
modularity

separation 
of concerns

&

develop

deploy

operate

learn about modularity and unit testing

learn about separation of concerns

learn about code annotations

learning

objectives

develop

deploy

operate

abstraction & modularization

once elemental objects have been

developed and tested, they can be

assembled into a more complex object

this is known as code reuse

abstraction is the ability to ignore

details of parts to focus attention

on a higher level of a problem

modularization consists in dividing a

complex object into elemental objects

that can be developed independently to be reusable, a module

needs to be reliable

but

to be reliable, a module

must be thoroughly tested

and

*

*usually a class

tools

unit testing

} standard output

logger output
unit testing frameworks make it easy to write clear and

systematic test s and to automate test execution

unit testing consist in writing a set of

independent test s for each individual module (unit)

unit test s can be seen as the specification of the item to be tested

unit test s are often developed before the actual item is implemented

pytest unittest

unit test s act as a safety net whenever refactoring the code

test coverage is the ratio of coverage items* being tested

coverage = number of tested code items
total number of code items × 100 %

Test passed: 50.00%

* whatever countable and identifiable

code element that can be 
tested, e.g., a method, 
a function or a class

A B C D E F G H I

shift by k = 3

X Y Z A B C D E F

unit testing
example

caesar cipher

Ek(c) = (c + k) mod 26
Dk(c) = (c − k) mod 26

E3(DEAF) = GHDI
D3(GHDI) = DEAF

E3(DEAF) = E29(DEAF)
E26(DEAF) = E0(DEAF) = D26(DEAF) = D0(DEAF) = DEAF

D3(GHDI) = D29(GHDI)

unit testing
example

caesar cipher

public class Caesar {
 private int key;

 public Caesar(int key) {
 this.key = key;
 }
 public void setKey(int key) {
 this.key = key % 26;
 }
 public String encode(String message) {
 return “not yet implemented";
 }
 public String decode(String message) {
 return “not yet implemented";
 }
}

public class CaesarNGTest {
 public CaesarNGTest() { }

 @BeforeClass
 public static void setUpClass() throws Exception { }

 @AfterClass
 public static void tearDownClass() throws Exception { }

 @BeforeMethod
 public void setUpMethod() throws Exception { }

 @AfterMethod
 public void tearDownMethod() throws Exception { }

 @Test
 public void testEncodingWith_7() {
 int key = 7;
 System.out.println("encoding with key = " + key);
 String message = "Cowards die many times before their deaths";
 Caesar instance = new Caesar(key);
 String expResult = "Jvdhykz kpl thuf aptlz ilmvyl aolpy klhaoz";
 String result = instance.encode(message);
 assertEquals(result, expResult);
 }

 @Test
 public void testDecodingWith_26() {
 int key = 26;
 System.out.println("decoding with key = " + key);
 Caesar instance = new Caesar(key);;
 String message = "Cowards die many times before their deaths";
 String result = instance.decode(message);
 assertEquals(result, message);
 }
 …
}

test assertion

test assertion assertions are the mechanism

through which unit test s are

automatically assessed

executed before the

class is tested

executed after  
the class was tested

executed before each test method is executed

executed after each test method is executed

unit test of a method

unit test of a method

unit testingbut is not enough

in addition to their business functionalities, applications have critical

technical requirements, such as reliability, security, scalability, etc.

these requirements are orthogonal to the business domain, i.e.,

they can be found in many other applications

a flexible software architecture supporting

separation of concerns, which allows for the

reuse of both business code and technical code

achieving code reuse is difficult when business concerns and

technical concerns are tightly interwoven in the same code

solution

Let me try to explain to you, what to my taste is characteristic for all intelligent thinking.

It is, that one is willing to study in depth an aspect of one’s subject matter in isolation for

the sake of it s own consistency, […] occupying oneself only with one of the aspects.

We know that a program must be correct and we can study it from that viewpoint only;

we also know that is should be efficient and we can study it s efficiency on another day

[…] But nothing is gained – on the contrary – by tackling these various aspects

simultaneously. It is what I sometimes have called “the separation of concerns” […]

A scientific discipline separates a fraction of human knowledge from the rest: we have to

do so, because, compared with what could be known, we have very, very small heads.

E.W. Dijkstra, On the role of scientific thought 
EWD 477, 30th August 1974, Neuen, The Netherlands

Let me try to explain to you, what to my taste is characteristic for all intelligent thinking.

It is, that one is willing to study in depth an aspect of one’s subject matter in isolation for

the sake of it s own consistency, […] occupying oneself only with one of the aspects.

We know that a program must be correct and we can study it from that viewpoint only;

we also know that is should be efficient and we can study it s efficiency on another day

[…] But nothing is gained – on the contrary – by tackling these various aspects

simultaneously. It is what I sometimes have called “the separation of concerns” […]

A scientific discipline separates a fraction of human knowledge from the rest: we have to

do so, because, compared with what could be known, we have very, very small heads.

