programming
basics

learning =
Objec*iVQs system software

hardware

* learn about variables, their types and their values
+ learn about different number representations

* learn about functions and how to use them

+ learn boolean algebra and conditional branching

+ learn about basic text input and output

what's a variable?

in a program, a variable is a symbolic name (also
called identifier) associated with a memory location
where the value of the variable will be stored

wallet R 10110110

age 00100100 X

schmilblick ———

reference 00000011

:‘

yes but what
type of value?

;j 4y =z" }

[1111001101010011 L>

0010010100101011
1100110100111001
1111001101010011

—
= et 0 o -

I
[> >
cresc.

|
il e .ffff; E EE
I | | | || | | |
— ———]

A

IIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII

00100101
00101011
00010010
10100100
11001101
00111001
11110011
01010011

 00100101001010110001001010100100
11001101001110011111001101010011

what's a type?

the type of a variable defines what will be
stored in the memory location, e.g., a boolean, an
integer, a character, etc,, ie., how the bits in the
memory location will be interpreted

3 3 $ 3
vthor
3.14
0

var d = 3.14 var d = 3.14; var d = 3.14
var 1 = 0 var 1 = 0; var i = 0
"hello" var s = "hello" var s = "Hello"; var s = "hello"

d
1
S

00111110001000000000000000000000 < 0.15625 1000001 < 65

S — T

1000001 < ‘A’ 0000000 < false

| — e —— S —

explicit typing & type inference

as a programmer, Jyou can expliciﬂ1 define the 1’1pe of a variable (explicif
typing) or let the compiler (or the interpreter) try to infer the type of the
variable, typically through inttiahization (implicit 1’1ping)

however, there are cases where type inference s
not possible, e.g., in recursive functions

var 1 = 0 var 1 = 0; var 1 = 0

var d = 3.14 var d = 3.14: var d = 3.14
var f = 3.14f var f = 3.14f; var s = "hello"
var s = "hello" var s = "Hello";

var i : Int = 0 int i = 0; var i : Int = 0

No Sfa‘hc var f : Double = 3.14 double d = 3.14; var f : Double = 3.14

1- \i'\ var f : Float = 3.14f float f = 3.14f; var T : Float = 3.14
1‘) g var s : String = "hello" String s = "Hello"; var s : String = "hello"

static 1’1ping Vs
d1namic typing

scala !

the static type designates the type o var i : Int = 0
_ _ _ _ var d = 3.14
the variable known at compilation time var f.=3.141 |
- . . f : Float = d
this allows the compiler to catch a certain i-a
number of errors before the execution

the dynamic type designates the type of the
value contained b1 a variable at run time

this allows the runtime 10 catch errors
during the execution

‘|’1pe casﬁng

when you want to assign a value to a variable but the
static Npe and the d1namic 1’1pe do not match, Jou can
perform an explicit conversion, also known as a type casting

A 3 < S
python scala java Swift
d = math.pil var d = math.P1i var d = Math.PI,; var d : Double.pi
3.141592653589793
i = int(d) var f = d.toFloat var f = (float) d; var i = Int(d)
f = float(d) var 1 = d.tolnt var i = (int) d; var f = Float(d)
s = str(d) var s = d.toString var s = Double.toString(d); var s = String(d)

"3.141592653589793"

number represen’raﬁon

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
8710 = Ox27 + 1x26 + OQx2> + 1x24 + 0Ox23 + 1x22 + 1x21 + 1x20
8710 = 0x128 + 1x64 + 0Ox32 + 1x16 + Ox8 + 1x4 + 1x2 + 1x1
8710 = 0 1 0 1 0 1 1 1
8/71¢ = 01010111> range = [02,11111111,] = [@1e,25510]

signed integers with signed magnitude

Bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit @
8710 = 0 1x26 + Ox25 + 1x24 + 0x23 + 1x22 + 1x21 + 1x20
8710 = 0 1 0 1 0 1 1 1
—8710 = 1 1x64 + Ox32 + 1x16 + ©Ox3 + 1x4 + 1x2 + 1x1
—8710 = 1 1 0 1 0 1 1 1
8710 = 01010111, Bit 7 is the sign bit range = [-12710,+12710]
—8710 = 11010111 0 o + two ways to represent zero:

