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learning 

objectives

learn about variables, their types and their values 

learn about different number representations 

learn about functions and how to use them 

learn boolean algebra and conditional branching 

learn about basic text input and output
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what’s a variable?

in a program, a variable is a symbolic name (also 

called identifier) associated with a memory location 

where the value of the variable will be stored
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yes but what 

type of value?



what’s a type?

the type of a variable defines what will be 

stored in the memory location, e.g., a boolean, an 

integer, a character, etc., i.e., how the bit s in the 

memory location will be interpreted

python scala java swift
d = 3.14  
i = 0  
s = "hello"

var d = 3.14  
var i = 0  
var s = "hello"

var d = 3.14; 
var i = 0; 
var s = "Hello"; 

var d = 3.14  
var i = 0  
var s = "hello" 

00111110001000000000000000000000  ⇔  0.15625

1000001  ⇔  ‘A’

1000001 ⇔ 65

0000000  ⇔  false



as a programmer, you can explicitly define the type of a variable (explicit 

typing) or let the compiler (or the interpreter) try to infer the type of the 

variable, typically through initialization (implicit typing)

explicit typing & type inference

python scala java swift
i = 0  
f = 3.14  
s = "hello"

var i = 0 
var d = 3.14 
var f = 3.14f 
var s = "hello"

var i = 0; 
var d = 3.14; 
var f = 3.14f; 
var s = "Hello"; 

var i = 0 
var d = 3.14 
var s = "hello"

no static 

typing

var i : Int = 0 
var f : Double = 3.14  
var f : Float = 3.14f 
var s : String = "hello"

int i = 0; 
double d = 3.14; 
float f = 3.14f; 
String s = "Hello";

var i : Int = 0 
var f : Double = 3.14  
var f : Float = 3.14  
var s : String = "hello"

im
pl
ic
it

ex
pl
ic
it

however, there are cases where type inference is 

not possible, e.g., in recursive functions



static typing vs  
dynamic typing 

the static type designates the type of  
the variable known at compilation time 

this allows the compiler to catch a certain 

number of errors before the execution

the dynamic type designates the type of the 

value contained by a variable at run time 

this allows the runtime to catch errors 

during the execution 

scala

var i : Int = 0 
var d = 3.14 
var f = 3.14f 
var s = “hello” 

f : Float = d 
i = d  
s = d

python

v = 0  
v = 3.14  
v = “hello”



when you want to assign a value to a variable but the 

static type and the dynamic type do not match, you can 

perform an explicit conversion, also known as a type casting

type casting

python scala java swift
d = math.pi 

i = int(d)  

f = float(d) 

s = str(d)

var d = math.Pi  

var f = d.toFloat 

var i = d.toInt 

var s = d.toString

var d = Math.PI; 

var f = (float) d; 

var i = (int) d; 

var s = Double.toString(d);

var d : Double.pi  

var i = Int(d) 

var f = Float(d) 

var s = String(d)

3.141592653589793

3.1415927

3

"3.141592653589793"



unsigned integers

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

8710 = 0×27 + 1×26 + 0×25 + 1×24 + 0×23 + 1×22 + 1×21 + 1×20
8710 = 0×128 + 1×64 + 0×32 + 1×16 + 0×8 + 1×4 + 1×2 + 1×1
8710 = 0 1 0 1 0 1 1 1

8710 = 010101112 range = [02,111111112] = [010,25510]

signed integers with signed magnitude
Bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

 8710 = 0 1×26 + 0×25 + 1×24 + 0×23 + 1×22 + 1×21 + 1×20
 8710 = 0 1 0 1 0 1 1 1

-8710 =      1 1×64 + 0×32 + 1×16 + 0×8 + 1×4 + 1×2 + 1×1
-8710 = 1 1 0 1 0 1 1 1

 8710 = 010101112 
-8710 = 110101112

range = [-12710,+12710] 
two ways to represent zero:  

