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ABSTRACT
The proliferation of mobile devices equipped with internet connec-
tivity and global positioning functionality (GPS) has resulted in the
generation of large volumes of spatiotemporal data. This has led
to the rapid evolution of location-based services. The anticipatory
nature of these services, demand exploitation of a broader range of
user information for service personalization. Determining the users’
places of interest, i.e. hotspots is critical to understand their behav-
iors and preferences. Existing techniques to detect hotspots rely
on a set of a-priori determined parameters that are either dataset
dependent or derived without any empirical basis. This leads to
biased results and inaccuracies in estimating the total number of
hotspots belonging to a user, their shape and the average dwelling
time. In this paper, we propose a parameter-less technique for
extracting hotspots from spatiotemporal trajectories without any a-
priori assumptions. We eliminate parameter dependence by treating
trajectories as spatiotemporal signals and rely on signal processing
algorithms to derive hotspots. We experimentally show that, our
technique does not necessitate any spatiotemporal or behavior de-
pendent bounds, which makes it suitable to extract hotspots from a
larger variety of datasets and across users having disparate mobility
behaviors. Our evaluation results on a real world dataset, show ac-
curacy rates exceeding 80% and outperforms traditional clustering
techniques used for hotspot detection.
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•Information systems → Spatial-temporal systems; Location
based services;

Keywords
Spatiotemporal hotspots; Clustering parameters; Signal processing

1. INTRODUCTION
An integral aspect of location-based services (LBS) is to extract

meaningful information from the location trajectories recorded by
their users. For example, mobility prediction services rely on clus-
tering algorithms to extract user specific points of interest from raw
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Figure 1: From 3-D traces to 2-D signals

GPS trajectories. LBS typically depend on mobility prediction as
a means to improve quality of service by pushing context-aware
information to users ahead of time. Other services such as traffic
management, urban planning and consumer profiling, heavily rely
on their ability to identify the hotspots where moving entities spend
a considerable amount of time. Hotspot detection is therefore a key
aspect of LBS for user mobility modeling.

Several techniques for extracting hotspots from trajectories were
inspired by well-known clustering algorithms such as k-means [6]
and DBSCAN [2]. Other methods span the domain of scan statis-
tics, fingerprinting, gradient-based or eigenvector-tensor based tech-
niques [3, 12, 13]. Overall, these techniques rely on a set of param-
eters that reflect a-priori assumptions about the mobility behavior
of users by imposing bounds on distance, speed, time, number of
points and/or visitation repeatability rates. These techniques require
multiple steps, involving several iterations over the dataset to ex-
tract all the hotspots resulting in an increased latency. Furthermore,
the hotspots are assumed to fit a predefined shape (mostly circular)
which rarely reflects the reality, leading to erroneous estimations of
hotspot area and dwelling time.

To address these problems, we propose a hotspot detection tech-
nique that is independent of such a-priori assumptions. We treat
user mobility trajectories as spatiotemporal signals (see Figure 1)
and apply filtering modules to iteratively extract and enhance the
quality of the detected hotspots. We show that, these signals pre-
serve all the key knowledge contained in the trajectories, and our
system is able to accurately detect the hotspot occurrences, the time
of hotspot entry and exit and a precise representation of the total area
and time spent at each hotspot. We evaluate the extracted hotspots
in terms of precision and recall rates and compare its efficacy with
respect to popular clustering techniques used for hotspot detection.
Applying signal processing algorithms also has the added benefit of
exploiting the digital-signal processors (DSP) embedded in modern
smartphones. This in turn preserves the privacy of users by restrict-
ing the computations on their smartphones by not sharing the raw
data with untrusted third-party services.

The rest of the paper is structured as follows. The related work
on hotspot detection and the associated drawbacks are presented in
Section 2. We present the problem statement addressed in this paper
and the translation process from trajectories to signals in Section 3
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(a) A typical user trajectory. The green circles indicate user hotspots (b) The trajectory after being projected on to the google S2 cells (c) The signal generated after plotting the cell IDs’ against timestamps

Figure 2: Translating geospatial trajectories to space-time signals (left to right)

and Section 4 respectively. The system design and implementation
is described in Section 5. The evaluation results and discussion is
presented in Section 6. We finally conclude the paper in Section 7.

