
Privacy-Preserving Location-Based Services by using Intel SGX
Vaibhav Kulkarni

Distributed Object Programming Lab
University of Lausanne, Switzerland

Vaibhav.Kulkarni@unil.ch

Bertil Chapuis
Distributed Object Programming Lab
University of Lausanne, Switzerland

Bertil.Chapuis@unil.ch

Benoît Garbinato
Distributed Object Programming Lab
University of Lausanne, Switzerland

Benoit.Garbinato@unil.ch

ABSTRACT
We are witnessing a rapid proliferation of location-based services,
due to the useful context-aware services they provide their users.
However, sharing sensitive location traces with untrusted service-
providers has many privacy implications. Although, user-data mon-
etization is the core economic model of such services, o�ering
private services to concerned users will be a bene�cial functionality
in the coming years. Existing solutions include location perturba-
tion, k-anonymity and cryptographic primitives that trade service
accuracy or latency for enhanced user privacy. We introduce a
novel approach for privacy preserving location-based services by
using the Intel Software Guard eXtensions (SGX). We implement a
simple location-based service using SGX and gauge its performance
in terms of e�ciency and e�ectiveness, in comparison with its bare-
metal implementation. Our evaluation results show that SGX con-
tributes a marginal overhead but also provides near-to-the-perfect
results in contrast to spatial cloaking with k-anonymity whose
performance deteriorates as the degree of desired privacy increases.
We show that hardware-based trusted execution-environments are
a promising alternative for o�ering proactive and de-facto location-
privacy in the context of location-based services.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols;

KEYWORDS
Location privacy; Intel SGX; Privacy-preserving LBS
ACM Reference Format:
Vaibhav Kulkarni, Bertil Chapuis, and Benoît Garbinato. 2017. Privacy-
Preserving Location-Based Services by using Intel SGX. In Proceedings of
The 1st ACM International Workshop on Human-centred Sensing, Networking,
and Systems (HumanSys’17). ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3144730.3144739

1 INTRODUCTION
The ubiquitous nature of mobile phones equipped with internet
connectivity and global positioning functionality (GPS) has led to
the widespread development of location-based services (LBSs). Such
services collect and store a large amount of user-location data in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
HumanSys’17, November 5, 2017, Delft, The Netherlands
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5480-6/17/11. . . $15.00
https://doi.org/10.1145/3144730.3144739

Untrusted Service ProviderA
n
o

n
ym

o
u
s

c
o

m
m

.
n
e
tw

o
rk

1 Attestation

2
Query

3

LBS
User

Service

SGX Enclave

Data

Service

Client Result

Figure 1: Private-LBS: The client can verify the application security
by performing attestation. The application and database is embed-
ded in the enclave. The query is encrypted, which can only be de-
crypted and processed inside the enclave. The result sent by the
service-provider can only be decrypted by the client. Thus ensuring
end-to-end-to-service-provider encryption.

untrusted cloud, which exposes users to several privacy risks. Data
breaches and unlawful exchanges [7] can enable curious adversaries
to derive personally identi�able user information (PII) by applying
simple heuristics [3]. This information can be used for blackmailing
or stalking purposes [15]. Thus, user privacy consideration will be
a key factor in determining the success and adoption of LBSs in the
coming years.

Service provider’s (SP) application usually resides in the cloud
where the user data is processed to yield the desired result. The SPs
rely on virtual machines or containers to insulate the underlying
platform from the users and to o�er isolated execution. Although,
such measures safeguard the SPs against the users, the latter have
to implicitly trust the SPs and the execution platforms. Several solu-
tions have been proposed to address the privacy concerns in LBSs,
such as spatial cloaking [5], k-anonymity [4] and cryptographic
primitives [2]. However, such techniques are not widely adopted
in practice, either due to their low accuracy or high latency.