+010 = 000000002 
-010 = 100000002

Bit 7 is the sign bit 
0 ⇔ + 
1 ⇔ -

number representation



 8710 = 010101112 
-8710 = 101010002

range = [-12710,+12710] 
two ways to represent zero:  

+010 = 000000002 
-010 = 111111112

signed integers with one complement
Bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

 8710 = 0 1×26 + 0×25 + 1×24 + 0×23 + 1×22 + 1×21 + 1×20

 8710 = 0 1 0 1 0 1 1 1
not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

-8710 =      1 0 1 0 1 0 0 0

Bit 7 is the sign bit 
0 ⇔ + 
1 ⇔ -

number representation



signed integers with two complement
Bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

 8710 = 0 1×26 + 0×25 + 1×24 + 0×23 + 1×22 + 1×21 + 1×20

 8710 = 0 1 0 1 0 1 1 1
not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

1 0 1 0 1 0 0 0
+1  
⬇

-8710 =      1 0 1 0 1 0 0 1

-1×27 0×26 + 1×25 + 0×24 + 1×23 + 0×22 + 0×21 + 1×20

-8710 =      -1×128 + 1×32 + 1×8 + 1×1

 8710 = 010101112 
-8710 = 101010012

range = [-12810,+12710] 
only one way to represent zero:  

010 = 000000002

Bit 7 is the sign bit 
0 ⇔ + 
1 ⇔ -

number representation



number representation

Bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
sign 64 32 16 8 4 2 1

 010 = 0 0 0 0 0 0 0 0

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

1 1 1 1 1 1 1 1
+1  
⬇

-010 =      0 0 0 0 0 0 0 0

Bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
sign 64 32 16 8 4 2 1

 4410 = 0 0 1 0 1 1 0 0

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

not  
⬇

1 1 0 1 0 0 1 1
+1  
⬇

-4410 =      1 1 0 1 0 1 0 0

signed integers with two complement – further examples



only a small subset of the infinite set of real numbers can be 

represented in a computer, which has a finite memory space

floating point principle 

sign  ×  mantissa  ×  baseexponent

in a computer, the base is 2

–1 314159 10–5××–3.14159  =
⬇⬇⬇⬇

number representation



0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sign mantissa (23 bits)exponent (8 bits)

number 
representation

floating point 
single precision

⇒

2 –3

2sign e2b23�i
b23�i



character representation
ASCII UTF-8



string representation

var s = "Hi!"
null-terminated string length-prefixed string

0048160110

0069160111

0021161000

0000161001

s ��H

��i

��!

0110

0111

1000

1001

s 000316

004816

006916

002116

��H

��i

��!

01010101

10101010



what’s a constant?

a constant is simply a 
variable that cannot... vary

!

python scala java swift

no 

constant

val d : Double = math.Pi  
val i = 0  
val s = "hello" 
 
d = 1.0  
i = 1 
s = "bye"

final var d = Math.PI; 
final var i = 0; 
final var d = "hello"; 
 
d = 1.0;  
i = 1; 
s = "bye"; 

let d : Double.pi  
let i = 0  
let s = "hello" 

d = 1.0  
i = 1 
s = "bye"



what’s a function?
in a program, a function is a symbolic name (identifier) associated 

with a sequence of instructions that performs a specific task

once defined, a function can then be called in programs 

wherever that particular task should be performed

program main 
 n : integer = 2 

 n = square(n) 

 print(n) 

 print(square(n))

function square(number : integer) 
 square ← number × number

call

result

function ��procedure ��routine ��subroutine ��subprogram ��method

a function can receive 

parameters as input and 

return a result as output
result

call



what’s a function?