—010 = 10000000;

number represen’raﬁon

signed integers with one complement

Bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
8710 = 0 1x26 + 0Ox2> + 1x24 + 0Qx23 + 1x22 + 1x21 + 1x20
8710 = 0 1 0 1 0 1 1 1
not not not not not not not not
3 3 3 3 3 3 3 3
—-8710 = 1 0 1 0 1 0 0 0
8710 = 01010111>
-8710 = 10101000-

A — B ———

Bit 7 1s the sign bit

0 < +
1 & — range = [-12710,+12710]
— ————— two ways to represent zero:
+019 = 00000000
—010 =

111111115

e —

number represen’raﬁon

signed integers with two complement

Bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit ©
8710 = 0 1x26 + 0Ox2> + 1x24 + 0Ox23 + 1x22 + 1x21 + 1x20
8710 = 0 1 0 1 0 1 1 1

not not not not not not not not
3 y 8 3 3 . 8 x 8 y 8 3
1 0 1 0 1 0 0 0
+1
xS
—8710 = 1 0 1 0 1 0 0 1
—-1x27 Ox26 + 1x2> + Ox24 + 1x23 + 0Ox22 + 0Ox21 + 1x20
-8710 = —-1x128 + 1x32 + 1x8 + 1x1
8710 = 01010111,
~8710 = 10101001 Bit 7 is the sign bit
o - 0 © +
1 o - range = [-12810,+12710]

— — only one way to represent zero:
010 = 00000000,

on

ey represen’m’r

signed integers with two complement - further examples

Bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
sign 64 32 16 8 4 2 1
4419 = 0 0 1] 1 1 0 0
not not not not not not not not
: 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2
1 1 0 1 0 0 1 1
+1
: 2
—4419 = 1 1 0 1 0 1 0 0
Bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
sign 64 32 16 8 4 2 1
Q10 = 0 0 0 0 0 0 0 0
not not not not not not not not
2 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2
1 1 1 1 1 1 1 1
+1
2
—010 = 0 0) 0 0 0) 0

number represen’raﬁon

only a small subset of the infinite set 0f real numbers can be
represented in a computer, which has a finite memory space

floating point principle
Sigl’l X mantissa X baseexponent

4 3 LA
-3.14159 = -1 x 314159 x 105

\n a computey, the base s 2

nhumbey . floating point
representation single precision

sign exponent (8 bits) mantissa (23 bits)

2011111606001 0000000000000000000°0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5) 4 3 2 1 0

23
Value — (_1)sign X 1 —+ Zbgg_iz_z X 2(6_127)
1=1

7
e =bsobg...bos = ¥ byg2t =124 € {1,...,(2° —1) -1} ={1,...,254}
1=0

9(e~127) _ 9124127 _ 9-3 {27126 2127}

23
1.boobor...bp =14) by 27" =1+1-22=125€{1,1+27%,...,2-2"2} C [I;2—-27%] C [1;2)
1=1

value = (4+1) x 1.25 x 2% = 4-0.15625

RASCll

character representation

_0 _1 _2 _3 _4 5 _6 _1 _8 9 _A _B _C _D _E _F
NUL | SOH | STX | ETX | EOT | ENQ | ACK | BEL | BS | BT LF VT | FF CR SO | SsI
0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 000A 000B oooc 000D 000E 000F

0o 1 2 3 4 5 6 77 8 9 10 1d i &3 14 15
DLE | DC1 | DC2 |DC3 DC4 | NAK | SYN |ETB |CAN| EM | SUB|ESC| FS | GS | RS | US
0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 001A 001B 001cC 001D 001E 001F

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
SP ! " # $ % & ’ () * + 1/ = ® /
0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 002A 002B 002cC 002D 002E 002F

32 33 34 3D 36 37 38 39 40 41 42 43 44 45 46 47

0 1 2 3 4 5 6 7 8 9 : - < = > ?
0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 003A 003B 003C 003D 003E 003F

48 49 50 51 52 23 54 99 56 57 58 59 60 61 62 63

@ A B C D E F G H I J K L M N O
0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 004A 004B 004cC 004D 004E 004F

