
programming
paradigms

paradigmlearn about the concept of programming paradigm

learn how programming paradigms differ

learn about object-oriented programming

learn about functional programming

learning
objectives

develop

deploy

operate

develop

deploy

operate

a cognitive framework containing the
basic assumptions, ways of thinking,
and methodology that are commonly
accepted by members of a discipline

a model of the world or in a more
restrictive way of a part of the world,

in our case of the world of programming

what’s a paradigm?paradigm

imperative

declarative

procedural programming

object-oriented programming

functional programming

logic programming

key programming paradigms

procedural programming

logic programming

program = data structures + algorithms

imperative

declarative

program = rules + inference engine

typical languages: algol, pascal

typical languages: planner, prolog

key programming paradigms

logic programming
in prolog

cat(tom) :- true. ?- cat(tom).
 Yes

 ?- cat(X).
 X = tom

mother_child(trude, sally).

father_child(tom, sally).
father_child(tom, erica).
father_child(mike, tom).

sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y).

parent_child(X, Y) :- father_child(X, Y).
parent_child(X, Y) :- mother_child(X, Y).

 ?- sibling(sally, erica).
 Yes

 ?- father_child(tom, X).
 X = sally
 X = erica

facts queries

try swish.swi-prolog.org

http://swish.swi-prolog.org

procedural programming
in pascal

type
 String25 = String[25];
 Book = record
 title, author, isbn : String25;
 price : Real;
 end;

data structure algorithm
program Printing;
var myBook : Book;

procedure Print(theBook : Book);
begin
Writeln('Here are the book details:');
Writeln('Title: ', theBook.title);
Writeln('Author: ', theBook.author);
Writeln('ISBN: ', theBook.isbn);
Writeln('Price: ', theBook.price);

end;

begin { main program }
myBook.Title := 'La Modification';
myBook.Author := 'Michel Butor';
myBook.ISBN := '978-27-07303-12-7';
myBook.Price := 15.9;

 Print(myBook)
end.

procedural programming

Go T o S t a t e m e n t C o n s i d e r e d H a r m f u l Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

CR Categories: 4.22, 5.23, 5.24 EDITOR :
For a number of years I have been familiar with the observation

that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all "higher level" programming
languages (i.e. everything except, perhaps, plain machine Code).
At'that time I did not attach too much importance to this dis-
covery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so. My first remark is that, although the programmer's activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his activity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired specifications. Yet, once the program has
been made, the "making" of the corresponding process is dele-
gated to the machine. My second remark is that our intellectual powers are rather
geared to master static relations and that our powers to visualize
processes evolving in time are relatively poorly developed. For
that reason we should do (as wise programmers aware of our
limitations) our utmost to shorten the conceptual gap between
the static program and the dynamic process, to make the cor-
respondence between the program (spread out in text space) and
the process (spread out in time) as trivial as possible.

Let us now consider how we can characterize the progress of a
process. (You may think about this question in a very concrete
manner: suppose that a process, considered as a time succession
of actions, is stopped after an arbitrary action, what data do we
have to fix in order that we can redo the process until the very
same point?) If the program text is a pure concatenation of, say,
assignment statements (for the purpose of this discussion regarded
as the descriptions of single actions) it is sufficient to point in the
program text to a point between two successive action descrip-
tions. (In the absence of go to statements I can permit myself the
syntactic ambiguity in the last three words of the previous sen-
tence: if we parse them as "successive (action descriptions)" we
mean successive in text space; if we parse as "(successive action)
descriptions" we mean successive in time.) Let us call such a
pointer to a suitable place in the text a "textual index."

When we include conditional clauses (if B then A), alternative
clauses (if B then AZ else A2), choice clauses as introduced by
C. A. R. Hoare (case[i] of(At, A2, ... , An)), or conditional expres-
sions as introduced by J. McCarthy (Bi -~ El, B2 --~ E2, ... ,
Bn ---~ En), the fact remains that the progress of the process re-
mains characterized by a single textual index. As soon as we include in our language procedures we must admit
that a single textual index is no longer sufficient. In the case that
a textual index points to the interior of a procedure body the

dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling. Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don't wish to ex-
clude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as "induction"
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sufficient to
describe the dynamic progress of the process. With each entry into
a repetition clause, however , we can associate a so-called "dy-
namic index," inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process Can always be uniquely characterized by a
(mixed) sequence of textual and/or dynamic indices. The main point is that the values of these indices are outside

programmer's control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
he wishes or not. They provide independent coordinates in which
to describe the progress of the process. Why do we need such independent coordinates? The reason
is--and this seems to be inherent to sequentiM processes--that
we can interpret the value of a variable only with respect to the
progress of the process. If we wish to count the number, n say, of
people in an initially empty room, we can achieve this by increas-
ing n by one whenever we see Someone entering the room. In the
in-between moment that we have observed someone entering the
room but have not yet performed the subsequent increase of n,
its value equals the number of people in the room minus one!

