

learning W o

objectives

+ learn about the concept of programming paradigm
+ learn how programming paradigms differ
+ learn about object-oriented programming

+ learn about functional programming

what's a paradigm?

.‘«?
R

a cognitive framework containing the F L 2
basic assumptions, ways of thinking, | S
and me‘l’hodologq that are commoniy
accepted by members of a discipline

a model of the world or in a more
restrictive way of a part of the world,
in our case of the world of programming

©
S
S q
A £ £ v
Y E £ g
E £ : o
€ ¥ 5 £
= § & s £
S = ¢ e S
S h -
: £ 3 s
s g 5 4
S I § § &
S § ;& 2
= 2 i ¢ g
S 3
S i

key

ke1 programming paradigms

7
W

procedural programming
program = data structures + algorithms

ﬂpical Ianguages-. algol, pascal

Iogic programming

program = rules + inference engine

fs,pical Ianguages-. planney, prolog

Iogm program

N prolo

| queries
cat(tom) :- true. 9 ?—- cat(tom). ?—- cat(X).
B— — g Yes X = tom
T e e e e E—————————e e m s S _ = ;‘ — —— e S
|
mother child(trude, sally). { ?- sibling(sally, erica).
| Yes

father child(tom, sally). ﬁ
father child(tom, erica). f

. . ?— fath hil X).
father child(mike, tom). ather child(tom, X)

X = sally
I X = erica

sibling (X, Y) :- parent child(Z, X), parent child(Zz, Y).

parent child(X, Y) :- father child(X, Y).
parent child(X, Y) :- mother child(X, Y).

try swish. swi-prolog.org

http://swish.swi-prolog.org

type !
String25 = String[25]; t
Book = record
title, author, isbn : String25;
price : Real; J

end;

procedural progra

- —— e e e —_— ——

a‘lr\"“ilr!'
\n pascal
aer

9

I e ————

program Printing;
var myBook : Book;

procedure Print(theBook : Book);

begin
Writeln('Here are the book details:');
Writeln('Title: ', theBook.title);
Writeln('Author: ', theBook.author);
Writeln(' ISBN: ', theBook.isbn);
Writeln('Price: ', theBook.price);

end;

begin { main program }
myBook.Title := 'La Modification';
myBook.Author := 'Michel Butor';
myBook . ISBN := '978-27-07303-12-7";
myBook.Price := 15.9;
Print (myBook)

end.

proceclural progmmming

Letters to the editor: go to statement considered harmful

Ful Text Tlppr —
Author: Edsger W. Dijkstra Technological Univ., Eindhoven, The Netherlands @ 1968 Atrticle
Published in:

—d Bibliometrics

- Citation Count: 334
- Downloads (cumulative):

m- Magazine
Communications of the ACM CACM Homepage archive

proceduml programming was a

Volume 11 Issue 3, March 1968

Pages 147-148
ACM New York, NY, USA

10,795
- Downloads (12 Months): 502

- Downloads (6 Weeks): 46

response to the growing comPlexi’ﬁ,

of algorithms data structures

with the number of lines of code

growing exponentially in software,

there was a need for modularity,
encapsulation and code reuse

table of contents d0i>10.1145/362929.362947

1) IR e
AR R e R S
" > e 24 2"
lq’l“."' ". 9 5
“f A 4 .?}s’o W han
'.A,.“‘,“}q- R
PN L Y R e
SRR D% Ay
"-":.'.-.- ""&,.
" el S, s $
r'e 4.0'1 A.‘
et .“ - -
A
; .‘;
(0 PSR v .
..,\“7.."*‘ -
s ".._\nl..
. ‘.‘. L
;.IH:' \‘-'a_._"
. fa ...‘,‘.‘ .
- B,
' :'ta-' '
Y-) 407 .,ﬁ' o2
. e d
P R A R A

((}ig;;la(.)r;lifhprogress is only charae
€ Procedure we

: refer,

:Ze can qha{'acterxze the progrle;