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

P Q R S il U \Y W X X yA [\] @ _
0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 005A 005B 005C 005D 005E 005F

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

) a b . d e f g h i J k I m n o
0060 0061 0062 0063 0064 0065 0066 0067 0068 0069 006A 006B 006C 006D 006E 006F

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

P g | r | s t | u | v w | x|y z { | } ~ | pEL
0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 007A 007B 007C 007D 007E 007F
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
Letter Number Punctuation Symbol Other undefined Changed from 1963 version

_0 1 _2 3 _4 _5 _6 _1 _8 _9 _A _B _C _D _E _F
NUL ©SOH | STX | ETX EOT | ENQ | ACK BEL BS HT LF VT FF CR SO ST
0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 000A 000B 000C 000D 000E 000F
DLE DC1l | DC2 | DC3 DC4 | NAK | SYN ETB | CAN EM SUB | ESC FS GS RS UusS
0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 001A 001B 001C 001D 001E 001F
SP ! " # S % & ' () * + ; - : /
0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 002A 002B 002C 002D 002E 002F
0 1 2 3 4 < 6 7 8 9 : ; < = > 2
0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 003A 003B 003C 003D 003E 003F
@ A B oo D E F G H I J K L M N @)
0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 004A 004B 004cC 004D 004E 004F
P Q R S P U \% W X Y yA [\] # =
0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 005A 005B 005C 005D 005E 005F
) a b C d e £ g h i 9 k ik m n o
0060 0061 0062 0063 0064 0065 0066 0067 0068 0069 006A 006B 006C 006D 006E 006F
P | g | S t |u | v w | X y z { | } ~ | BEL
0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 007A 007B 007C 007D 007E 007F
° ® ° ° ° @ ® ° 8 ° ® ® ® ° ° °
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +0A +0B +0C +0D +0E +0F
° ° © @ ® @ © @ ° @ o @ o @ © @
+10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +1A +1B +1C +1D +1E +1F
° ° @ @ ® © © © ° @ Y @ ° © Y @
+20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +2A +2B +2C +2D +2E +2F
° ® ® ® ® ° ° ° ° ® ° ® Y Y ® ®
+30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +3A +3B +3C +3D +3E +3F
LaTin | Larin LaTtin | LaTin | Larin Latin | LaTin | IPA IPA IPA ACCENTS ACCENTS GREEK | GREEK
0080 00CO 0100 0140 0180 01CO 0200 0240 0280 02C0 0300 0340 0380 03C0
Cyrir CyriL | CyriL | CyriL Cyrin |ArMENI |HEBREW HEBREW|ARABIC |ARaBIC |ArRABIC AraBic Syriac AraBic Traana| N'Ko
0400 0440 0480 04C0 0500 0540 0580 05C0 0600 0640 0680 06CO 0700 0740 0780 07C0
Inpic Misc. |SymBon|Kana.. CJK | CJK | CJK CJK | CJK | CJK | Asian Hancur Hancur Hancur. PUA | ForMs
0800 1000 2000 3000 4000 5000 6000 7000 8000 9000 A000 B00O Cc000 D000 E000 | FO000
SMP.. [] [] |ssp.. SPU..
10000 40000 | 80000 | CO000 100000

UT¥-8

s’nring representation

var s = "Hi!"
null-fermma’red s'ﬂrmg leng’rh-prehxed s’ﬂrmg

what's a constant?

a constant s simPN Q
variable that cannot... vary

&/

¢ S

A

python scala java swift
val d : Double = math.Pi final var d = Math.PI; let d : Double.p1
val i = 0 final var i = 0; let i =0
val s = "hello" final var d = "hello"; 1let s = "hello"
Nno
constant d = 1.0 d =1.0; d=1.0
1 =1 1= 1: i=1
S — Ilbyell S — Ilbyel S — Ilbyell

<
5
<

what's a function?

in a program, a function is a symbolic name (identifier) associated
with a sequence of instructions that performs a specific task

once defined, a function can then be called in programs
wherever that particular task should be performed

call

program main » function square(number : integer)
n ! integer =2 call square «— number X number
result ? : square(n) — , .
prini(n) a function can receive
print(squéire(r)) parameters as input and
T return a result as output

function & procedure = routhine & subroutine & subprogmm = method

what's a function?