E.W. Dijkstra, On the role of scientific thought 
EWD 477, 30th August 1974, Neuen, The Netherlands

separation of concerns
general principle

separation of concerns

security

consistency

persistence

persistence

consistency

business logic

void transfer(float money,  
Account source,  
Account destination,  
User user) {

check whether this user is allowed to perform the transfer
 begin transaction
 load source & destination accounts from database(s)

 withdraw money from source
credit money to destination
store source & destination accounts to database(s)

 end transaction
}

general principle - an example

void transfer(float money,  
Account source,  
Account destination,  
User user) {

check whether this user is allowed to perform the transfer
 begin transaction
 load source & destination accounts from database(s)

 withdraw money from source
credit money to destination
store source & destination accounts to database(s)

 end transaction
}

separation of concerns

business

logic

securitycheck

begin transaction

end transaction

load data

store data

} technical concerns 
should be separated  

from business concerns

 ()

 ()

()

 ()

persistence

consistency

consistency

persistence

general principle - an example

client BankInterceptor

transfer(...)

Technical code

doBefore(...)

transfer(...)

doAfter(...)

!begin transaction

!check security

load data

end transaction

store data

business

code here

separation of concerns
invocation interception as basic mechanism

security

begin transaction

load data

check

end transaction

store data

business

logic

separation of concerns
different approaches

when does interception occur?

✓ at compile-time (static interception)

✓ at run-time (dynamic interception)

how do we deal with technical concerns?

✓ by coding and assembling technical object s

✓ by declaring technical requirements

the aspect-j programming model

✓ when? at compile-time

✓ how? by coding and assembling

the GARF programming model

✓ when? at run-time

✓ how? by coding and assembling

Benoît Garbinato, Rachid Guerraoui, and Karim R. Mazouni.
Distributed programming in GARF. In Rachid Guerraoui,
Oscar Nierstrasz, and Michel Riveill, editors, Object-Based
Distributed Programming, pages 225–239, Berlin, Heidelberg,
1994. Springer Berlin Heidelberg.

the enterprise java beans component model

✓ when? at compile-time

✓ how? by declaring via annotations

separation of concerns

the aspect-j programming model

public class Bank {  
...
void transfer(float money, Account src, Account dest, User user) { ... }

}

aspect techCode
{ pointcut callTransfer() : call(void Bank.transfer(float, Account, Account, User));
before() : callTransfer() {

 check security
 begin transaction
 load data
}

 after() returning : callTransfer() {
store data

 end transaction
}

}

we add the technical code as follows :

assume we have some Bank class :

aspect-oriented programming

separation of concerns
the enterprise java beans model

is based on two key notions

the component is a server-side software unit encapsulating

some business logic and deployed into a dedicated container  
this is the actual enterprise java bean (ejb)

the container is the hosting environment interfacing the ejb

with it s clients and with the low-level platform services,

and ultimately managing all technical aspects for the ejb 
it is also known as the ejb container

separation of concerns

which heavily relies on the component/containers dichotomy

*java enterprise edition

web container

java server faces

application client container

application client

servlet s java server pages

ejb container

 ejb ejb ejb ejb

database

java ee serverclient side

the enterprise java beans model is just one part of java ee*

web clients

the enterprise java beans model

types of enterprise beans

a session bean represents a session with a client application and can be either:

‣ stateless: it belongs to a client only during a method call

‣ stateful: it belongs to a client during the whole session

a singleton is an object which class can have only one instance

‣ any reference to a bean of that class point to the same single instance

‣ a singleton is stateful by definition (otherwise use a stateless session bean)

a message-driven bean is an object that can receive asynchronous messages

‣ we will come back these beans when discussing asynchronous interactions

the enterprise java beans model
container responsibilities

the container intercepts client calls to manage

the ejb lifecycle and it s technical aspects

application logic

coded by bean provider

distributed transactions, 
distributed object s, resource access

java virtual machine

transaction control, threading, security,

persistence, pooling, memory management

management services supplied 
by container provider

middleware services  
supplied by server

BankBean

the enterprise java beans model
container as interceptor

of business methods

�
client Bank

transfer BankBean

�

the enterprise java beans model
bean provider tasks

Bank

creates an interface for the bean

creates the bean class,

coding business methods
BankBean

the enterprise java beans model
container provider tasks

Bank

implements the remote interface,

i.e., provides the interceptor object

provide an  
ejb-compliant  
container

BankBean

the enterprise java beans model
a typical session bean

@Local
public interface Bank {
 public void transfer(Account source, Account destination,double amount)
 throws BankingException;
 void initialize();
}