We propose an architecture for Private-LBS, it relies on Intel’s
next generation hardware-based trusted execution-environment
called Intel SGX1. Intel SGX provides a reverse sandbox that en-
ables independent software vendors to run a software module on
an untrusted cloud. It designates a container that isolates the pro-
gram and data from all the other software, potentially malicious
OSs and the hypervisor. Furthermore, it o�ers a veri�cation mecha-
nism for authenticating the remote hardware platform and its state.
We use these features to implement a Point-of-Interest Locator
(POI-Locator) application that imposes anonymity and indistin-
guishability to enforce user privacy. We quantify the overheads
involved in such a system, with respect to its bare-metal coun-
terpart. We also compare its performance with a popular hybrid
location-perturbation algorithm: spatial cloaking with k-anonymity.
An architectural overview of our system is depicted in Figure 1.

1Intel SGX: https://software.intel.com/en-us/sgx

https://doi.org/10.1145/3144730.3144739
https://doi.org/10.1145/3144730.3144739
https://doi.org/10.1145/3144730.3144739

HumanSys’17, November 5, 2017, Del�, The Netherlands V. Kulkarni et al.

Application

untrusted
module

trusted
module

create
enclave

call trusted
function

execute return sys
calls

privileged system
code

BIOS, OS, VMMECall OCall OCall

sys calls

Figure 2: Trusted & untrusted modules of SGX application

2 BACKGROUND
In this section, we present the background information regarding
the features o�ered by Intel SGX. These features are leveraged in
our system design to o�er private location-based services.

2.1 Intel Software Guard eXtensions (SGX)
SGX is Intel’s new architecture extension for providing a strong and
provable isolation of binary code that runs concurrently and shares
resources. It enables an application to construct protected regions
of memory at a virtual address space called enclave. The enclave
can be created and destroyed using certain privileged instructions.
An application code and the data can be embedded into the enclaves
and is ensured protection from the outside world. SGX provides
guarantees that no privileged software, even with the root access,
can view the contents of the enclave. Furthermore, all the contents
belonging to the enclave that lie outside the enclave are encrypted.
As an enclave has a limited size, we can create multiple enclaves
that are isolated from one another and distribute data using shared
keys.

As these features can also be used to create super malware, the
enclave is prohibited from executing any privileged instructions, in-
cluding systems calls and I/O operations. Additionally, the enclave
code can only run in the user-mode and not in the kernel-mode.
A typical SGX application consists of two modules: the untrusted
module that executes security uncritical code and the trusted mod-
ule that executes critical code inside the enclave as shown in Fig-
ure 2. These twomodules communicate via two function calls: ECall
(trusted) and OCall (untrusted). An ECall function enters an enclave
and the OCall leaves the enclave. Therefore, an OCall is made every
time the enclave wants to execute a privileged instruction. Evoking
an OCall triggers the CPU to switch from the enclave mode to the
user mode. The switching results in a certain overhead and can
open up the enclave to various attacks. Thus, the OCalls for I/O
operations are only used during the enclave debugging phase.

SGX also provides a remote attestation scheme to attest to the
security o�ered by the untrusted cloud-provider. This feature en-
ables a remote user to verify whether an application is running
inside a legitimate enclave and does not leak any information, thus,
leaving only the processor operation and the security keys printed
on the die to be trusted by the user.

Memory Encryption. All the enclave data and code is trans-
parently encrypted in the memory by the SGX Memory Encryption
Engine (MEE). The MEE uses a combination of Merkle trees and a
56-bit AES counter, producing a 128-bit integrity key and a 512-bit
universal hash key to encrypt the enclave pages. The keys are gen-
erated at boot time and are placed in the privileged MEE registers

Application
(untrusted part)

Application
Enclave
(trusted)

Quoting
Enclave

Client

Provisioning
Server

request
attestation

local
attestation

enclave
measure

get signed
attestation

Untrusted
Service Provider

12

3 4

Figure 3: Remote attestation procedure

that are destroyed at system reset. Thus, access to this protected
memory region called Enclave Page Cache (EPC) is restricted at the
hardware level. The Enclave Page Cache Map (EPCM) restricts the
pages that the enclave is permitted to access in the EPC. The MME
therefore also protects the data in the RAM from unauthorized
access.

