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paradigmlearn about the concept of programming paradigm 

learn how programming paradigms differ 

learn about object-oriented programming 

learn about functional programming

learning 
objectives

develop

deploy

operate

develop

deploy

operate



a cognitive framework containing the 
basic assumptions, ways of thinking, 
and methodology that are commonly 
accepted by members of a discipline

a model of the world or in a more 
restrictive way of a part of the world, 

in our case of the world of programming

what’s a paradigm?paradigm



imperative

declarative

procedural programming

object-oriented programming

functional programming

logic programming

key programming paradigms



procedural programming

logic programming

program = data structures + algorithms

imperative

declarative

program = rules + inference engine

typical languages: algol, pascal 

typical languages: planner, prolog 

key programming paradigms



logic programming
in prolog

cat(tom) :- true.  ?- cat(tom).
 Yes

 ?- cat(X).
 X = tom

mother_child(trude, sally).
 
father_child(tom, sally).
father_child(tom, erica).
father_child(mike, tom).
 
sibling(X, Y)      :- parent_child(Z, X), parent_child(Z, Y).
 
parent_child(X, Y) :- father_child(X, Y).
parent_child(X, Y) :- mother_child(X, Y).

 ?- sibling(sally, erica).
 Yes

 ?- father_child(tom, X).
 X = sally
 X = erica

facts queries

try swish.swi-prolog.org

http://swish.swi-prolog.org


procedural programming
in pascal

type
    String25 = String[25];
    Book = record
        title, author, isbn : String25;
        price : Real;
    end;

data structure algorithm
program Printing;
var myBook : Book;

procedure Print(theBook : Book);
begin
Writeln('Here are the book details:');
Writeln('Title:  ', theBook.title);
Writeln('Author: ', theBook.author);
Writeln('ISBN:   ', theBook.isbn);
Writeln('Price:  ', theBook.price);

end;

begin { main program }
myBook.Title  := 'La Modification';
myBook.Author := 'Michel Butor';
myBook.ISBN   := '978-27-07303-12-7';
myBook.Price  := 15.9;

  Print(myBook)
end.



procedural programming

Go T o  S t a t e m e n t  C o n s i d e r e d  H a r m f u l  Key Words and Phrases: go to statement, jump instruction, 
branch instruction, conditional clause, alternative clause, repet- 
itive clause, program intelligibility, program sequencing 

CR Categories: 4.22, 5.23, 5.24 EDITOR : 
For a number of years I have been familiar with the observation 

that the quality of programmers is a decreasing function of the 
density of go to statements in the programs they produce. More 
recently I discovered why the use of the go to statement has such 
disastrous effects, and I became convinced that the go to state- 
ment should be abolished from all "higher level" programming 
languages (i.e. everything except, perhaps, plain machine Code). 
At'that time I did not attach too much importance to this dis- 
covery; I now submit my considerations for publication because 
in very recent discussions in which the subject turned up, I have 
been urged to do so. My first remark is that, although the programmer's activity 
ends when he has constructed a correct program, the process 
taking place under control of his program is the true subject 
matter of his activity, for it is this process that has to accomplish 
the desired effect; it is this process that in its dynamic behavior 
has to satisfy the desired specifications. Yet, once the program has 
been made, the "making" of the corresponding process is dele- 
gated to the machine. My second remark is that our intellectual powers are rather 
geared to master static relations and that our powers to visualize 
processes evolving in time are relatively poorly developed. For 
that reason we should do (as wise programmers aware of our 
limitations) our utmost to shorten the conceptual gap between 
the static program and the dynamic process, to make the cor- 
respondence between the program (spread out in text space) and 
the process (spread out in time) as trivial as possible. 

Let us now consider how we can characterize the progress of a 
process. (You may think about this question in a very concrete 
manner: suppose that a process, considered as a time succession 
of actions, is stopped after an arbitrary action, what data do we 
have to fix in order that we can redo the process until the very 
same point?) If the program text is a pure concatenation of, say, 
assignment statements (for the purpose of this discussion regarded 
as the descriptions of single actions) it is sufficient to point in the 
program text to a point between two successive action descrip- 
tions. (In the absence of go to statements I can permit myself the 
syntactic ambiguity in the last three words of the previous sen- 
tence: if we parse them as "successive (action descriptions)" we 
mean successive in text space; if we parse as "(successive action) 
descriptions" we mean successive in time.) Let us call such a 
pointer to a suitable place in the text a "textual index." 