The unbridled use of the go to statement has an immediate
consequence that it becomes terribly hard to find a meaningful set
of coordinates in which to describe the process progress. Usually,
people take into account as well the values of some well chosen
variables, but this is out of the question because it is relative to
the progress that the meaning of these values is to be understood l
With the go to statement one can, of course, still describe the
progress uniquely by a counter counting the number of actions
performed since program start (viz. a kind of normalized clock).
The difficulty is that such a coordinate, although unique, is utterly
unhelpful. In such a coordinate system it becomes an extremely
complicated affair to define all those points of progress where,
say, n equals the number of persons in the room minus onet

The go to statement as it stands is just too primitive; i t is too
much an invitation to make a mess of one's program. One can
regard and appreciate the clauses considered as bridling its use. I
do not claim that the clauses mentioned are exhaustive in the sense
tha t /hey will satisfy all needs, but whatever clauses are suggested
(e.g. abortion clauses) they should satisfy the requirement that a
programmer independent coordinate system can be maintained to
describe the process in a helpful and manageable way.

I t is hard to end this with a fair acknowledgment. Am I to

Volume 11 / Number 3 / March, 1968
Communieations of the ACM I47

procedural programming was a
response to the growing complexity

of algorithms data structures

with the number of lines of code
growing exponentially in software,
there was a need for modularity,

encapsulation and code reuse

source: thenextweb.com lines of code

procedural programming
with the number of lines of code
growing exponentially in software,
there was a need for modularity,

encapsulation and code reuse

with the number of lines of code
growing exponentially in software,
there was a need for modularity,

encapsulation and code reuse

object-oriented programming

object-oriented programming
objects and classes

an object represents particular “things”
from the real world, or from some problem

domain (e.g., “my blue rocking chair”)

 a class represents all object s
of a given kind, e.g., “chairs”

object-oriented programming

many instances
(object s) can be
created from a

single class

 the class can be seen
as a kind of object
factory (or a mold)

object s and classes

the source code of classes defines
the attributes (fields) and methods

all object s of the class have

object-oriented programming
fields

class Chair
String color;
String model;
boolean isBroken;
int age;

rotate (int angle)

instance myFirstChair

isBroken false
age 50

model "wood"
color "brown"

instance mySecondChair

isBroken false
age 5

model "shell"
color "green"

methods may have
parameters to pass

additional information
needed to execute it

chair.rotate(45)

methods

object-oriented programming

what it does

how it does it

implementationspecification vs

object-oriented programming
specification

no need to know how object s
are built to use them, only

what can be done with them

the viewpoint of someone
simply wanting to use

object s (not design them)

encapsulation principle: allows us to hide
(encapsulate) the complexity of object s

a class specifies the set of common behaviors
offered by object s (instances) of that class

viewpoint

object-oriented programming
implementation viewpoint

the implementation viewpoint is
concerned with how an object actually
fulfills it s specification (it s contract)

the fields and methods define
how the object will behave and

are defined by it s class how it does it

object-oriented programming
implementationspecification vs

public class NumberDisplay {
 private int limit;
 private int value;

 public NumberDisplay(int limit, int value){
 this.limit = limit;
 this.value = value;
 }
 public NumberDisplay(int limit){
 this(limit, 0);
 }
 public int get() { return value; }
 public void set(int value) {
 this.value = value;
 }
 public void increment(){
 value = (value + 1) % limit;
 }
 public String toString(){
 if(value < 10) { return "0" + value; }
 else { return "" + value; }
 }
}

object-oriented programming
abstraction and modularization

modularization consists in dividing a
complex object into elemental objects
that can be developed independently

the encapsulation offered by objects is
the cornerstone of modularization

because it hides implementation details

once elemental objects have been
developed and tested, they can be

assembled into a more complex object

this is known as
code reuse

abstraction is the ability to ignore details of parts
to focus attention on a higher level of a problem

object-oriented programming
inheritance & polymorphism

object-oriented programming
inheritance & polymorphism

Code duplication makes maintenance harder

Code duplication is an indication of bad design

Code duplication makes maintenance harder

Code duplication is an indication of bad design

Code duplication is an indication of bad

object-oriented programming

inheritance allows us to define one class, the
subclass, as an extension of another, the superclass

a superclass defines common attributes

a subclass inherit s all fields and methods from it s
superclass and defines specific attributes

inheritance & polymorphism

object-oriented programming

Vinyl

title
artist
duration
rating

init
rate
printInfo

Medium

title
rating

init
rate
printInfo

Book

title
author
rating

init
rate
printInfo

place 
common

attributes
in the

superclass

inheritance & polymorphism

object-oriented programming
inheritance & polymorphism

a person with a devotion to
something in a way that places him
or her outside the mainstream*