Remote Attestation. Typically, the clients have no assurance
regarding the software running at the remote server. To address
this, SGX implements the remote attestation mechanism that guar-
antees that the application is not tampered with, and is transparent
about how the private user data is treated. Every enclave, when ini-
tialized, generates a certi�cate containing its measurement, vendor
ID, product ID and other enclave attributes. The remote attesta-
tion procedure is depicted in Figure 3. During the initialization
phase, the measurement of the enclave contents is taken by per-
forming a hash over its memory pages. First, the enclave obtains
a signed attestation for itself from a speci�c Intel enclave, known
as the quoting enclave, through a local attestation procedure. The
attestation is performed over the enclave’s measurement to create
a report. The quoting enclave checks the report and generates a
signed attestation quote, that, intern is sent to the remote user.

When the remote user demands an attestation, a loader process
which connects to the Intel’s provisioning server is initiated. The
purpose of the service is to verify the signed attestation quote of the
enclave. Intel burns two secret keys into the CPU: a provisioning
secret burnt during manufacturing and a sealing secret burnt at
the boot time. The provisioning secret is shared with Intel for the
attestation service, whereas the latter is not accessible outside the
CPU. The provisioning service checks the key, derived from the
provisioning secret to attest the enclave. In the case of successful
attestation, a report is created and digitally signed, attesting that
the CPU is indeed running in a secure mode where the memory is
encrypted. The loader process now sets up a secure channel to the
provisioning server and can download the intended software and
data into the encrypted RAM for execution. The software module
and the data can also be encrypted and saved to the disk. When
the SGX-enabled processor connects to the provisioning server via
the enclave, it also receives an attestation key, that can be sealed
and stored to create further attestations. This reduces the entities
to be trusted to only Intel’s remote attestation service, as all other
infrastructure is locked out by the encryption.

Sealing. As discussed above, when the enclave is instantiated,
the MEE provides the data integrity and con�dentiality. However,
the enclaves are stateless, i.e., upon terminating the enclave process,
the data stored within the enclave will be lost. Sealing is a special
feature provided in order to store data outside the enclave, if the

Privacy-Preserving Location-Based Services by using Intel SGX HumanSys’17, November 5, 2017, Del�, The Netherlands

data is meant to be re-used at a later stage. When invoked, the data
is sealed using persistent sealing keys derived from the CPU to
encrypt and integrity-protect the data. The sealed data block can
be unsealed either by the enclave that sealed it or by the software
vendor, depending on the key used for sealing. This ensures the
con�dentiality, integrity and authenticity of the data.

2.2 SGX in Practice
SGX has been used to enforce privacy in the smart-grid infrastruc-
ture, to secure the energy consumption traces of users [10]. Here, to
perform analyses over the user data, SGX is used as an intermediary
entity between the smart metering devices and the SP. Only the
meta records created by the intermediary entity are then sent to the
SP for billing purposes. The security features o�ered by SGX have
also been used to implement a content-based routing (CBR) engine
inside the enclave [14]. CBR is not very popular as it necessitates
routers to view the data in plain-text, which poses security threats.
However, when message �ltering is performed inside the enclave,
the routers remain oblivious to the messages. [6] uses SGX to make
secure two-party function evaluation more e�cient as compared to
traditional cryptographic operations that are too slow for practical
applications. Along similar lines, [13] proposes the use of SGX for
providing privacy guarantees for MapReduce operations. In all the
above applications, it was found that porting the applications inside
the SGX enclaves results in a superior performance compared to the
cryptographic mechanisms. These results motivated us to exploit
the privacy guarantees o�ered by SGX and apply it to a domain
where privacy is of extreme importance: LBSs.

3 PRESERVING LOCATION PRIVACY
Research e�orts in the domain of location-privacy preservation
have been focused on enforcing two key principles: anonymity
and indistinguishability. Anonymity is essentially decoupling the
user identity from the location-traces so that the SP cannot link a
location to a particular user. Indistinguishability prohibits the SP
from distinguishing between the actual and fake locations sent by a
user. In this section, we discuss the related work on location-privacy
preservation in the context of LBSs.