When we include conditional clauses (if B then A), alternative 
clauses (if B then AZ else A2), choice clauses as introduced by 
C. A. R. Hoare (case[i] of(At, A2, ... , An)), or conditional expres- 
sions as introduced by J. McCarthy (Bi -~ El, B2 --~ E2, ... , 
Bn ---~ En), the fact remains that the progress of the process re- 
mains characterized by a single textual index. As soon as we include in our language procedures we must admit 
that a single textual index is no longer sufficient. In the case that 
a textual index points to the interior of a procedure body the 

dynamic progress is only characterized when we also give to which 
call of the procedure we refer. With the inclusion of procedures 
we can characterize the progress of the process via a sequence of 
textual indices, the length of this sequence being equal to the 
dynamic depth of procedure calling. Let us now consider repetition clauses (like, while B repeat A 
or repeat A until B). Logically speaking, such clauses are now 
superfluous, because we can express repetition with the aid of 
recursive procedures. For reasons of realism I don't wish to ex- 
clude them: on the one hand, repetition clauses can be imple- 
mented quite comfortably with present day finite equipment; on 
the other hand, the reasoning pattern known as "induction" 
makes us well equipped to retain our intellectual grasp on the 
processes generated by repetition clauses. With the inclusion of 
the repetition clauses textual indices are no longer sufficient to 
describe the dynamic progress of the process. With each entry into 
a repetition clause, however , we can associate a so-called "dy- 
namic index," inexorably counting the ordinal number of the 
corresponding current repetition. As repetition clauses (just as 
procedure calls) may be applied nestedly, we find that now the 
progress of the process Can always be uniquely characterized by a 
(mixed) sequence of textual and/or dynamic indices. The main point is that the values of these indices are outside 

programmer's control; they are generated (either by the write-up 
of his program or by the dynamic evolution of the process) whether 
he wishes or not. They provide independent coordinates in which 
to describe the progress of the process. Why do we need such independent coordinates? The reason 
is--and this seems to be inherent to sequentiM processes--that 
we can interpret the value of a variable only with respect to the 
progress of the process. If we wish to count the number, n say, of 
people in an initially empty room, we can achieve this by increas- 
ing n by one whenever we see Someone entering the room. In the 
in-between moment that  we have observed someone entering the 
room but have not yet performed the subsequent increase of n, 
its value equals the number of people in the room minus one! 

The unbridled use of the go to statement has an immediate 
consequence that it becomes terribly hard to find a meaningful set 
of coordinates in which to describe the process progress. Usually, 
people take into account as well the values of some well chosen 
variables, but this is out of the question because it is relative to 
the progress that the meaning of these values is to be understood l 
With the go to statement one can, of course, still describe the 
progress uniquely by a counter counting the number of actions 
performed since program start (viz. a kind of normalized clock). 
The difficulty is that such a coordinate, although unique, is utterly 
unhelpful. In such a coordinate system it becomes an extremely 
complicated affair to define all those points of progress where, 
say, n equals the number of persons in the room minus onet 

The go to statement as it stands is just too primitive; i t  is too 
much an invitation to make a mess of one's program. One can 
regard and appreciate the clauses considered as bridling its use. I 
do not claim that the clauses mentioned are exhaustive in the sense 
tha t /hey  will satisfy all needs, but whatever clauses are suggested 
(e.g. abortion clauses) they should satisfy the requirement that a 
programmer independent coordinate system can be maintained to 
describe the process in a helpful and manageable way. 

I t  is hard to end this with a fair acknowledgment. Am I to 

Volume 11 / Number 3 / March, 1968 
Communieations of the ACM I47 

procedural programming was a 
response to the growing complexity 

of algorithms  data structures

with the number of lines of code 
growing exponentially in software, 
there was a need for modularity, 

encapsulation and code reuse



source: thenextweb.com lines of code

procedural programming
with the number of lines of code 
growing exponentially in software, 
there was a need for modularity, 

encapsulation and code reuse

with the number of lines of code 
growing exponentially in software, 
there was a need for modularity, 

encapsulation and code reuse

object-oriented programming



object-oriented programming
objects and classes

an object represents particular “things” 
from the real world, or from some problem 

