...

problem

can we blend dense and sparse matrices?
problem

 def *(other: Matrix): Matrix = {  
 if (this.numOfCols != other.numOfRows) 
 throw new IllegalArgumentException("The number of columns in the first matrix must be" + 
 "equal to the number of rows of the second matrix when multiplied") 
 
 val result = new Matrix(this.numOfRows, other.numOfCols)
 
 for (i <- 0 to result.numOfRows - 1; j <- 0 to result.numOfCols - 1) { 
 var entry: Int = 0 
 for (k <- 0 to this.numOfCols - 1) 
 entry = entry + this (i, k) * other(k, j) 
 result(i,j) = entry 
 }  
 return result 
 }

 def *(other: SparseMatrix): SparseMatrix = {  
 if (this.numOfCols != other.numOfRows) 
 throw new IllegalArgumentException("The number of columns in the first matrix must be" + 
 "equal to the number of rows of the second matrix when multiplied") 
 
 val result = new SparseMatrix(this.numOfRows, other.numOfCols)
 
 for (i <- 0 to result.numOfRows - 1; j <- 0 to result.numOfCols - 1) { 
 var entry: Int = 0 
 for (k <- 0 to this.numOfCols - 1) 
 entry = entry + this (i, k) * other(k, j) 
 result(i,j) = entry 
 }  
 return result 
 } incompatible types

inheritancesolution

DenseMatrix
matrix

apply
update

SparseMatrix
map

apply
update

Matrix

apply
update
print
+ operator
* operator

yes, but...

the superclass delegates the internal
representation to it s subclasses

?

so methods apply and update have  
no default or shared implementation

these methods are abstract in the superclass

solution

abstract class

abstract class AbstractMatrix {
 def apply(i: Int, j: Int): Int 
 def update(i: Int, j: Int, v: Int) 
 
 def +(other: AbstractMatrix): AbstractMatrix = {  
 if (this.numOfRows != other.numOfRows || this.numOfCols != other.numOfCols) 
 throw new IllegalArgumentException("Matrices must have the same number of rows and columns when added") 
 
 val result = new DenseMatrix(this.numOfRows, this.numOfCols) 
 for (i <- 0 to this.numOfRows - 1; j <- 0 to this.numOfCols - 1) 
 result(i,j) = this (i, j) + other(i, j) 
 return result 
 }  
 
 def *(other: AbstractMatrix): AbstractMatrix = {  
 if (this.numOfCols != other.numOfRows) 
 throw new IllegalArgumentException("The number of columns in the first matrix must be equal" +  
 " to the number of rows of the second matrix when multiplied") 
 
 val result = new DenseMatrix(this.numOfRows, other.numOfCols) 
 for (i <- 0 to result.numOfRows - 1; j <- 0 to result.numOfCols - 1) { 
 var entry: Int = 0 
 for (k <- 0 to this.numOfCols - 1) 
 entry = entry + this (i, k) * other(k, j) 
 result(i,j) = entry 
 }  
 return result 
 }  
 ...  
}
...

DenseMatrix
matrix

apply
update

SparseMatrix
map

apply
update

AbstractMatrix

apply
update
print
+ operator
* operator

abstract
class

why use DenseMatrix, not SparseMatrix?

could we come with a better scheme?

class DiagonalMatrix(private val n: Int) extends AbstractMatrix { 
 
 private var diagonal : Array[Int] = Array.fill(n){ 0 } 
 
 def this(n: Int, diag: Array[Int]) { 
 this(n) 
 this.diagonal = diag 
 }  
 
 def apply(i: Int, j: Int): Int = if (i != j) 0 else diagonal(i) 
 
 def update(i: Int, j: Int, v: Int): Unit = {
 if (i == j) 
 this.diagonal(i) = v 
 else (i != j && v != 0) 
 throw new IllegalArgumentException("A diagonal matrix should only" + " have zeros outside its diagonal") 
 }  
}

abstract
class

DiagonalMatrix
diagonal

apply
update

DenseMatrix
matrix

apply
update

SparseMatrix
map

apply
update

AbstractMatrix

apply
update
print
+ operator
* operator

identity matrix

what if all methods 
could be abstract?

= In

A × In = In × A = A

class IdentityMatrix(private val n: Int) extends AbstractMatrix {  
 def apply(i: Int, j: Int): Int = if (i == j) 1 else 0 
 def update(i: Int, j: Int, v: Int): Unit = { 
 if (i != j && v != 1) 
 throw new IllegalArgumentException("A unity matrix can only have ones on its diagonal") 
 }

 override def *(other: Matrix): Matrix = other.duplicate

 override def +(other: Matrix): Matrix = { 
 val result = other.duplicate 
 for (i <- 0 to n - 1) 
 result(i,i) = result(i,i) + 1 
 return result 
 }  
}

solution

trait s

trait s
Matrix

apply
update
print
+ operator
* operator

DenseMatrix
matrix

apply
update

SparseMatrix
map

apply
update

AbstractMatrix

apply
update
print
+ operator
* operator

DiagonalMatrix
diagonal

apply
update

UnityMatrix

apply
update
print
+ operator
* operator

trait Matrix {
 def numOfRows(): Int 
 def numOfCols(): Int 
 
 def apply(i: Int, j: Int): Int 
 def update(i: Int, j: Int, v: Int) 
 
 def +(other: Matrix): Matrix 
 def *(other: Matrix): Matrix 
 
 def print 
}

abstract class AbstractMatrix extends Matrix { ... }

class DenseMatrix(...) extends AbstractMatrix { ... }

class SparseMatrix(...) extends AbstractMatrix { ... }

class DiagonalMatrix(...) extends AbstractMatrix { ... }

class UnityMatrix(...) extends Matrix { ... }

interface
Matrix

apply
update
print
+ operator
* operator

DenseMatrix
matrix

apply
update

SparseMatrix
map

apply
update

AbstractMatrix

apply
update
print
+ operator
* operator

DiagonalMatrix
diagonal

apply
update

UnityMatrix

apply
update
print
+ operator
* operator

public interface Matrix {
 int numOfRows();
 int numOfColumns();
 int get(int i, int j);
 void set(int i, int j, int v);
 Matrix add(Matrix other);
 Matrix multiply(Matrix other);
 void print();
}

abstract class AbstractMatrix implements Matrix { ... }

class DenseMatrix(...) extends AbstractMatrix { ... }

class SparseMatrix(...) extends AbstractMatrix { ... }

class DiagonalMatrix(...) extends AbstractMatrix { ... }

class UnityMatrix(...) implements Matrix { ... }

in python, this notion has no equivalent
due to the absence of static typing

in swift, the notion of
protocols is similar to trait s

in scala, a trait allows you to define
types without an implementation

a class can inherit from only one
class but from multiple trait s /

interfaces / protocol

a type is just a specification

it's time to...

an abstract class defines a type &
provides a partial implementation for it

a subclass defines a subtype & provides an implementation for it

a class defines a type & provides an implementation for it

in java, an interface forces you to
define types without an implementation