A technique called spatial cloaking [5] was devised to perturbate
the user’s true locations. Here, an intermediary location broker is
used, which transforms the actual user location along the spatial and
temporal dimensions to satisfy certain anonymity constraints. The
query containing the perturbed location is then sent to the SP, thus
protecting the users identity and the location. Another commonly
used mechanism for protecting user identity is called spatial-k-
anonymity [4]. In this case, an intermediary server replaces the
location of a user with a location lying in an anonymizing region
consisting of at least k-1 other users. This makes the probability of
attacking a certain user at most 1/k . Such approaches dependent on
an intermediary trusted-entity have several disadvantages, such as
bottlenecks in communication and a single point of failure because
all the sensitive user information is stored at a single central entity.

In order to address these limitations, decentralized approaches
have been devised; they exploit the peer-to-peer network to elimi-
nate the dependency on an intermediary trusted server. Here, the
participating users form a peer group that is used to route their

queries to the SP [1]. Peers are selected at random to forward the
location traces. Another common technique is to send dummy loca-
tions, along with a true location, to enforce indistinguishability [9].
In the above cases, the extent of privacy protection and LBS ac-
curacy is dependent upon the population and road density in the
vicinity of a user’s location. [12] solves the above problem by �rst
projecting the 2-D location coordinate onto a Hilbert curve. Homo-
geneous noise is then added to the points on the curve to perturb
the true user locations. The perturbed points are projected back
to the 2-D space before sending them to the SP. The results show
higher LBS accuracy and privacy guarantees compared to conven-
tional location-privacy techniques. However, the dimensionality
reduction and perturbation process leads to an increased latency.

Cryptographic techniques relying on homomorphic encryption
are also used to access LBSs without directly revealing the location
traces [2]. [16] proposes an e�cient spatial range query algorithm
over ciphertext; it protects user’s query privacy and LBS data con�-
dentiality in an outsourced cloud. Similar to the previous work, [11]
enables di�erent levels of queries on encrypted location traces, with
the added bene�ts to operate on amobile phone. Although the above
contributions guarantee a high level of LBS accuracy, they involve
a high latency and complexity due to the operations performed on
ciphertexts. As the SGX based solution does not demand location
perturbation or computing on ciphertext, it is implicitly more ef-
�cient than the existing solutions, and provides highly accurate
services.

4 SYSTEM DESCRIPTION
In this section, we present our system model, the adversary model
and the protocol design.

4.1 System Model
Our system model consists of the following three entities.

• The Client is the end user having a subscription to the
LBS. In our application, the client sends her current location
to the POI-Locator service provider to receive information
regarding the nearby (user-con�gurable distance) points of
interest (POI) that can include restaurants, pubs, cafes, gas
stations etc.

• The Service Provider receives the client’s current location,
computes the nearby points of interest using a local database
and returns the result back to the client. The result should
include the name and category of the place, address and
distance from the user’s current location.

• The Infrastructure Provider hosts the POI-Locator appli-
cation and provides the SGX-based machine to run the ser-
vice provider’s application: for example, a public cloud plat-
form o�ering cloud services.

4.2 Adversary Model
Considering the above system model, the adversaries from the
client’s perspective are both the SP and the infrastructure provider
(IP). We also assume that the SP does not trust the IP. Hence es-
sentially, the SP wants to keep its code con�dential and the client
wants to keep her location-coordinates private.

HumanSys’17, November 5, 2017, Del�, The Netherlands V. Kulkarni et al.

LBS
User

Third-party
analytic
services

Hardware

Hypervisor

OS

Container
App

malicious
container

malicious OS

malicious hypervior
malicious firmware

DMA/compromised peripheral

physical DRAM r/w

channel
intercept

channel
intercept

replay
attack

Client Untrusted

App XPOI-Locator

malicious App
Untrusted Service Provider

Figure 4: Adversary Model

The hardware platform and the system software running at the
client’s end are assumed to be trusted. The IP is treated as untrusted
and malicious or compromised, capable of executing any arbitrary
software or modifying the OS or the bootloader. The attacker is
assumed to be able to control all the privileged software, including
the hypervisor, �rmware and the entire management stack. As
the resources in a public cloud domain might be shared amongst
multiple SPs, we also assume that all the other services/applications
running at the IP’s end are malicious. The IP administrators are
not trusted and are assumed to be curious or malicious. The SP
is assumed to be honest but curious, i.e. the application always
computes and returns correct results to its clients, however they
can use the information regarding a user’s identity and/or location
traces for any kinds of activities. The SPs can also leverage analytical
services from other third party entities such as Azure2. We also
assume that such services are honest but curious.