: xtual. Indices, the length of E

Yilamic depth of Procedure cg

» Program intelligibility

€1 programm;
» berhapsg, plain Mmachine Cél:igg

muceh i
i impor tance to this gis. pno o o0 8eherated by repetit;

the repetition
,) on clauges te :
N describe the dynamie pr xtual j

ogress o

R

proceclural programming

Unixv 1.0 | 10K with the number of lines of code
Average iPhone App [40K . . .
R growing exponentially in software,
Witiea1 MBS there was a need for modularity,
HD DVD Player 4.5M .
World of Warcraft | 5.3 encapsulation and code reuse
Firefox Browser 9.9M -]

Android OS 11.8M
F-35 Fighter Jet 24.7TM
Windows 7 39.3M

Facebook 61M
Google R

source: thenextweb.com lines of code

?_ﬁ object-oriented programming

7= object-oriented programming
objects and classes

an object represents particular “things”
from the real world, or from some problem
domain (e.g., “my blue rocking chair”)

a class represents all objec’rx
of a given kind, e.q., “chairs”

L — o

= object-oriented programming
* objects and classes

many instances

(objects) can be

created from a
single class

the class can be seen
as a kind of object
fac’ror1 (or a mold)

progmmming

§~

/éi’ \ - -1
/= object-oriente
methods

the source code of classes defines f ields l
the attributes (fields) and methods
all objects of the class have

methods may have

parameters to pass
additional information
nheeded to execute it

class Chair

String color;
String model,;
boolean i1isBroken:
int age;

instance myFirstChair instance mySecondChair

color color

mode L mode L

‘
Z ; é ! /
’
f
1
)
b v
Sk A s S A"
k —a 5 oo
- ’ - ‘- 4

1sBroken 1sBroken -
chair.rotate(45)

age age

= object-oriented programming

swciﬁcaﬁon vs implementation

7= object-oriented programming
specification viewpoint

no need to know how objects
are built to use them, only
what can be done with them

N

the viewpoint of someone
simPh, wanﬁng to use
objects (not design them)

encapsulation principle: allows us to hide
(encapsulate) the complexity of objects

a class specifies the set of common behaviors
offered by objects (instances) of that class

= object-oriented programming
implementation viewpoint

the wmplementation viewpoint is
concerned with how an object actually
fulfills its specification (its contract)

the fields and methods define
how the object will behave and
are defined by its

T

class

{» object-oriented programming

smciﬁcaﬁon vs implementation

public class NumberDisplay {
private int limit;
private int value; ¥

public NumberDisplay(int limit, int value){
this. limit = limit; <«
this.value = value; «

I3

public NumberDisplay(int limit){
this(limit, 0);

I3

public int get() { return value; }

public void set(int value) {
this.value = value;

"= 1‘:

}

public void increment()<{
value = (value + 1) % limit;

I3
public String toString(){

if(value < 10) { return "0" + value; }
else { return "" + value; }

= object-oriented programming
abstraction and modularization

abstraction is the ability to ignore details of parts
to focus attention on a higher level of a problem

modularization consists in dividing a
complex object into elemental objects
that can be developed independenﬂ1

the encapsulation offered by objects is
the cornerstone of modularization
because it hides implementation details

this 1s known as
once elemental objects have been
developed and tested, they can be COC'Q yeuse

assembled into a more complex objed'

objec’r-orien’recl programming
inheritance £ polymor phism

‘ ‘ 3

7= object-oriented programming
inheritance & polymor phism

Code duplication is an indication of bad design
Code duplication makes maintenance harder

Code duplication is an indication of bad design

Code dupli&a&&om malees maintenance harder é
]
Code ciuptiaa%wm s an indication of bad '

=0

b)ed-onen‘l’ed programming
inheritance & polymor phism

w«« 1 inheritance allows us to define one class, the
s .
A Mw "‘;"‘; subclass, as an extension of another;, the superclass
el

s
yk /,-,tn.y«!v" fﬂ‘ "‘*"