@Stateful
public class BankBean implements Bank {
 @Resource
 SessionContext ctx;

 public void transfer(Account source, Account destination,double amount)
 throws BankingException { ... }

 public void initialize() { ... }
}

d
e
p
e
n
d
e
n
c
y

in

je
c
t
io
n

the enterprise java beans model
dependency injection

with dependency injection, an object does not

set it s dependencies to other object s it self

with dependency injection, an object’s field can be

set by an external actor, in our case the container

dependency injection is expressed by

the programmer via annotations

dependency injection allows us to decouple

various components at the code level

the enterprise java beans model
annotations

an annotation is a portion of text that expresses

information about the code directly in the code

an annotation does not directly modify the semantics

of your code but the way it is treated by tools

since version 5, Java supports general and extensible

annotations mechanism, using the @ character

java always had ad hoc annotation, e.g., java

comments, the transient keyword, etc.

@Stateless
@Stateful
@LocalBean
@Remote
@Resource

@EJB
@Remove

@PostConstruct
@PreDestroy
@PrePassivate
@PostActivate

...

the enterprise java beans model
client developer tasks

BankBean

�

�

�

@EJB
private static Bank myBank;
…
myBank.initialize();  
myBank.transfer(…); Bank

dependency injection

stateless bean: no need for

an initialization method

stateful bean: one or more

initialization methods (business method)

the enterprise java beans model

BankBean
�

�

�
Bank

to perform some house cleaning before stopping to use that bean

client
delete

@Stateful
public class BankBean implements BankRemote {  
 ...
 @Remove
 public void delete() { ... }  
 ...
}

delete ×
to indicate to the container that we no longer need that bean

in the bean code by

marking a method using

the @Remove annotation

in the client code by calling

that method on the bean

removing a session bean

the enterprise java beans model

BankBean

BankBean

BankBean

to ensure availability &

scalability, the container

uses pooling strategies to

manage enterprise beans

Bank

resource pooling

Bank

client1
client2
client3
client4
client5

pool of ejb

instances

BankBean

BankBean

BankBean

BankBean

BankBeanBank

Bank

client2

client3

client1

stateful session bean

stateless session bean

pool of ejb

instances

the enterprise java beans model
activation/passivation

the container can only host a limited number of session beans in memory

when more beans are needed, it uses passivation/activation strategy

‣ passivation: write a bean to disk and remove it from volatile memory (swap out)

‣ activation: read a bean from disk and recreate it in volatile memory (swap in)

‣ usually follows a least recently used policy

the container can only manage part of the state of a passivated/activated

session bean, i.e., primitive types, serializable object s, context object s, etc.

for state (fields) outside this category, the bean provider

must manage activation/passivation programmatically

the enterprise java beans model
activation/passivation

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import javax.annotation.Resource;
import javax.ejb.PostActivate;
import javax.ejb.PrePassivate;
import javax.ejb.Remove;
import javax.ejb.SessionContext;
import javax.ejb.Stateless;

@Stateful
public class BankBean implements Bank {
 @Resource
 SessionContext ctx;
 public void initialize() { ... }
 @Remove
 public void delete() { ... }
 @PostConstruct
 public void construct() { ... }
 @PreDestroy
 public void destroy() { ... }
 @PrePassivate
 public void passivate() { ... }
 @PostActivate
 public void activate() { ... }
}

called by the

container only

if they exist

(optional)

client container instance secondary store

call passivate()

call activate()

write state

read state
call transfer()

@Stateful
public class BankBean implements Bank {
 ...
 @PrePassivate
 public void passivate() { ... }

 @PostActivate
 public void activate() { ... }
}

the enterprise java beans model
method invocations

web container

java server faces

application client container

application client

servlet s java server pages

ejb container

 ejb ejb ejb ejb

java ee serverclient

web clients

remote method invocation

local method

invocation

server

remote&local

the enterprise java beans model

client server

call / invocation

client ejb

processjust one

transfer(20)

true

true
20

returned result

input parameter

callstack 
in memory

method invocationslocal

the enterprise java beans model

process process

client
server

a remote method is

transparently invoked

across the network,

as if it was local

client server

call / invocation

client ejb

transfer(20)

true

method invocationsremote

network

the enterprise java beans model

client server

call / invocation

client ejb

transfer(20)

process

server

process

client

request requestreplyreply

true

method invocationsremote

the enterprise java beans model

@Remote
public interface BankRemote {
 public void transfer(Account source, Account destination,double amount)
 throws BankingException;
 void initialize();
}

@Stateful
public class BankBean implements BankRemote {
 @Resource
 SessionContext ctx;

 public void transfer(Account source, Account destination,double amount)
 throws BankingException { ... }

 public void initialize() { ... }
}

method invocationsremote