Attack Description
Denial of Service Host machine physically taken o� the network
Port attack Malicious software running via the debug ports
Bus tapping attack Tap motherboard bus’s to track or modify tra�c
Chip attack Power and timing analysis to reverse engineer code
Side channel attack Reverse engineering via performance monitoring
Cache timing attack Learn correlation between memory access & time
Microcode attacks Reprogram the machine code functionality

Table 1: SGX is vulnerable against above hardware attacks

We also consider that the processors equipped with the SGX
functionality are to be trusted and an attacker is not capable to
physically tamper with them. Figure 4 shows the possible attacks
considered by our system. SGX provides implicit protection against
the attacks marked in green but not those marked in red. Table 1
shows a detailed list of hardware attacks, against which SGX does
not o�er implicit protection. We do not consider these attacks, as
they require physical access to the hardware, which is easier to
detect in most cases.

4.3 System Design
Our system and protocol design focuses on the computation and
communication security between all the entities involved.
Application Setup Phase. In order to setup and launch the POI-
Locator application, the SP �rst transfers a setup code, Sc to the
IP. Sc is not con�dential and can be sent in plain text. Next, the
application code, Ac is encrypted with a con�dential key, K and
sent to the IP. Upon reception, IP will setup and instantiate an
2Microsoft Azure: azure.microsoft.com

S
er

vi
ce

 P
ro

vi
de

r

In
fra

st
ru

ct
ur

e
P

ro
vi

de
r EncK(Ac)Sc,

PKsgx, EncPKsgx(MSc)

EncPKsgx(K)

EncK(DBPOI)

Subscription

Remote Attestation

PKsgx

Enckey, i((lat,lon))

Enckey, j(Result)

Application setup Application delivery

C
lie

nt

Figure 5: Communication protocol in POI-Locator

enclave and run the Sc . After running the Sc , a log called enclave’s
measurement, MSc is created, which attests that Sc is running in
isolation within a legitimate enclave. This log is encrypted using
the public key of the SGX core, PKsдx and sent to the SP. The SP
veri�es the log with the provisioning server and sends the key K
encrypted with PKsдx back to the IP. After receiving the K , Sc can
decrypt Ac and can initiate the application inside the enclave. The
interaction between the SP and the IP is depicted in Figure 5.

Next, the database �le containing the POI’s is sent to the IP,
encrypted with K . This �le is later decrypted inside the enclave
and is sealed using the enclaves TweetNaCl keypair3.
Service Provisioning. Once the service is running, and before
serving the clients the enclave generates TweetNaCl keypairs .
Upon the successful generation of keypairs, the enclave outputs
a public key that is provided to the client after subscribing to the
service. This key can be used by the client to encrypt the requests
and authenticate the results.

First, the client runs the remote attestation service to verify that
the SP is running the promised program securely. The client views
it as a public-key certi�cate, where the SP, along with the Intel
provisioning server, endorses the application. After this step, both
the parties have the enclave public key, PKsдx . We rely on the
SGX re-encrypt4 mechanism to establish a secure communication
protocol between the client and the SP. In order to gain access to
the service, the client sends a request with the current location
and range encrypted with a key ID, i . Along with this message, the
client also sends a key ID, j: it is the encryption key ID of the result
to be returned by the SP.