2. RELATED WORK
In this section, we review the existing techniques to mine hotspots

from spatiotemporal data. The premier contribution in adopting the
data clustering techniques for hotspot detection was made by Ash-
brook et al. in [1]. They propose an iterative approach to extract
the hotspots and improve their granularity by imposing spatiotem-
poral bounds. These bounds are derived by analyzing their variance
with respect to certain values they affect. Montoliu et al. pro-
posed a two-level clustering approach in [10], where the geolocated
points are first clustered in the temporal domain to discover the stay
points that are used to derive stay regions using a grid-based clus-
tering approach. Several other popular clustering algorithms such
as Density-Joinable clustering [15], Density-Time clustering [6]
and Time-Density clustering [5] have also been adapted to detect
clusters in geospatial datasets, which are then considered as hotspots.
Detecting hotspots by leveraging realtime location data streams has
been proposed in [11, 8]. This scheme extracts the most frequent
and recent hotspots of users in realtime. Zheng et al. [14] propose a
variation of DBSCAN, wherein the input parameters are estimated
by observing the distribution of movement density. Thomason et
al. [12] proposed a gradient-based technique that combines the ad-
vantages of both; k-means and DBSCAN.

Farrahi et al. proposes a fingerprinting-based approach [4] by
analyzing the temporal regularities and patterns of local transitions
over time. The fingerprint is essentially a vector of visible cell
towers, as described in the works of BeaconPrint [7] and the hotspots
are detected based on the repeatability rate of an associated vector.
Another set of techniques are based on scan-statistics, wherein a
cylinder of varying radii and height is moved over the spatiotemporal
space. The surface of the cylinder covers the space dimension and
its height covers the time dimension. The cylinders are then sorted
depending on a parameter called p-value, which is then used as
a threshold to consider the detected regions as hotspots. Louail
et al. propose a technique to extract hotspots from trajectories
belonging to a group of users without relying on the commonly
used spatiotemporal bounds [9]. However, they consider a group of
geolocated points at a particular time t, as a hotspot, if the density
of users at that location is greater then a predefined threshold δ .

The above techniques use several bounds to classify a particular
region as a hotspot. Some of the parameters include, maximum
distance between the collected locations, maximum and minimum
time bound, cluster shape, grid size and maximum number of points
per cluster. However, different users are characterized by different
mobility profiles, which result in varying optimal values of these
a-priori chosen parameters. This task of estimating the parameters
and their values is challenging due to the inherent number of possi-
ble parameter combinations, different mobility behaviors, duration
of the available dataset, rate at which locations are sampled and

the distribution of noise in the recorded data. Often, the parameter
values are derived based on logical reasoning and lack exhaustive
empirical basis. This could result in a possible bias when general-
izing and comparing results obtained with different techniques on
different datasets. This has resulted in conflicting views regarding
the significance of some parameters, such as maximum time bound
between two coordinate points as seen in [10] and [12]. In this paper,
we propose a solution to address the above discussed problems.

3. PROBLEM STATEMENT
Our work identifies and addresses the problem of extracting

hotspots from user location trajectories without relying on any rigid
parameters. Our solution to address the problem is to treat user
mobility trajectories as space-time signals and process these signals
to extract the hotspots. We thus have a two-fold problem statement
as described below:

1. Given a user’s trajectory T = 〈..., ti, ...〉, a sequence of spa-
tiotemporal points, where each point ti is a three item tu-
ple, 〈lati, loni, ti〉, where lat and lon is the latitude-longitude
coordinate pair and t is the timestamp, translate it into a 2-
dimensional continuous signal, s(t), modeled as a function of
changing distance with respect to time, retaining the spatial
locality between the discretized points.

2. Given the spatiotemporal signal s(t) of a user u, extract all the
distinct hotspots and their properties, namely; the area and
dwelling time.

4. FROM TRAJECTORIES TO SIGNALS
The geolocation sensors result in noise and non-uniformly sam-

pled data points due to the hardware imperfections and network
failures. Thus, the data points need to be de-noised and resampled
to generate a continuous signal. We first use a standard convolution-
based low-pass filter to remove the noisy components residing at
high frequencies. Next, in order to get a uniformly sampled location
points we apply a semivariance interpolation scheme, which fits the
missing points by modeling the similarity between the points as a
function of changing distance [8].