function definition function call

def square(number): 
  return number * number result = square(2)

def square(number : Int) : Int = {  
  number * number 
}

var result = square (2)

public int square(int number) { 
  return number * number 
}

int result = square(2)

func square(number:Int) -> Int {   
  return number * number  
} 

var result = square (2)
py

th
on

sc
al

a
sw

ift
ja

va

program main 
 n : integer = 2 

 n = square(n) 

 print(n) 

 print(square(n))

function square(number : integer) 
 square ← number × number

call

result

result

call



logic

the intellectual tool 

for reasoning about 

the truth and falsity 

of statements



in some low-level languages, integer numbers are used 

for the same purpose, e.g,. with: 

p = false ⇔ p = 0 
q = true ⇔ q = 1 (sometimes  q = true ⇔  q ≠ 0 )

most programming languages, support boolean 

variables, which can take values ∈ {true,false}

when combined with operators ⋀ , ⋁ and 

¬ , boolean variables constitute an 
algebra used in conditional branching

⇥ � or
⇥ � and

¬� notwhere:

logic & programming



assume that  p  , q  and  r  are boolean variables (or 

statements) and that T = true, F = false, we have:

boolean algebra

⇥ � or
⇥ � and

¬� not

Logic

• A function can be written in many ways. For example, xy + x, x + yx, x(y + 1) and
(x + z)y + x − yz are all ways of writing the same function. Logicians refer to the
particular way a function is written as a statement form.

You may wonder why we’re concerned with statement forms since we’re not concerned
with function forms in other areas of mathematics but just their values. That is a miscon-
ception. We are concerned with function forms in algebra. It’s just that you’re so used
to the equality of different forms that you’ve forgotten that. Knowing that certain forms
represent the same function allow us to manipulate formulas. For example, the commu-
tative (ab = ba and a + b = b + a) and distributive (a(b + c) = ab + ac) laws allow us to
manipulate the function forms xy + x, x + yx and x(y + 1) to show that they all have the
same value; that is, they all represent the same function. As soon as the equality of the
function forms is less familiar, you’re aware of their importance. For example (au)v = auv,
sin(2x) = 2 sinx cosx and d(ex)/dx = ex.

Since some of you may still be confused, let’s restate this. For our purposes, we shall
say that two statement forms are different as statement forms, or simply different if they
“look different.” They are the same if they “look the same.” This is not very precise, but is
good enough. Thus, for example, p∨q and q∨p look different and so are different statement
forms. We say that two statement forms are logically equivalent (or simply equivalent) if
they have the same truth table. The statement forms p ∨ q and q ∨ p are equivalent (have
same truth table). Likewise, (p ∧ q) ∨ r and (p ∨ r) ∧ (q ∨ r) are different statement forms
that are equivalent, as may be seen by doing a truth table for each form and comparing
them. We are familiar with these ideas from high school algebra. For example, x(y + z)
and xy + xz look different but are equivalent functions.

Sometimes we’ll let our logic hat slip and use Boolean function terminology. In par-
ticular, we’ll often use 0 instead of “false” and 1 instead of “true.”

The constant functions are particularly important and are given special names.

Definition 1 (Tautology, contradiction) A statement form that represents the con-
stant 1 function is called a tautology. In other words, the statement form is true for all
truth values of the statement variables. A statement form that represents the constant 0
function is called a contradiction. In other words, the statement form is false for all truth
values of the statement variables.

Recall the some of the basic functions studied in Unit BF: not, and and or, denoted
by ∼, ∧ and ∨, respectively. We defined these three functions by giving their values in
tabular form, which is called a truth table just as it is for Boolean functions in Unit BF.
In that unit, definitions were as follows, where we have replaced 0 and 1 by F and T to
emphasize “false” and “true;” however, we’ll usually use 0 and 1.

p ∼p

F T
T F

p q p ∧ q

F F F
F T F
T F F
T T T

p q p ∨ q

F F F
F T T
T F T
T T T

p q p “equals” q

F F T
F T F
T F F
T T T

We said there were three functions, but there is a fourth table. Besides, p “equals” q isn’t a
function—is it? What happened? The statement p “equals” q is either true of false. Thus,

Lo-2

¬p

Logic

• A function can be written in many ways. For example, xy + x, x + yx, x(y + 1) and
(x + z)y + x − yz are all ways of writing the same function. Logicians refer to the
particular way a function is written as a statement form.