call
program main » function square(number : integer)
n:integer = 2 call souare «— number x number
n =square(n) —
result ¢4
print(n) l
print(square(n))
t result function definition function call
S
def square(number): B
é, return number * number result = square(2)
o
o def square(number : Int) : Int = {
c_g number * number var result = square (2)
o s
(- public int square(int number) {
Cg) % return number *x number int result = square(2)
= el

+ func square(number:Int) —> Int {
= return number * number var result = square (2)
"

}

logic

7N\ ® the intellectual tool
A for reasoning about

/\ the truth and falsiﬂ
J U of statements

logic & programming

most programming languages, support boolean
variables, which can take values = {true, false}

in some low-level languages, infeger numbers are used

for the same purpose, e.g,. with:
p = false < p =20
q = true < g =1 (sometimes q = true < q # 0)

when combined with operators A, vV and Where: ;2 gx?t

— , boolean variables constitute an A < and
algebm used in conditional branching

boolean algebm

assume that p , g and r are boolean variables (or
statements) and that 7' = true, F' = false, we have:

P p p

p
T
1T F

NN
an BRES B Be s [l IS
NN >
NN
an BRES B Be s [l IS
NNNT| <

((

— < not
V & or

A < and

False var a = false var a = false:

True var b = true var b = true:
C=aandb var c = a & b var ¢ = a && b:
c=aorb c=a ||| Db c=a || b;

not a c = !a c = la;

var a = false
var b = true

var ¢ = a & b
c=al| b
C la

some rules

Associative Rules:
Distributive Rules:
Idempotent Rules:
Double Negation:

DeMorgan’s Rules:

Commutative Rules:

Absorption Rules:
Bound Rules:
Negation Rules:

(PAg) AT = pA(gAT) (pV@)VrepVi(gVr)
pA(gVr)< (A VpAT) pVigAr)= (pVg AVr)
PAD<=D pVop&Sp

T & p

~(pAq) & —pV g “(pV@q) = pAg
PAGE qAD pVqgeqVp

pV(pAq) & p pA(pVq) < p

pNF&SF pANT <p pVIT T pVEFEF&SDp

pA(—p) s F pV (-p) < T

vz 3 ‘hranm‘l’ors £ boolean algebm
;-:@;‘ | ‘;: T 6 um
| 3 um

a transistor 15 a device that can 1‘:’52
amplify or switch an electrical 800 nm
current, using three layers of o

a semiconductor material 250 nm

— - - 180 nm
o 7 S - 130 nm

B o— ancD—o . 90 nm

A R 65 Nnm

A o—ANN T1 A o—AN/ N @ | 45 nm

Transistor gj.?tiﬁ ;c;r | 32 nm

: R Switches R ‘lN 29 nm

 o—ANAN, T2 B o—AAN, @ . | 14nm

B A|ourT J'ljlg, 5 alour 2| "Q-AB 10 nm

K 15 -

1 0| o ? ; 1 ~ ’ o nm

1 1] 1 11| 1 3 nm

source: https://www.electronics-tutorials.ws

https://www.electronics-tutorials.ws

from boolean algebra to
conditional branching

write a function that checks whether a given
year (passed as parameter) is a or not

T — .

Leap years are multiples of 4, and
they can only be multiples of 100
o they are also multiples of 400

function isLeap(year : integer)

if year mod 400 =0 A r) 4
isLeap < true A V
else if year mod 100 =0 J L

1sLeap <— false

else if year mod 4 =0
1sLeap «— true

else isLeap < false

conditional
branching

function isLeap(year : integer)

if ((year mod 4 =0) A (year mod 100 # 0)) V (year mod 400)
1sLeap < true

else
isLeap <— false

function isLeap(year : integer)
1sLeap «— ((year mod 4 =0) A (year mod 100 # 0)) V (year mod 400)

conditional
branching

2

QLS
()

JL

— E—

def islLeap(year):

1f year % 400 == : return True
elif year % 100 == : return False
elif year % 4 == : return True

return False

def islLeap(year):
if (year % 4 == 0) and (year % 100 != 0) or (year % 400 == @) : return True

return False

def islLeap(year):

return (year % 4 == 0) and (year % 100 != 0) or (year % 400 == 0)

"

_ o conditional

P . & .