*wikipedia

classes define
types

a geek

subclasses define
subtypes

superclasses define
super types

object-oriented programming
inheritance & polymorphism

substitution principle
object s of subtypes can be used where

object s of supertypes are required

object variables are
polymorphic because they
can hold object s of more

than one type

object-oriented programming
inheritance & polymorphism

Book b = Book(title:"Hamlet", author:”Shakespeare”);
Vinyl v = Vinyl(title:"Abbey Road", artist:"Beatles", duration:47);
Medium m;

v = b

b = v

m = v

m = b

b = m

✔

✘

✘

✘

✔

b = (Book)m; ✔

the substitution principle
only works... one way

this is type casting

object-oriented programming
code quality

coupling cohesion
coupling refers 
to links between
separate unit s 
of a program

cohesion refers  
to the number and
diversity of tasks

that a single unit is
responsible for

a unit is either a
class or a method

object-oriented programming
code quality

coupling cohesion

if two classes depend closely on
many details of each other, we
say they are tightly coupled

we aim for loose coupling

if a unit corresponds to a single
logical aspect, it has high cohesion

a method should be responsible for
one and only one well defined task

a class should represent one
single, well defined entity

we aim for high cohesion

object-oriented programming
code quality

coupling cohesionloose high
makes it easy to makes it easy to

understand one class
without reading others

maintain the code
and make it evolve

change a class without
affecting others

understand what a class or method
does and use descriptive names

reuse the code of classes
or methods across project s

avoid confusing the scope and
responsibility of a class or method

source: thenextweb.com lines of code

the response to the exponential
growth of software code bases

but with the massive increase in parallelism brought
by hardware and operating systems, a new challenge

emerged: how to safely manage concurrency

object-oriented programming

functional programming

functional programming
a function has a side effect 

if it modifies something outside it self

class Cafe {
 def buyCoffee(cc: CreditCard): Coffee = {
 val cup = new Coffee()
 cc.charge(cup.price)
 return cup
 }
}

charging a credit card modifies
something outside buyCoffee, i.e.,

it requires contacting  
the credit card company

this makes it difficult to
test function buyCoffee

6 CHAPTER 1 What is functional programming?

simple, but in other cases the logic we need to duplicate may be nontrivial, and we
should mourn the loss of code reuse and composition!

1.1.2 A functional solution: removing the side effects

The functional solution is to eliminate side effects and have buyCoffee return the
charge as a value in addition to returning the Coffee. The concerns of processing the
charge by sending it off to the credit card company, persisting a record of it, and so
on, will be handled elsewhere. Again, we’ll cover Scala’s syntax more in later chapters,
but here’s what a functional solution might look like:

class Cafe {
def buyCoffee(cc: CreditCard): (Coffee, Charge) = {

val cup = new Coffee()
(cup, Charge(cc, cup.price))

}
}

Here we’ve separated the concern of creating a charge from the processing or interpreta-
tion of that charge. The buyCoffee function now returns a Charge as a value along
with the Coffee. We’ll see shortly how this lets us reuse it more easily to purchase mul-
tiple coffees with a single transaction. But what is Charge? It’s a data type we just
invented containing a CreditCard and an amount, equipped with a handy function,
combine, for combining charges with the same CreditCard:

With a side effect

A call to buyCoffee

Can’t test buyCoffee
without credit card server.

Can’t combine two
transactions into one.

Side effect
Send transaction

Credit card Cup Credit card Cup

Credit card
server

buyCoffee

Without a side effect

Charge

buyCoffee

Charge

Coalesce

List (charge1,
charge2, ...)

If buyCoffee
returns a charge object

instead of performing a side
effect, a caller can easily combine

several charges into one transaction.
(and can easily test the buyCoffee function

without needing a payment processor).

buyCoffee now
returns a pair of a
Coffee and a Charge,
indicated with the type
(Coffee, Charge).
Whatever system
processes payments is
not involved at all here.To create a pair, we put the cup and Charge

in parentheses separated by a comma.

 a pure function only return values and have no side effects

functional programming
class Cafe {
 def buyCoffee(cc: CreditCard): (Coffee, Charge) = {
 val cup = new Coffee()
 return (cup,Charge(cc, cup.price))
 }
}

case class Charge(cc: CreditCard, amount: Double) { 
 def combine(other: Charge): Charge = 
 if (cc == other.cc) 
 return Charge(cc, amount + other.amount) 
 else throw new Exception("Charges on different credit cards cannot be combined") 
}

now buyCoffee simply returns a tuple
consisting of a Coffee and a Charge

class Charge reifies the action  
of charging the credit card
and returns it as an object

6 CHAPTER 1 What is functional programming?

simple, but in other cases the logic we need to duplicate may be nontrivial, and we
should mourn the loss of code reuse and composition!