You may wonder why we’re concerned with statement forms since we’re not concerned
with function forms in other areas of mathematics but just their values. That is a miscon-
ception. We are concerned with function forms in algebra. It’s just that you’re so used
to the equality of different forms that you’ve forgotten that. Knowing that certain forms
represent the same function allow us to manipulate formulas. For example, the commu-
tative (ab = ba and a + b = b + a) and distributive (a(b + c) = ab + ac) laws allow us to
manipulate the function forms xy + x, x + yx and x(y + 1) to show that they all have the
same value; that is, they all represent the same function. As soon as the equality of the
function forms is less familiar, you’re aware of their importance. For example (au)v = auv,
sin(2x) = 2 sinx cosx and d(ex)/dx = ex.

Since some of you may still be confused, let’s restate this. For our purposes, we shall
say that two statement forms are different as statement forms, or simply different if they
“look different.” They are the same if they “look the same.” This is not very precise, but is
good enough. Thus, for example, p∨q and q∨p look different and so are different statement
forms. We say that two statement forms are logically equivalent (or simply equivalent) if
they have the same truth table. The statement forms p ∨ q and q ∨ p are equivalent (have
same truth table). Likewise, (p ∧ q) ∨ r and (p ∨ r) ∧ (q ∨ r) are different statement forms
that are equivalent, as may be seen by doing a truth table for each form and comparing
them. We are familiar with these ideas from high school algebra. For example, x(y + z)
and xy + xz look different but are equivalent functions.

Sometimes we’ll let our logic hat slip and use Boolean function terminology. In par-
ticular, we’ll often use 0 instead of “false” and 1 instead of “true.”

The constant functions are particularly important and are given special names.

Definition 1 (Tautology, contradiction) A statement form that represents the con-
stant 1 function is called a tautology. In other words, the statement form is true for all
truth values of the statement variables. A statement form that represents the constant 0
function is called a contradiction. In other words, the statement form is false for all truth
values of the statement variables.

Recall the some of the basic functions studied in Unit BF: not, and and or, denoted
by ∼, ∧ and ∨, respectively. We defined these three functions by giving their values in
tabular form, which is called a truth table just as it is for Boolean functions in Unit BF.
In that unit, definitions were as follows, where we have replaced 0 and 1 by F and T to
emphasize “false” and “true;” however, we’ll usually use 0 and 1.

p ∼p

F T
T F

p q p ∧ q

F F F
F T F
T F F
T T T

p q p ∨ q

F F F
F T T
T F T
T T T

p q p “equals” q

F F T
F T F
T F F
T T T

We said there were three functions, but there is a fourth table. Besides, p “equals” q isn’t a
function—is it? What happened? The statement p “equals” q is either true of false. Thus,

Lo-2python scala java swift
a = False 
b = True 
 
c = a and b 
c = a or b  
c = not a 

var a = false 
var b = true 
 
var c = a && b 
c = a || b  
c = !a  

var a = false; 
var b = true; 
 
var c = a && b; 
c = a || b; 
c = !a;  

var a = false 
var b = true 
 
var c = a && b 
c = a || b  
c = !a  



Section 1: Propositional Logic

we can think of “equals” as a function with domain {F, T}2 and range {F, T}. In symbols,
“equals” : {F, T}2 → {F, T}. In what follows, we’ll replace “equals” with the symbol “⇔”
(equivalence) which is usually used in logic. We use the more familiar “=” for assigning
meaning and values. Thus

• q = “the sky is blue” assigns an English meaning to q.

• q = p∨ r says that q “means” p∨ r; that is, we should replace q by the statement form
p ∨ r.

• p = 1 means we are assigning the value 1 (true) to p.