domain (e.g., “my blue rocking chair”)

 a class represents all object s 
of a given kind, e.g., “chairs”



object-oriented programming

many instances 
(object s) can be 
created from a 

single class

 the class can be seen 
as a kind of object 
factory (or a mold)

object s and classes



the source code of classes defines 
the attributes (fields) and methods 

all object s of the class have

object-oriented programming
fields

class Chair 
String color; 
String model; 
boolean isBroken; 
int age;

rotate (int angle)

instance myFirstChair 

isBroken  false
age  50

model  "wood"
color  "brown"

instance mySecondChair 

isBroken  false
age  5

model  "shell"
color  "green"

methods may have 
parameters to pass 

additional information 
needed to execute it

chair.rotate(45)

methods



object-oriented programming

what it does

how it does it

implementationspecification vs



object-oriented programming
specification

no need to know how object s 
are built to use them, only 

what can be done with them

the viewpoint of someone 
simply wanting to use 

object s (not design them)

encapsulation principle: allows us to hide 
(encapsulate) the complexity of object s

a class specifies the set of common behaviors 
offered by object s (instances) of that class

viewpoint



object-oriented programming
implementation viewpoint

the implementation viewpoint is 
concerned with how an object actually 
fulfills it s specification (it s contract)

the fields and methods define 
how the object will behave and 

are defined by it s class how it does it



object-oriented programming
implementationspecification vs

public class NumberDisplay { 
    private int limit; 
    private int value; 

    public NumberDisplay(int limit, int value){ 
        this.limit = limit; 
        this.value = value; 
    } 
    public NumberDisplay(int limit){ 
        this(limit, 0);  
    } 
    public int get() { return value; } 
    public void set(int value) { 
        this.value = value; 
    } 
    public void increment(){ 
        value = (value + 1) % limit; 
    } 
    public String toString(){ 
        if(value < 10) { return "0" + value; } 
        else { return "" + value; } 
    } 
}



object-oriented programming
abstraction and modularization

modularization consists in dividing a 
complex object into elemental objects 
that can be developed independently

the encapsulation offered by objects is 
the cornerstone of modularization 

because it hides implementation details

once elemental objects have been 
developed and tested, they can be 

assembled into a more complex object

this is known as 
code reuse

abstraction is the ability to ignore details of parts 
to focus attention on a higher level of a problem



object-oriented programming
inheritance & polymorphism



object-oriented programming
inheritance & polymorphism

Code duplication makes maintenance harder

Code duplication is an indication of bad design

Code duplication makes maintenance harder

Code duplication is an indication of bad design

Code duplication is an indication of bad



object-oriented programming

inheritance allows us to define one class, the 
subclass, as an extension of another, the superclass

a superclass defines common attributes

a subclass inherit s all fields and methods from it s 
superclass and defines specific attributes 

inheritance & polymorphism



object-oriented programming

Vinyl

title 
artist 
duration 
rating

init 
rate 
printInfo

Medium

title 
rating

init 
rate 
printInfo

Book

title 
author 
rating

init 
rate 
printInfo

place 
common 

attributes 
in the 

superclass

inheritance & polymorphism



object-oriented programming
inheritance & polymorphism

a person with a devotion to 
something in a way that places him 
or her outside the mainstream* 

*wikipedia

classes define 
types 

a geek

subclasses define 
subtypes 

superclasses define 
super types 



object-oriented programming
inheritance & polymorphism

substitution principle 
object s of subtypes can be used where 

object s of supertypes are required

object variables are  
polymorphic because they 
can hold object s of more 

than one type



object-oriented programming
inheritance & polymorphism

Book b = Book(title:"Hamlet", author:”Shakespeare”); 
Vinyl v = Vinyl(title:"Abbey Road", artist:"Beatles", duration:47); 
Medium m; 

v = b 

b = v 

m = v 

m = b 

b = m

✔

✘

✘

✘

✔

b = (Book)m; ✔

the substitution principle 
only works... one way

this is type casting



object-oriented programming
code quality

coupling cohesion
coupling refers 
to links between 
separate unit s 
of a program

cohesion refers  
to the number and 
diversity of tasks 

that a single unit is 
responsible for

a unit is either a 
class or a method



object-oriented programming
code quality

coupling cohesion

if two classes depend closely on 
many details of each other, we 
say they are tightly coupled