1.1.2 A functional solution: removing the side effects

The functional solution is to eliminate side effects and have buyCoffee return the
charge as a value in addition to returning the Coffee. The concerns of processing the
charge by sending it off to the credit card company, persisting a record of it, and so
on, will be handled elsewhere. Again, we’ll cover Scala’s syntax more in later chapters,
but here’s what a functional solution might look like:

class Cafe {
def buyCoffee(cc: CreditCard): (Coffee, Charge) = {

val cup = new Coffee()
(cup, Charge(cc, cup.price))

}
}

Here we’ve separated the concern of creating a charge from the processing or interpreta-
tion of that charge. The buyCoffee function now returns a Charge as a value along
with the Coffee. We’ll see shortly how this lets us reuse it more easily to purchase mul-
tiple coffees with a single transaction. But what is Charge? It’s a data type we just
invented containing a CreditCard and an amount, equipped with a handy function,
combine, for combining charges with the same CreditCard:

With a side effect

A call to buyCoffee

Can’t test buyCoffee
without credit card server.

Can’t combine two
transactions into one.

Side effect
Send transaction

Credit card Cup Credit card Cup

Credit card
server

buyCoffee

Without a side effect

Charge

buyCoffee

Charge

Coalesce

List (charge1,
charge2, ...)

If buyCoffee
returns a charge object

instead of performing a side
effect, a caller can easily combine

several charges into one transaction.
(and can easily test the buyCoffee function

without needing a payment processor).

buyCoffee now
returns a pair of a
Coffee and a Charge,
indicated with the type
(Coffee, Charge).
Whatever system
processes payments is
not involved at all here.To create a pair, we put the cup and Charge

in parentheses separated by a comma.

functional programming

a function f is pure if the expression f(x) is referentially
transparent for all referentially transparent x

an expression e is referentially transparent if, for all programs p,
all occurrences of e in p can be substituted by the result of

evaluating e without affecting the semantics of p

mathematical functions are by definition
referentially transparent

referential transparency

functional programming
referential

transparency
class Cafe {
 def buyCoffee(cc: CreditCard): Coffee = {
 val cup = new Coffee()
 cc.charge(cup.price)
 return cup
 }
}

...
val coffee = buyCoffee(myCreditCard)
...

...
val coffee = new Coffee()
...⇎

class Cafe {
 def buyCoffee(cc: CreditCard): (Coffee, Charge) = {
 val cup = new Coffee()
 return (cup,Charge(cc, cup.price))
 }
}

...
val (coffee, charge) = buyCoffee(myCreditCard)
...

...
var cup = new Coffee()
val (coffee, charge) = (cup, Charge(myCreditCard, cup.price)
...

⇔

class Cafe {
 def buyCoffee(cc: CreditCard): Coffee = { ... }

 def buyCoffees(cc: CreditCard, n: Int): (List[Coffee], Charge) = {
 val purchases: List[(Coffee, Charge)] = List.fill(n)(buyCoffee(cc))
 val (coffees, charges) = purchases.unzip
 return (coffees, charges.reduce((c1,c2) => c1.combine(c2)))
 }
}

functional programming
functional reuse and high-order functions

class Cafe {
 def buyCoffee(cc: CreditCard): (Coffee, Charge) = { ... }

 def buyCoffees(cc: CreditCard, n: Int): (List[Coffee], Charge) = {
 val purchases: List[(Coffee, Charge)] = List.fill(n)(buyCoffee(cc))
 val (coffees, charges) = purchases.unzip
 return (coffees, charges.reduce((c1,c2) => c1.combine(c2)))
 }
}

pure functions contribute to code reuse
because they can be easily composed

☕ ☕☕ ☕

assuming n = 3

what is this?

☕ ☕ ☕

functional programming
functional reuse and high-order functions

high-order functions are
also called functionals

or functors

class Cafe {
 def buyCoffee(cc: CreditCard): Coffee = { ... }

 def buyCoffees(cc: CreditCard, n: Int): (List[Coffee], Charge) = {
 val purchases: List[(Coffee, Charge)] = List.fill(n)(buyCoffee(cc))
 val (coffees, charges) = purchases.unzip
 return (coffees, charges.reduce((c1,c2) => c1.combine(c2)))
 }
}

this is a parameter of type function  
(Charge,Charge) => Chargethis concept comes from lambda calculus, a

formal system in mathematical logic for
expressing computation

a high-order function takes a function as
parameter or returns function as it s result s