Since propositional logic can be viewed as the study of Boolean functions, the tech-
niques we developed for proving results about Boolean functions (Venn diagrams, truth
tables and algebraic) can also be used in propositional logic. For convenience, we recall the
theorem for manipulating Boolean statements:

Theorem 1 (Algebraic rules for statement forms) Each rule states that two different
statement forms are equivalent. That is, they look different but have the same truth table.

Associative Rules: (p ∧ q) ∧ r ⇔ p ∧ (q ∧ r) (p ∨ q) ∨ r ⇔ p ∨ (q ∨ r)

Distributive Rules: p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)

Idempotent Rules: p ∧ p ⇔ p p ∨ p ⇔ p

Double Negation: ∼∼p ⇔ p

DeMorgan’s Rules: ∼(p ∧ q) ⇔ ∼p ∨ ∼q ∼(p ∨ q) ⇔ ∼p ∧ ∼q

Commutative Rules: p ∧ q ⇔ q ∧ p p ∨ q ⇔ q ∨ p

Absorption Rules: p ∨ (p ∧ q) ⇔ p p ∧ (p ∨ q) ⇔ p

Bound Rules: p ∧ 0 ⇔ 0 p ∧ 1 ⇔ p p ∨ 1 ⇔ 1 p ∨ 0 ⇔ p

Negation Rules: p ∧ (∼p) ⇔ 0 p ∨ (∼p) ⇔ 1

Truth tables and algebraic rules are practically the same as the tabular method and
algebraic rules for sets discussed in Section 1 of Unit SF. The next example explains why
this is so. You may want to read the first four pages of Unit SF now.

Example 1 (Logic and Sets) We’ve already pointed out that propositional logic and
Boolean arithmetic can be viewed as different aspects of the same thing. In this example,
we show that basic manipulation of sets are also related.

Suppose we are studying some sets, say P , Q and R. Let the corresponding lower case
letters p, q and r stand for the statement that x belongs to the set. For example p is the
statement “x ∈ P”.

Consider the distributive rule for sets:

P ∩ (Q ∪ R) = (P ∩ Q) ∪ (P ∩ R).

It is equivalent to saying that

x ∈ P ∩ (Q ∪ R) if and only if x ∈ (P ∩ Q) ∪ (P ∩ R)

Lo-3

¬¬p� p

¬(p ⇤ q)� ¬p ⌅ ¬q ¬(p ⌅ q)� ¬p ⇤ ¬q

p ⇥ F � F p ⇥ T � p p ⇥ T � T p ⇥ F � p

p ⇤ (¬p)� F p ⇤ (¬p)� T

some rules



transistors & boolean algebra  
the example of the “and” and “or” gates

10 µm 1971
6 µm 1974
3 µm 1977

1.5 µm 1981
1 µm 1984

800 nm 1987
600 nm 1990
350 nm 1993
250 nm 1996
180 nm 1999
130 nm 2001
90 nm 2003
65 nm 2005
45 nm 2007
32 nm 2009
22 nm 2012
14 nm 2014
10 nm 2016
7 nm 2018
5 nm 2019
3 nm 2021

a transistor is a device that can 
amplify or switch an electrical 
current, using three layers of  

a semiconductor material
IB

and or

source: https://www.electronics-tutorials.ws 

https://www.electronics-tutorials.ws


from boolean algebra to 

conditional branching 
example

write a function that checks whether a given 

year (passed as parameter) is a leap year or not



Leap years are multiples of 4, and 

they can only be multiples of 100 
if they are also multiples of 400 

From Logic to Algorithms



function isLeap(year : integer) 
if   
 isLeap ← true  
else 
 isLeap ← false

((year mod 4 = 0) ⇥ (year mod 100 �= 0)) ⇤ (year mod 400)

function isLeap(year : integer) 
isLeap  ← ((year mod 4 = 0) ⇥ (year mod 100 �= 0)) ⇤ (year mod 400)