we aim for loose coupling

if a unit corresponds to a single 
logical aspect, it has high cohesion

a method should be responsible for 
one and only one well defined task

a class should represent one 
single, well defined entity

we aim for high cohesion



object-oriented programming
code quality

coupling cohesionloose high
makes it easy to makes it easy to

understand one class 
without reading others

maintain the code 
and make it evolve

change a class without 
affecting others

understand what a class or method 
does and use descriptive names

reuse the code of classes 
or methods across project s

avoid confusing the scope and 
responsibility of a class or method



source: thenextweb.com lines of code

the response to the exponential 
growth of software code bases 

but with the massive increase in parallelism brought 
by hardware and operating systems, a new challenge 

emerged: how to safely manage concurrency

object-oriented programming

functional programming



functional programming
a function has a side effect 

if it modifies something outside it self

class Cafe {  
  def buyCoffee(cc: CreditCard): Coffee = {  
    val cup = new Coffee()  
    cc.charge(cup.price) 
    return cup  
  } 
}

charging a credit card modifies 
something outside buyCoffee, i.e., 

it requires contacting  
the credit card company 

this makes it difficult to 
test function buyCoffee

6 CHAPTER 1 What is functional programming?

simple, but in other cases the logic we need to duplicate may be nontrivial, and we
should mourn the loss of code reuse and composition!

1.1.2 A functional solution: removing the side effects

The functional solution is to eliminate side effects and have buyCoffee return the
charge as a value in addition to returning the Coffee. The concerns of processing the
charge by sending it off to the credit card company, persisting a record of it, and so
on, will be handled elsewhere. Again, we’ll cover Scala’s syntax more in later chapters,
but here’s what a functional solution might look like:

class Cafe {
def buyCoffee(cc: CreditCard): (Coffee, Charge) = {

val cup = new Coffee()
(cup, Charge(cc, cup.price))

}
}

Here we’ve separated the concern of creating a charge from the processing or interpreta-
tion of that charge. The buyCoffee function now returns a Charge as a value along
with the Coffee. We’ll see shortly how this lets us reuse it more easily to purchase mul-
tiple coffees with a single transaction. But what is Charge? It’s a data type we just
invented containing a CreditCard and an amount, equipped with a handy function,
combine, for combining charges with the same CreditCard:

With a side effect

A call to buyCoffee

Can’t test buyCoffee
without credit card server.

Can’t combine two
transactions into one.

Side effect
Send transaction

Credit card Cup Credit card Cup

Credit card
server

buyCoffee

Without a side effect

Charge

buyCoffee

Charge

Coalesce

List (charge1, 
charge2, ...)

If buyCoffee
returns a charge object

instead of performing a side
effect, a caller can easily combine

several charges into one transaction.
(and can easily test the buyCoffee function

without needing a payment processor).

buyCoffee now 
returns a pair of a 
Coffee and a Charge, 
indicated with the type 
(Coffee, Charge). 
Whatever system 
processes payments is 
not involved at all here.To create a pair, we put the cup and Charge 

in parentheses separated by a comma.



 a pure function only return values and have no side effects

functional programming
class Cafe {  
  def buyCoffee(cc: CreditCard): (Coffee, Charge) = {  
    val cup = new Coffee()  
    return (cup,Charge(cc, cup.price)) 
  } 
} 

case class Charge(cc: CreditCard, amount: Double) { 
  def combine(other: Charge): Charge = 
    if (cc == other.cc) 
      return Charge(cc, amount + other.amount) 
    else throw new Exception("Charges on different credit cards cannot be combined") 
}

now buyCoffee simply returns a tuple 
consisting of a Coffee and a Charge

class Charge reifies the action  
of charging the credit card 
and returns it as an object

6 CHAPTER 1 What is functional programming?

simple, but in other cases the logic we need to duplicate may be nontrivial, and we
should mourn the loss of code reuse and composition!