The output of the preprocessing stage is a uniformly sampled and
de-noised coordinate points. In order to discretize space, we use the
Google S2 library1. The library projects a spatial region on to the
face of a cube which encloses the sphere. It performs a hierarchical
decomposition of the sphere into compact cells and superimposes the
spatial region/point on to the cells. It then constructs a quad-tree on
each face and selects a quad-tree cell containing the projected region.
Each cell is represented by exactly the same area and provides
sufficient resolution for indexing the geographic features. The cells
are enumerated on the Hilbert curve, which preserves the spatial
locality of the points. The resulting spatiotemporal signal can be
denoted as s(t) = 〈...,(ci, ti), ...〉, where ci is the cell ID and ti the
timestamp as shown in Figure 2.
1Google S2: https://pypi.python.org/pypi/s2sphere/
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Figure 3: From preprocessing to peak detection and hotspot extraction

5. SYSTEM DESIGN
In this section, we present our system design and implementa-

tion. The mobility signal s(t) has two main components: (1) a
static element which corresponds to the place having maximum user
time occupancy, (2) local maxima/minima, which correlate with
the user’s frequently visited places. The user movements oscillate
around the static element with a significant deviation, generating
several local maxima/minima. This can be viewed as the presence
of basic noise with a general mean which makes the hotspots identi-
fiable . Therefore, the problem of hotspot discovery is essentially a
matter of detecting the local maxima and minima (or simply ’peaks’)
contained in the signal. In order to determine the hotspot properties,
we design our system to heuristically compute the peak start and
end positions, peak height and width to estimate the hotspot visit
entry and end time, the total distance travelled and the total area.
The steps involved in hotspot detection are illustrated in Figure 3.

In order to make the peaks distinct, we perform curve fitting over
the discretized location traces, s(t). However, the peak shapes are
not identical throughout the signal and differ according to the vis-
ited place. We therefore perform a non-linear iterative curve fitting,
ensuring that the peaks do not shift or are missed. The peaks can
then be detected by taking the first differential of the curves. The
detection procedure operates by checking for the point of down-
ward/upward going zero-crossing at the peak-maximum/minimum,
for the peaks and the valleys. In order to make the peak detection
robust, we apply a mean filter and smooth the first differential prior
to checking the upward/downward-going zero-crossings. The de-
tected peaks in turn contain two components, the travel path to the
hotspot and the hotspot region itself. Thus, in the next step we split
the ravel and the hotspot component in the peak, which requires a
correct estimation of the peak shape. This step requires automatic
adjustment of the baselines so as to adapt constantly to the changing
user behaviors. To address this, we keep a track of the standard devi-
ation of the points and analyze the points deviating from the moving
mean, which iteratively sets the baseline and operates precisely ir-
respective of the peak shape. The peak shape is finally detected
by taking the successive derivatives, as different peak shapes have
distinct derivative shapes.

Finally, for isolating the peak components, we monitor the av-
erage rate of change of slope of the detected peaks. Once a user
arrives at the hotspot, the slope changes to zero or to an infinitesi-
mally small value, as compared to the slope of the travel component.
Thus the two parts can be separated depending on the average rate
of change of the slope along the maxima or minima. After the peak
is isolated, the cells belonging to the hotspot are extracted and the
remaining cells belong to the travel component. The representative
path connecting the hotspot is constructed by selecting the cells
common to both the edges. The cells, when inverted back to the
location coordinates, represent the spatial locations.

6. EVALUATION AND DISCUSSION
In order to evaluate the accuracy of the detected hotspots, we

validate our results with the ground truth and perform a compari-
son with three popular clustering techniques commonly used for

hotspot detection. As the publicly available datasets are devoid of
the ground truth, we collect a dataset to validate the efficacy of
our approach and to confirm our findings regarding the correlation
between the spatiotemporal components and the signal elements.
The mobile application provided to the users logs their latitude,
longitude, timestamp, acceleration, altitude, horizontal and vertical
accuracy of the GPS coordinates for a period of 11 weeks. The data
points are collected at a sampling rate of 5 seconds with a granu-
larity of resolution up to 5 meters. The ground truth is captured
by periodically attesting the visited hotspots. The hotspots were
selected with a clear definition: ’any place where the subject visited
with an intentional purpose’. These regions include places such as
cafeterias, restaurants, bus/train/metro stops, sports arenas, book-
stores, office and work places and excursions. The ground-truth
evaluation was performed by computing the precision, recall and
the accuracy values.

We configure the Google S2 library to map each coordinate pair
to a cell of dimension 38m2. It could be argued that the cell size
involves a arbitrarily chosen parameter in the process. However,
real-world hotspots typically spread over areas larger than 38m2.
Furthermore, this choice is motivated by the localization accuracy
of a typical GPS sensor and the performance complexity involved
when subdividing the cells to the leaf level.