'»«Nu " MM 3
’!’"‘ "‘Mﬁsﬂt'! “3"““5
' >
9 7S ,.,_.'.'. ;." -~ |

3

a superclass defines common attributes

a subclass inherits all fields and methods from its
superclass and defines specific attributes

) S

7= object-oriented programming
inheritance & polymor phism

. A-'*“n \'\.'!'
! e ! ' N
\:. <Y J A‘ /L
NS : "
| (32 % b pag ¢ T V6N 540 ¥
 Sex e nt t’,”‘ﬂ pepd 3
M Sene v ke DY N BEre
' Nup‘eu's'!'ﬂ D¢ & !
; A I] 1
. Yy v '.' |
Book Vinyl

— place
. duration
attributes

in the
superclass

=0

b)ed-onen‘l’ed programming
inheritance & polymor phism

classes define

‘|‘1pes

e — ——

subclasses define
sub’rxlpes

|
t
|

|
" ,
}
i

superclasses define
super ’rxlpes

L ———— T

a geek

a person with a devotion to
something in a way that places him
or her outside the mainstream”

*wikipedia

= object-oriented programming
inheritance §& polymorphism .
substitution principle

objects of subtypes can be used where
objects of supertypes are required

object variables are
polymorphic because they
can hold objects of more
than one type

= object-oriented programming
* inheritance & polymor phism '

S,

“—— Book b = Book(title:"Hamlet", author:"”Shakespeare”);
Vinyl v = Vinyl(title:"Abbey Road", artist:"Beatles", duration:47);

Medium m;
X v=0»b
){ b = v
. the substitution principle
y ' :: only works... [|
X b=

ItI—_—yb = (Book)m; ¢/ *

e —

this 1s type casting §

L — L

7= object-oriented programming
code quality

coupling cohesion

cohesion refers
to the number and
diversity of tasks
that a single unit is
responsible for

coupling refers

to links between
separate units
of a program

a unit 1s either a
class or a method

= objed-onen‘l’ed programmmg

o coupling

i two classes depend closely on
many details of each other we
say 1’he1 are ﬁgh’rﬂ coupled

cohesion

¥ a unit corresponds to a single
logical aspect, it has high cohesion

a class should represent one
single, well defined entity

a method should be responsible for
one and only one well defined task

% ob)ed-onen‘l’ed programmmg

loose couplmg
makes 1t easy ‘o

high cohesion
makes 1t easy ‘o

understand what a class or method
does and use descriptive names ;'(L.' ’; '

understand one class
without reading others

change a class without
affecﬁng others

avoid confusing the scope ancl
responsibility of a class or method

A
(o
SN

‘ it u& maintain f.lae code
and make i1t evolve

reuse the code of classes
or methods across projec’rs

-0
/

R —

b object-oriented programming

_ “ > the response to the exponential
' growth of software code bases

F-35 Fighter Jet 24.7M .
Windows 7 39.3M

Facebook 61M @
Google R 2B

lines of code

source: thenextweb,com

but with the massive increase n parallelism brough’r
b1 hardware and operating s~|s’rems a hew challenge
emergecl how 1o safelsl manage concurrenq

g ey
’c.- —
S L
S T
gyt S e
Vze?
77 2\
",f’i’"\\ :
o pe” e, ”‘“"
”’t"’t:”!’ W/
A = = 1
3 i e ;"A‘f bar - ;" T
e =3 : H‘f‘-{ . s | =+ .= = £
> . , & = 55 [st SR ISR =u e SU
\ = s (17 g | SRERN; T Sw o GBEREREN
3 % b\LY - F ;
NN == s e
RS ess Q% __ == = § o 1
OSSN S X 1
e Sk ¥
I =

functional programming

a function has a side effect
¥ it modifies something outside itseH

class Cafe {

| charging a credit card modifies 1 def buyCoffee(cc: CreditCard): Coffee = {
; i] i i val cup = new Coffee()
't requires contacting return cup
the credit card company ; b N\ /
] b | Credit card Cup

buyCoffee

this makes it difficult to T
test function buyCoffee

Credit card
— — server

Send transaction

functional programming

Qa pure function only return values and have no side effects

class Cafe {
def buyCoffee(cc: CreditCard): (Coffee, Charge) = {
val cup = new Coffee()