"’@ 3 branching
/‘ .

N~
v o scala !

JL

— E—

def isLeap(year : Int) : Boolean = {

if (year % 400 == @) true

else if (year % 100 == @) false
else if (year % 4 == @) true
else false

}

def islLeap(year : Int) : Boolean = {
if ((year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0)) true

else false

}

def isLeap(year : Int) : Boolean =
(year % 4 == 0) && (year % 100 '= @) || (year % 400 == 0)

conditional
branching

DY ® > -

L Yy

—

S—

—

public class LeapYear {
public static boolean islLeap(int year) {

if (year % 400 == 0) return true;
1f (year % 100 == @) return false;
if (year % 4 == 0) return true;

return false:

}
¥

public class LeapYear 1

public static boolean isLeap(int year) {

if ((year % 4 == 0) && (year % 100 '= 0) ||
return true;

else return false:

(year % 400 == 0))

public class LeapYear 1
public static boolean isLeap(int year) {
return (year % 4 == 0) && (year % 100 !'= 0) ||
I3

}

(year % 400 == 0);

® > conditional
b | W= branching
()

__swift S

e

4K IR

J O

| — S

I
< — e

func islLeap(year:Int) —> Bool {
if year % 400 == 0 { return true }

else if year % 100 == 0 { return false }
else if year % 4 == 0 { return true }

else { return false }

func isLeap(year:Int) —> Bool {
if (year % 4 == 0) && (year % 100 '= 0) || (year

else { return false }

s 400 == @) { return true }

\O

func isLeap(year:Int) —> Bool {
return (year % 4 == 0) && (year % 100 '= 0) || (year % 400 == 0)
I3

i match {
case 1 => println("January")
case 2 => println("February")
case 3 => println("March") B— —

case 12 => println("December")
case whoa => println("Unexpected: " + whoa.toString)

java ((
switch (n) {

case 1: System.out.println("January"); break;
case 2: System.out.println("February"); break;
case 3: System.out.println("March"); break;

conditional
branching

__swift S

case 12: System.out.println("December"); break;
default: System.out.println("NOT A MONTH");

1 let someCharacter: Character = "z"
switch someCharacter {
| — — Case "'a'':
print("The first letter of the alphabet")
case "z":
print("The last letter of the alphabet")
default:
g fa”baCk casc - print("Some other character")
p——— }

reserved ke1vuords

in a programming language, identifiers are lexical
tokens chosen bx, the programmer to name various
kinds of entities, e.g., variables, functions, types, etc.

in contrast reserved ke1words are words that cannot
be chosen b1 the programmer to name entities and
that has a predefined meaning, i, else, switch, etc.

command lhne
arguments
object HelloWorld extends App { _
if (args.length == 0) { scaa !
println("Hello world")

} else {
println("Hello " + args(0))

} 0@ Args-Scala — -bash — ttys000
wallace-palace:Args-Scala garbi$ scalac HelloWorld.scala
wallace-palace:Args—-Scala garbi$ scala HelloWorld

Hello world

wallace-palace:Args—-Scala garbi$ scala HelloWorld Donald
Hello Donald

wallace-palace:Args—-Scala garbi$

text input/output on
the command line

when a program is launched on the command line, it can ask
the user for text input and provide text output on the terminal

iInput output
- . : . :
O year = 1input("Give us a year: “) print("Is {0} a leap year? {1}".format(year, islLeap(year)))
= year = int(year)
>
o
. import scala.i1o0.StdIn.readlLine
= print(s"Is $year a leap year? ${islLeap(year)}")
8 val year = readLine('"Choose a year: ").tolnt
import java.util.Scanner;
((S System.out.println("Is " + year + " a leap year? “ + isleap(year));
pe—) % Scanner scanner = new Scanner(System.in);
—— = int year = scanner.nextInt();
fd
'E var year = Int(readLine()!) print("Year \(year!) is leap: \(isLeap(year:year!))")
n