1.1.2 A functional solution: removing the side effects

The functional solution is to eliminate side effects and have buyCoffee return the
charge as a value in addition to returning the Coffee. The concerns of processing the
charge by sending it off to the credit card company, persisting a record of it, and so
on, will be handled elsewhere. Again, we’ll cover Scala’s syntax more in later chapters,
but here’s what a functional solution might look like:

class Cafe {
def buyCoffee(cc: CreditCard): (Coffee, Charge) = {

val cup = new Coffee()
(cup, Charge(cc, cup.price))

}
}

Here we’ve separated the concern of creating a charge from the processing or interpreta-
tion of that charge. The buyCoffee function now returns a Charge as a value along
with the Coffee. We’ll see shortly how this lets us reuse it more easily to purchase mul-
tiple coffees with a single transaction. But what is Charge? It’s a data type we just
invented containing a CreditCard and an amount, equipped with a handy function,
combine, for combining charges with the same CreditCard:

With a side effect

A call to buyCoffee

Can’t test buyCoffee
without credit card server.

Can’t combine two
transactions into one.

Side effect
Send transaction

Credit card Cup Credit card Cup

Credit card
server

buyCoffee

Without a side effect

Charge

buyCoffee

Charge

Coalesce

List (charge1, 
charge2, ...)

If buyCoffee
returns a charge object

instead of performing a side
effect, a caller can easily combine

several charges into one transaction.
(and can easily test the buyCoffee function

without needing a payment processor).

buyCoffee now 
returns a pair of a 
Coffee and a Charge, 
indicated with the type 
(Coffee, Charge). 
Whatever system 
processes payments is 
not involved at all here.To create a pair, we put the cup and Charge 

in parentheses separated by a comma.



functional programming

a function f is pure if the expression f(x) is referentially 
transparent for all referentially transparent x

an expression e is referentially transparent if, for all programs p, 
all occurrences of e in p can be substituted by the result of 

evaluating e without affecting the semantics of p

mathematical functions are by definition 
referentially transparent

referential transparency



functional programming
referential 

transparency
class Cafe {  
  def buyCoffee(cc: CreditCard): Coffee = {  
    val cup = new Coffee()  
    cc.charge(cup.price) 
    return cup  
  } 
}

... 
val coffee = buyCoffee(myCreditCard) 
...

... 
val coffee = new Coffee() 
...⇎

class Cafe {  
  def buyCoffee(cc: CreditCard): (Coffee, Charge) = {  
    val cup = new Coffee()  
    return (cup,Charge(cc, cup.price)) 
  } 
}

... 
val (coffee, charge) = buyCoffee(myCreditCard) 
...

... 
var cup = new Coffee() 
val (coffee, charge) = (cup, Charge(myCreditCard, cup.price) 
...

⇔



class Cafe {  
  def buyCoffee(cc: CreditCard): Coffee = { ... } 

  def buyCoffees(cc: CreditCard, n: Int): (List[Coffee], Charge) = {  
    val purchases: List[(Coffee, Charge)] = List.fill(n)(buyCoffee(cc))  
    val (coffees, charges) = purchases.unzip 
    return (coffees, charges.reduce((c1,c2) => c1.combine(c2)))  
  } 
}

functional programming
functional reuse and high-order functions 

class Cafe {  
  def buyCoffee(cc: CreditCard): (Coffee, Charge) = { ... } 

  def buyCoffees(cc: CreditCard, n: Int): (List[Coffee], Charge) = {  
    val purchases: List[(Coffee, Charge)] = List.fill(n)(buyCoffee(cc))  
    val (coffees, charges) = purchases.unzip 
    return (coffees, charges.reduce((c1,c2) => c1.combine(c2)))  
  } 
}

pure functions contribute to code reuse 
because they can be easily composed

☕ ☕☕ ☕

assuming n = 3

what is this?

☕ ☕ ☕



functional programming
functional reuse and high-order functions 

high-order functions are 
also called functionals 

or functors

class Cafe {  
  def buyCoffee(cc: CreditCard): Coffee = { ... } 

  def buyCoffees(cc: CreditCard, n: Int): (List[Coffee], Charge) = {  
    val purchases: List[(Coffee, Charge)] = List.fill(n)(buyCoffee(cc))  
    val (coffees, charges) = purchases.unzip 
    return (coffees, charges.reduce((c1,c2) => c1.combine(c2)))  
  } 
}

this is a parameter of type function  
(Charge,Charge) => Chargethis concept comes from lambda calculus, a 

formal system in mathematical logic for 
expressing computation 

a high-order function takes a function as 
parameter or returns function as it s result s