The SP receives the request and decrypts the ciphertext using
the key ID, i , providing the user location coordinates (lat , lon) and
the range. The application then retrieves all the POI’s lying within
the range of the user’s location, encrypts it using the key ID j and
sends the result to the client. To view the result, the client decrypts
the it using the the key j. All the plaintexts are encrypted using
AES-GCM with 128-bit keys5 and elliptic curve schemes over p256,
which provides 128-bit security. In order to preserve anonymity,
we rely on the anonymous routing component, Tor6 at the client’s
end. This is simply achieved by using a Onion Proxy mobile client 7
to connect to the service provider; this mobile client uses a type of
source routing to achieve communication anonymity between the
client and the SP.

3TweetNaCl: https://tweetnacl.cr.yp.to/
4SGX re-encrypt: github.com/kudelskisecurity/sgx-reencrypt
5AES-GCM: tools.ietf.org/html/rfc5084
6TOR Proxy: www.torproject.org
7Onion Proxy: www.torproject.org/docs/android.html.en

Privacy-Preserving Location-Based Services by using Intel SGX HumanSys’17, November 5, 2017, Del�, The Netherlands

Enclave Task Execution Time Enclave Task Execution Time

Create 22.41µsec Copy
(128 Bytes) 0.155µsec

Entry 0.752µsec Seal
(128 Bytes) 0.137µsec

Exit 0.631µsec Keypair 13.445µsec
Encrypt

(128 Bytes) 0.0154µsec Hash
(128 Bytes) 0.264µsec

Token 24.9944µsec Quote 15.39µsec
Table 2: Micro-benchmarks of enclave tasks

5 EVALUATION AND RESULTS
To evaluate the system performance, we base our results on a data-
base of points of interest in Switzerland retrieved from the Open
Street Maps8. Our implementation is run on a 64-bit, Intel 4-Core
i5-7500 CPU clocking at 3.40GHz and running Ubuntu-16.04. We
use the Linux 2016-06 SGX SDK9, and the Enclave Page Cache was
set to the maximum available size of 128 MB.

5.1 Benchmarking SGX Overhead
In order to quantify the overhead involved due to the SGX, we
benchmark the latency of basic enclave operations. The execution
time of enclave creation, enclave entry and exit (ECall and OCall),
encryption, generating the keypairs, measurements and tokens,
copying and sealing data is shown in Table 2. All the results are
derived after taking into account the average and variance over
100 runs. We rely on SGX-log [8] to implement and quantify the
latency of the micro-benchmarks.

The latency due to the enclave creation, copying and sealing
is a one time cost involved during the service initialization phase.
Every new client also has to bear the initiation cost of retrieving the
measurement quote and generating the SGX public keypair. The
other tasks, such as encryption, ECalls and OCalls, are recurring
costs and contribute to the core of the overhead involved due to
the SGX.

5.2 Bare-Metal Comparison
Here, we compare the overhead contributed by the SGX to the bare-
metal implementation of the same application. We select a random
coordinate lying within the POI dataset and select a range of 1000
meters in the query. These two parameters are kept constant for
this evaluation. We quantify the overhead in terms of number of
total instructions executed as the size of the POI-dataset increases,
as shown in Figure 6. SGX results in a modest 10-12% rise in the
number of total executed instructions. Amajority of these additional
instructions result due to transferring the execution between the
enclave and the non-enclave modules. More speci�cally, the OCalls
that the enclave has to initiate in order to execute system calls.
Additional overhead is contributed by the instructions that need
to be executed to encrypt and decrypt the array that contains the
result and the user’s location. However, these costs are marginal
and do not lead to noticeable service delays.

8OSM Switzerland: planet.osm.ch
9Linux SGX-SDK: https://github.com/01org/linux-sgx

Figure 6: Comparison of number of instructions executed

5.3 Precision Comparison
Next, we compare our SGX-based approach to a popular location-
privacy preserving technique: spatial cloaking with k-anonymity.
The central idea of cloaking is to perturbate and anonymize the
user’s true location by creating cloaked regions. Spatial cloaking
typically requires a trusted third party, called a location anonymizer,
responsible for generating the cloaked regions. The anonymizer
has to ensure that the cloaked region contains the number of users
greater than or equal to k . Here, k refers to a privacy parameter that
can be chosen by the user and corresponds to the desired degree of
privacy.