We consider Density Joinable Cluster (DJ Cluster) [15], Density
Time Cluster (DT Cluster) [6] and ZOI Detect [8]. DJ Cluster
computes hotspots, based on the number of points within a certain
radius and merges these clusters if they share at least one point in
common. Furthermore, the points are also clustered if they satisfy
the minspeed bound. DT Cluster aggregates points lying within a
predetermined spatiotemporal bound. These clusters are treated as
valid hotspots. ZOI Detect follows a similar strategy as DT cluster
but involves an additional parameter minvisit as a threshold and
merges the clusters upon intersection. The parameters selected by
these techniques and their values are shown in Table 1. These values
selected in published works are either based on dataset trends [8] or
on user mobility behavior [15].

Clustering algorithm Parameters

DJ Cluster Minspeed : 0.4 (km/hour) / Clusterradius: 60.0 (meters) / Minpoints: 10
DT Cluster Maxdist : 60.0 (meters) / Mintime: 900 (seconds)
ZOI Detect Maxdist : 60.0 (meters) / Mintime: 900 (seconds) / Minvisit : 6

Table 1: Clustering algorithms and their default parameter values

We see that DT Cluster and ZOI Detect have a high precision
and low recall and accuracy rate as seen in Figure 4. This indicates
that, these techniques discover a large number of hotspots that are
not contained in the true hotspot set. This is clearly due to the
spatiotemporal bounds being too rigid, which results in considering
arbitrary clusters as valid hotspots. DJ cluster, however, has higher
recall and low precision. Here, we see that the Minspeed eliminates
the occurrences of false negatives, whereas, the Minpoints creates
high false positives. Increasing the Minpoints can address such
occurrences, as it requires a higher density of points, thus creating
only valid hotspots. In case of our method, we have a few false
positives due to the high sensitivity for the slop change and only



Figure 4: Ground truth validation

three false negatives. Closely examining the false-positives reveal
that, these regions are visits without any purpose attached, such
as delays at metro and bus stops. This creates additional hotspots
which are not based on user intent. The false negatives are the stops
where the user does not have to wait. These cases occur due to
planned time synchronization by the user between the transportation
mode switches, resulting in a constant average slope.

To better understand the parameter influence, we consider four
different parameter sets for the values of Mintime and Maxdist as
seen in Figure 5. We see that the parameter Minvisits always cor-
rectly classifies a region as a hotspot, thus leading to high precision
rates. We can also see that larger values of Maxdist results in higher
precision and recall in DT Cluster. Maxdist , thus plays a vital role
in determining precision, compared to Mintime parameter in the con-
sidered dataset. These results highlight the importance of selecting
the parameter space which is challenging to determine a–priori.

In general, we observe that DJ Cluster and DT Cluster detect a
significantly high number of hotspots in both the cases. In case
of DJ Cluster, we find that the parameter Minpoints creates a large
number of hotspots. However, we argue that if the sampling rate
of the dataset is high, Minspeed could play an important role in
further increasing the clusters. Whereas, in DT Cluster Mintime
bound parameter results in a higher frequency of visit separations,
increasing the total number of hotspots. These factors contribute
to a higher number of hotspots, which is not typical for an average
user. We observe that the number of hotspots discovered by ZOI
Detect [11, 8] is lower than DT and DJ Cluster. This is due to
the merging of individual clusters upon intersection, in addition
to extracting the most frequent clusters governed by the Minvisit
parameter. In general, if the parameters satisfy cluster merging,
multiple clusters merge and form a large hotspot; hotspot division
occurs if this bound is missed by even an infinitesimal small value.
This results in the fluctuation of the number of hotspots solely due
to the parameters.

The hotspot area in our case corresponds to 38m2× cellnumbers.
We find that, this results in a significantly smaller areas compared
to the clustering techniques and overlaps with the ground truth area.
This is due to the set of cells in the hotspot, which corresponds to
a cell where a user was actually present, and which is smaller than
the actual area of the hotspot.

7. CONCLUSION
In this paper, we have proposed a technique to detect hotspots

from user trajectories without relying on any a-priori assumptions.
We have depicted the bias resulting due to the stringent parameter
bounds while extracting user hotspots. We have also depicted the
problems arising from such bounds that are based on non-empirical

Figure 5: Impact of the parameters on the hotspot accuracy

calculations and extended to operate on some other datasets and
on users having different mobility behaviors. We have addressed
this problem by treating user movements as spatiotemporal sig-
nals, effectively converting it to a peak-detection problem by using
signal-processing algorithms. The evaluation results show that our
approach outperforms the popular clustering techniques used for
hotspot detection. We have also validated our results with the ground
truth and achieved precision and recall rates exceeding 80%.
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