
software 
architectures

course 
overview



objectives
provide an introduction to the concept 

of software architecture and it s 
various implementations 

provide the opportunity to acquire theoretical 
and practical understanding of the different 

dimensions of a software architecture 



practical issues
lectures: Internef 237  
exercises: Internef 143

doplab.unil.ch/software-architecture

evaluation
a written exam at the 
regular exam session

written or oral exam at  
the retake session, depending  
on the number of candidates

http://doplab.unil.ch/software-architecture


some development tools



caveat
students are expected to possess basic 

knowledge of programming and algorithms, 
typically acquired through a course like 
Algorithms and Computational Thinking

this is a brand-new course on an important 
innovation-driven domain, so expect some 

changes along the journey



okay, but what is a

architecture
software

?



… can be continuously corrected, extended, refactored, optimized
software

because of it s unique nature, software is at the heart of the 
digital transformation and makes this transformation profound

the nature of the software is unique and brings it closer to 
a living organism than to an inert and passive artifact

…



the word "algorithm" comes from Muhammad ibn Musa 
al-Khwarizmi, Latinized to Algoritmi, a Persian 

mathematician who lived in Baghdad in the 9th century

an algorithm is a finite and unambiguous 
sequence of operations used to solve a problem

software is closely related to 
the notion of algorithm

he was the first to describe a systematic procedure 
(actually an algorithm) for constructing solutions to 

linear and quadratic equations

softwarethe nature of



software is not longer being simply used as support for 
existing human activities but rather becoming the driver 
of profound changes in the way we do things and even 

the source of totally new activities

this is the essence of  
digital transformation

the software revolution



a new mindset

property of goods or services whose individual 
instances are capable of mutual substitution

the “old” mindset 
align software usage to existing business practices 
business is the driver, software is merely a support 

the “new” mindset 
extend business models to support new digital channels 
embrace the intrinsic fungibility offered by software



digital disruption is what happens when you let others 
drive the digital transformation of your business

software is now  
ruling the world

digital disruption



did you know...
... the largest taxi company owns 

no vehicles?

... the largest accommodation 
provider owns no building?

... the most valuable retailer 
 has no inventory?

... the largest travel agency 
has no public offices?



digital disruption 
typical sequence of events

1. digitization dematerializes the product and makes the 
existing business more efficient 

2. some digital technology innovation makes the product 
fungible but existing actors do not see it  

3.some outsider who understands the potential of that 
digital innovation disrupt the market by proposing a 
cheaper and/or better alternative



the example of the record industry

1877 – Phonograph (Edison)
1890 – Gramophone (Berliner)

1925 – Standard 78rpm
1948 – Long Play (33rpm)

1963 – Cassette (Philips) 1979 – Walkman (Sony) 1980 – CD (Philips/Sony) 1992 – MiniDisc (Sony)

disruptiondigital



1993 – MP3 Format

1999 – Napster Service

1998 – MPMan (10 to 30 songs)

2001 – iPod (1000 songs)

2001 – iTunes (software)

the example of the record industry
disruptiondigital



sony apple
was building audio devices

co-invented the compact disk
invented the walkman

owned a record company
understood software

✔ ✘
✔
✔
✔

✘
✘
✘

✘ ✔

the example of the record industry
disruptiondigital



November 2007

disruptiondigital



okay, so what is a

architecture
software

?



architecturesoftware

Architecture is the fundamental organization of a 
system embodied in its components, their 
relationships to each other, and to the environment, 
and the principles guiding its design and evolution.

[IEEE 1471 Standard]

multiple definitions

The important stuff—whatever that is.
Fowler, M. (2003). Design – Who needs an 

architect? IEEE Software. 20 (5)

Overall, macroscopic system structure.
Garlan & Shaw (1994). An Introduction 

to Software Architecture.

That which is fundamental to understanding a system in its environment
[ISO/IEC/IEEE 42010 Standard]

no strict consensus but an overall agreement

https://en.wikipedia.org/wiki/IEEE_1471
https://ieeexplore.ieee.org/document/1231144
https://ieeexplore.ieee.org/document/1231144
https://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
https://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
http://www.iso-architecture.org/42010/defining-architecture.html


the software 
lifecycle as guide

architecturesoftware

beware 
decision made in 

each phase 
influences the 
other phases

Deployment

Operation

Development
LIFECYCLE PHASE TYPICAL QUESTIONS

Development 
Associated Terms

• designing 
• programming 
• coding 
• static

• how effective and efficient are the algorithms I am using?

• how are the different functional and technical concerns dealt 

with?

• how is the growing complexity of my code base managed?

• how easy is it to correct bugs and add new functionalities?

• are side effects possible? if so, how are they managed?


Deployment 
Associated Terms

• distribution 
• provisionning 
• curating / updating

• on how many processors / machines will my code be deployed?

• how many distinct tiers are being used for deployment?

• how do remote pieces of software communicate?

• how is distributed trust and security ensured?


Operation 
Associated Terms

• execution-time 
• run-time 
• monitoring/profiling 
• dynamic

• who is managing the machines running my software?

• where are those machine located?

• how do I monitor my running software?

• how do I update my running software?

• how is scalability achieved?




architecturesoftware
FRIDAY 8:30 – 10:00 10:15 – 11:00 11:15 – 12:00

1 Sep 20 course overview discover development tools assess your programming skills

2 Sep 27 programming paradigms – a refresher course basic object-oriented and functional programming exercises

3 Oct 04 programming methodology and tools programming methodology and tools execises

4 Oct 11 modularity, unit testing and separation of concerns separation of concerns | remote invocations and transactions

5 Oct 18 modularity and unit testing exercises remote invocations and transactions exercises 

6 Oct 25 separation of concerns | persistence and object-relational mapping object-relational mapping exercises 

7 Nov 01 basics of web applications web application exercises

8 Nov 08 THEMATIC WEEK

9 Nov 15 asynchronous interactions asynchronous interactions exercises

10 Nov 22 basics of web services services and micro-services web services and micro-services exercises

11 Nov 29 basics of distributed trust with blockchains blockchain exercises

12 Dec 06 basics of mobile applications mobile application exercises

13 Dec 13 cloud computing– virtualization and devops virtualized services exercises

14 Dec 20 cloud computing – containerized services and clustering containerized services and clustering exercises

a tentative plan

D
ep

lo
ym

en
t

O
pe

ra
tio

n
D

ev
el

op
m

en
t