true location

other users

original query area

cloaked query area
d

quad tree

Figure 7: Spatial cloaking with k-anonymity

The POI-Locator application can be queried with a location and
a desired range. Hence, for comparison, we assume a scenario
wherein a set of queries are performed by di�erent users who lie
within the POI-dataset range. The cloaking implementation for
this experiment is based on a simple spatial perturbation with k-
anonymity technique described in [5]. The algorithm �rst indexes
the locations of all the users in a quadtree. Given the location of a
user, it then searches for the �rst cell that contains this location and
less than k queries. The parent of this cell is guaranteed to contain
a number of queries greater than or equal to k and is returned as
the cloaked region. The algorithm then computes a new range by
adding the distance between the initial location and the center of
the cloaked region, d to the initial range speci�ed by the user as
shown in Figure 7. Thus, the center of the cloaked region and the
cloaked range is used to send the query to the SP. The anonymizer
does a good job at cloaking the user-location and range, however,
this comes at a great cost in terms of precision.

HumanSys’17, November 5, 2017, Del�, The Netherlands V. Kulkarni et al.

Figure 8: Relationship between query to clock range with k

In Figure 8, we show the relationship between the actual user
query range and the cloaked query range as k increases. We con-
sider three query ranges: 100, 500 and 1000 meters and as seen,
the di�erence between the two signi�cantly increases with k and
leads to imprecise results. Furthermore, we observe in Figure 9
that as the privacy requirement (k) increases the precision low-
ers signi�cantly with di�erent query ranges. In this case, we de-
�ne precision as the ratio between the number of POI’s lying
within the original range speci�ed by the user from her true lo-
cation (true positives) to the number of POI’s retrieved by the SP
(true positives + f alse positives). Note that measuring the e�ect
of cloaking on recall is not relevant because the original queries
and the cloaked queries return all the relevant results.

In conclusion, an approach based on SGX presents a clear advan-
tage over an approach based on spatial cloaking with k-anonymity.
Low precision has a great impact on the number of results returned
by the LBS. This translates to higher computational and bandwidth
requirements. In contrast, being able to return highly precise results,
and guaranteeing privacy can make the LBS much more e�cient.

6 CONCLUSION AND FUTUREWORK
In this paper, we have demonstrated the applicability of a hardware-
based trusted execution-environment, i.e. Intel SGX to o�er a pri-
vacy preserving location-based service.We implement a POI-Locator
application using the security guarantees o�ered by SGX, adopt-
ing a privacy-by-design principle. We quantify the overheads in-
volved due to the SGX implementation and compare it with the
bare-metal execution. We show that SGX-based approach leads to
a marginal overhead and provides near-to-the-perfect results. We
experimentally show that SGX is a better alternative compared
to popular location-privacy preserving approach: spatial-cloaking
with k-anonymity, which has a detrimental impact on the precision
as the degree of privacy increases.

Our current work, focuses on safeguarding only the user from
the service provider. However, the user can retrieve the complete
dataset from the service providers by submitting a large number of
queries. This is critical when the services provider hosts a privacy-
sensitive database. Our future work will address this issue in order
to guarantee the privacy of both the parties involved. Furthermore,
we will perform a complete evaluation of the SGX-based service,
including thememory e�ciency, responsiveness and usability to the
clients, the number of simultaneous queries that can be handled and

Figure 9: Relationship between the result precision and k

the network performance. We will also compare this approach with
other well-known privacy-preserving approaches such as Private
Information Retrieval (PIR) in terms of accuracy and overheads.

ACKNOWLEDGMENTS
This work is partially supported by the Swiss National Science
Foundation grant 157160.

REFERENCES
[1] Chi-Yin Chow, Mohamed F. Mokbel, and Xuan Liu. 2006. A peer-to-peer spatial

cloaking algorithm for anonymous location-based service. In GIS.
[2] Youssef Gahi, Mouhcine Guennoun, Zouhair Guennoun, and Khalil El-Khatib.

2012. Privacy Preserving Scheme for Location-Based Services. J. Information
Security 3 (2012), 105–112.

[3] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez.
2010. Show me how you move and I will tell you who you are. In SPRINGL.