} return (cup,Charge(cc, cup.price)) mewmsssssenmssasrs now buyCoffee simPN returns a tuple _
} | consisting of a Coffee and a Charge |

case class Charge(cc: CreditCard, amount: Double) {
def combine(other: Charge): Charge =
if (cc == other.cc)
return Charge(cc, amount + other.amount)
else throw new Exception("Charges on different credit cards cannot be combined")

N el
P . Credit card Cup
class Charge reifies the action .

of charging the credit card @COffee

and returns it as an object Charge

. kal s

74
27,
g 2\ N
7 O ”i: :1‘\)
/;1”””/1”””” WA
A [P AN
e LA \N\
% 7 0 s W
7 NN D D
7% R
7 DOMACT IR
774 (o 12 1/ N
,‘;’ll:’::”’l”’;”l’l ’:’:I””‘ﬁ! % .rgbh"‘: e N J y
i Py L T WAV | |
557 e NN O LAt
77 s 7 e (\ Q" ORI
’,’,,’ltl,’ soaige Sy .5” ”;Q C\'“‘“f»
§7 4 10 e T S NN
l’,[’l i{” ’l’, ’I““ e SN .. () §.~ \) TR
o) -
ll’\”\"‘\ S - - “. .9'@ W :Q Y
SRS S - q: U
S o2 SR N ““ 3 :.. ’g»k
ERSSRER SO - SO [WY,
- T e SOSOTEN S .. 1
SR SN S S STROS SRR SO
= W

referential ‘hramparenq

an expression e is referentially transparent ¥, for all programs p,
all occurrences of ¢ in p can be substituted by the result of
evaluating e without affecting the semantics of p

a function f is pure the expression f(x) is referentially
transparent for all referentially transparent x

mathematical functions are by definition
referenﬁall\, transparent

functional programming
class Cafe { Ye‘feren‘ﬁal

def buyCoffee(cc: CreditCard): Coffee = {
Ce. charge (cup. price) transparency

return cup

}
}

val coffee = buyCoffee(myCreditCard) &H val coffee = new Coffee()

class Cafe {
def buyCoffee(cc: CreditCard): (Coffee, Charge) = {
val cup = new Coffee()
return (cup,Charge(cc, cup.price))
s

}

val (coffee, charge) = buyCoffee(myCreditCard) <::>, var cup = new Coffee()
- val (coffee, charge) = (cup, Charge(myCreditCard, cup.price)

functional programming

functional reuse and high-order functions

pure functions contribute to code reuse
because ‘|’he\| can be easih, comPosed

assuming n = 3

class Cafe { J— —
def buyCoffee(cc: CreditCard): (Coffee, Charge) =1 ... }
def buyCoffees(cc: CreditCard, n: Int): (List[Coffeel, Charge) = { = ||
val purchases: List[(Coffee, Charge)] = List.fill(n) (buyCoffee(cc))p———————e——pp-
val (coffees, charges) = purchases.unzip eor | S | G
return (coffees, charges.reduce((cl,c2) => cl.combine(c2)))

¥
}

what s this?

functional programming

functional reuse and high-order functions

a high-order function takes a function as
parameter or returns function as its results

class Cafe {

_ _ def buyCoffee(cc: CreditCard): Coffee = { ... }
h‘gh-order ‘funC'r")ns arec def buyCoffees(cc: CreditCard, n: Int): (List[Coffee]l, Charge) = {
- val purchases: List[(Coffee, Charge)] = List.fill(n) (buyCoffee(cc))
also Ca“ed ‘Func*“)nﬂls val (coffees, charges) = purchases.unzip
N'g ‘funC‘h)rs return (coffees, charges.reduce((cl,c2) == cl.combine(c2)))
I3
- - I3

: this is a parameter of type function
this concept comes from lambda calculus, a (Charge, Charge) => Charge

formal system in mathematical logic for
expressing comPu’raﬁon

