
development
methodologies

& tools

development methodologieslearn about software development methodologies

learn about tools supporting those methodologies

develop

deploy

operate

learning
objectives

waterfall

vs.

iterative

development methodologies

the waterfall approach

measure twice
cut once

analyze

design

develop

test

deploy

waterfall

the complete value
delivered here

let’s build together, step by step

the complete
value

delivered
here

the waterfall approach
 analyze design develop test deploy

waterfall

designanalyze deploy

de
ve

lo
p

te
st

incremental value
delivered here…

…and
here…

…and
here…

designanalyze deploy

de
ve

lo
p

te
st

designanalyze deploy

de
ve

lo
p

te
st

measure twice cut once

the approachiterative

agile software development

scrum process framework

extreme programming

agile

several variants

designanalyze deploy

de
ve

lo
p

te
st

incremental}{ iterativethe approach

people & interactions 
(vs. processes & tools)

working software  
(vs. documentation)

customer collaboration  
(vs. contract negotiation)

responding to change 
(vs. following the plan)

agilethe manifesto

scrumthe framework

source: https://www.neonrain.com/agile-scrum-web-development

https://www.neonrain.com/agile-scrum-web-development

waterfall vs. iterative

development methodologies
critical outlook

value-driven approaches
iterative & agile

plan-driven approaches
sequential & waterfall

formal method approaches
math-based & determinism

marginally critical software highly critical software extremely critical software

requirements change often requirements don’t change often strict and limited requirements

small team of developers large team of developers developers who can formally model requirements

culture responsive to changes culture demanding structure culture demanding extreme quality

FEEDBACK CULTURE

embedded customer customers available at all times to set priorities, define requirements, answer questions
user stories planning based on brief user stories defined by customers to capture desired features

pair programming code written by programmers working in pairs on a single computer to foster high quality
test automation code thoroughly tested via automatic unit test s written before the actual code it self

CONTINUOUS PROCESS

small releases new versions of the software released frequently, incrementally delivering value to customers
continuous integration complete software builds generated several times a day to avoid big integration problems later

regular refactoring code incrementally improved by regular refactoring, without changing it s external behavior
SHARED UNDERSTANDING

simple design adoption of the kiss principle at all times via refactoring if needed (kiss = keep it simple, stupid)
shared metaphor shared understanding via a metaphor of the software, leading to consistent a naming scheme

collective ownership responsibility of all the code shared by all the developers, meaning anyone can change anything
coding standards consistent coding style and format throughout the code base, allowing for easy code sharing

PROGRAMMER WELFARE

sustainable workload awareness that coding is an intense activity, thus limiting work time to 40 hours/week

extreme programming

development 
practices & toolstools

unit testing

coding

refactoring

versioning

debugging

profilingdevops

user stories

continuous integration

planning

*

*will be discussed next week

ntegrated
evelopment
 nvironment s

tools
coding

editor, compiler, interpreter

PyCharm Xcode IntelliJ

Netbeans

command-line interface (shell)

i
d
e

trace via standard output (bad)
trace via logging framework (good)

tools
debugging

symbolic debugger
breakpoints
step-by-step execution
examine variables in memory
on-the-fly bug correction

versioning
at the software level, versions
reflect s it s incremental nature

at the source code level, 
versioning is tool to keep track of incremental changes and
to make it possible to go back to a previously working version

7.3.8

tools

major version
big new feature

might break compatibility

minor version
small new features

no break in compatibility

patch version
only bug fixes

no break in compatibility

command line tool
local and distributed
rich branching model
available in visual development tools

at the source code level,  
versioning is tool to keep track of incremental changes and
to make it possible to go back to a previously working version

versioning tools

source: https://nvie.com/posts/a-successful-git-branching-model

https://nvie.com/posts/a-successful-git-branching-model

refactoring typically include changing class or method names,
extracting interfaces and superclasses,

refactoringrefactoring is the process of restructuring  
existing code without changing it s external behavior toolsrefactoring aims at reducing the complexity, improving readability,
in order to increase software maintainability and extensibility
refactoring tools are usually embedded in development software

profiling
tools

The real problem is that programmers have spent far too much time worrying about
efficiency in the wrong places and at the wrong times; premature optimization is the
root of all evil (or at least most of it) in programming.

Donald Knuth, The Humble Programmer. Communication of the ACM,
vol. 17, no. 12. December 1974. Turing Award Lecture.

diagnosing performance issues is counter-intuitive
profiling consist s in dynamically analysing the resource usage of a program
profiling tool instrument the source or binary code of the program