function isLeap(year : integer) 
if  year mod 400 = 0  
 isLeap ← true 
else if  year mod 100 = 0 
 isLeap ← false 
else if  year mod 4 = 0 
 isLeap ← true 
else  isLeap ← false

conditional 

branching



def isLeap(year): 
    if year % 400 == 0 : return True 
    elif year % 100 == 0 : return False 
    elif year % 4 == 0 : return True 
    return False

conditional 

branching

python

def isLeap(year): 
    if (year % 4 == 0) and (year % 100 != 0) or (year % 400 == 0) : return True 
    return False

def isLeap(year): 
    return (year % 4 == 0) and (year % 100 != 0) or (year % 400 == 0)



def isLeap(year : Int) : Boolean = { 
  if  (year % 400 == 0) true 
  else if (year % 100 == 0) false 
  else if (year % 4 == 0) true 
  else false  
}

conditional 

branching

scala

def isLeap(year : Int) : Boolean = { 
  if  ((year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0)) true 
  else false  
}

def isLeap(year : Int) : Boolean =  
(year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0)



public class LeapYear { 
  public static boolean isLeap(int year) { 
    if (year % 400 == 0) return true; 
    if (year % 100 == 0) return false; 
    if (year % 4 == 0) return true; 
    return false; 
  } 
}

conditional 

branching

java

public class LeapYear { 
  public static boolean isLeap(int year) { 
    if ((year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0)) 
      return true;  
    else return false;  
}

public class LeapYear { 
  public static boolean isLeap(int year) { 
    return (year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0); 
  } 
}



func isLeap(year:Int) -> Bool {   
     if year % 400 == 0 { return true }  
     else if year % 100 == 0 { return false }  
     else if year % 4 == 0 { return true }  
     else  { return false }  
} 

conditional 

branching

swift

func isLeap(year:Int) -> Bool {   
     if (year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0) { return true }  
     else  { return false }  
} 

func isLeap(year:Int) -> Bool {   
     return (year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0)  
} 



switch (n) { 
    case 1: System.out.println("January"); break; 
    case 2: System.out.println("February"); break; 
    case 3: System.out.println("March"); break; 
    ... 
    case 12: System.out.println("December"); break; 
    default: System.out.println("NOT A MONTH"); 
} 

i match { 
  case 1  => println("January") 
  case 2  => println("February") 
  case 3  => println("March") 
  ... 
  case 12 => println("December") 
  case whoa  => println("Unexpected: " + whoa.toString) 
}

conditional 

branching 

switch / match

let someCharacter: Character = "z"
switch someCharacter {
case "a":
    print("The first letter of the alphabet")
case "z":
    print("The last letter of the alphabet")
default:
    print("Some other character")
}

swift

scala

fallback case

java



reserved keywords

in a programming language, identifiers are lexical 

tokens chosen by the programmer to name various 

kinds of entities, e.g., variables, functions, types, etc. 

in contrast, reserved keywords are words that cannot 

be chosen by the programmer to name entities and 

that has a predefined meaning, if, else, switch, etc.



object HelloWorld extends App { 
    if (args.length == 0) { 
        println("Hello world") 
    } else {  
        println("Hello " + args(0)) 
   }  
}

scala

command line 
arguments



text input/output on  
the command line

input output

year = input("Give us a year: “) 
year = int(year)

print("Is {0} a leap year? {1}".format(year, isLeap(year))) 

import scala.io.StdIn.readLine 

val year = readLine("Choose a year: ").toInt
print(s"Is $year a leap year? ${isLeap(year)}")

import java.util.Scanner; 

Scanner scanner = new Scanner(System.in); 
int year = scanner.nextInt();

System.out.println("Is " + year + " a leap year? “ + isLeap(year)); 

var year = Int(readLine()!) print("Year \(year!) is leap: \(isLeap(year:year!))")

py
th

on
sc

al
a

sw
ift

ja
va

when a program is launched on the command line, it can ask 

the user for text input and provide text output on the terminal