[4] Bugra Gedik and Ling Liu. 2008. Protecting Location Privacy with Personalized k-
Anonymity: Architecture and Algorithms. IEEE Transactions onMobile Computing
7 (2008), 1–18.

[5] Marco Gruteser and Dirk Grunwald. 2003. Anonymous usage of location-based
services through spatial and temporal cloaking. In Proceedings of the 1st interna-
tional conference on Mobile systems, applications and services. ACM, 31–42.

[6] Debayan Gupta, Benjamin Mood, Joan Feigenbaum, Kevin Butler, and Patrick
Traynor. 2016. Using intel software guard extensions for e�cient two-party
secure function evaluation. In International Conference on Financial Cryptography
and Data Security. Springer, 302–318.

[7] Investopedia. 2016. Uber Starwood. http://www.investopedia.com/articles/
investing/030916/how-uber-uses-its-data-bank.asp. (2016).

[8] Vishal Karande, Erick Bauman, Zhiqiang Lin, and Latifur Khan. 2017. SGX-Log:
Securing System Logs With SGX. In AsiaCCS.

[9] Hidetoshi Kido, Yutaka Yanagisawa, and Tetsuji Satoh. 2005. Protection of Lo-
cation Privacy using Dummies for Location-based Services. 21st International
Conference on Data Engineering Workshops (ICDEW’05) (2005), 1248–1248.

[10] Kubilay Ahmet Küçük, Andrew Paverd, Andrew Martin, N. Asokan, Andrew
Simpson, and Robin Ankele. 2016. Exploring the Use of Intel SGX for Secure
Many-Party Applications. In Proceedings of the 1st Workshop on System Software
for Trusted Execution (SysTEX ’16). ACM, New York, NY, USA, Article 5, 6 pages.
https://doi.org/10.1145/3007788.3007793

[11] Xiang-Yang Li and Taeho Jung. 2013. Search me if you can: privacy-preserving
location query service. In INFOCOM, 2013 Proceedings IEEE. IEEE, 2760–2768.

[12] Aniket Pingley, Wei Yu, Nan Zhang, Xinwen Fu, and Wei Zhao. 2012. A context-
aware scheme for privacy-preserving location-based services. Computer Networks
56, 11 (2012), 2551–2568.

[13] Rafael Pires, Daniel Gavril, Pascal Felber, Emanuel Onica, and Marcelo Pasin.
2017. A lightweight MapReduce framework for secure processing with SGX. In
Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing. IEEE Press, 1100–1107.

[14] Rafael Pires, Marcelo Pasin, Pascal Felber, and Christof Fetzer. 2016. Secure
Content-Based Routing Using Intel Software Guard Extensions. In Middleware.

[15] USA Today. 2014. LBS Tracking. www.usatoday.com/story/tech/2014/11/19/
uber-privacy-tracking/19285481/. (2014).

[16] Hui Zhu, Rongxing Lu, Cheng Huang, Le Chen, and Hui Li. 2016. An E�cient
Privacy-Preserving Location-Based Services Query Scheme in Outsourced Cloud.
IEEE Transactions on Vehicular Technology 65, 9 (2016), 7729–7739.

http://www.investopedia.com/articles/investing/030916/how-uber-uses-its-data-bank.asp
http://www.investopedia.com/articles/investing/030916/how-uber-uses-its-data-bank.asp
https://doi.org/10.1145/3007788.3007793
www.usatoday.com/story/tech/2014/11/19/uber-privacy-tracking/19285481/
www.usatoday.com/story/tech/2014/11/19/uber-privacy-tracking/19285481/

	Abstract
	1 Introduction
	2 Background
	2.1 Intel Software Guard eXtensions (SGX)
	2.2 SGX in Practice

	3 Preserving Location Privacy
	4 System Description
	4.1 System Model
	4.2 Adversary Model
	4.3 System Design

	5 Evaluation and Results
	5.1 Benchmarking SGX Overhead
	5.2 Bare-Metal Comparison
	5.3 Precision Comparison

	6 Conclusion and Future Work
	Acknowledgments
	References

