Well, goodbye

sepamﬁon
of concerns

develop

Iearning
ob_)ec’rives

ldeploy

+ learn about modulari’rsl and unt fes’ring
+ learn about separation of concerns

+ learn about code annotations

abstraction s the abiliﬂ to ignore
details of parts to focus attention
on a higher level of a problem

modularization consists in dividing a
complex object into elemental objects
that can be developed independen’rw

10 be reusable, a module”
needs to be relable

once elemental objects have been
developed and tested, ’rhq can be ahd

assembled into a more complex object to be reliable. a module
must be ’rhoroughw tested

*usualw a class

this s known as code reuse

« unit ’res’ring consist n wriﬁng a set of unrr ‘terhng
independent tests for each individual module (unit) .‘.ook

» unit testing frameworks make it easy to write clear and
sqs’rema’nc tests and 10 automate test execution
JUnit @ TestN pytest i unittest A

+ Test coverage is the ratio of coverage items»* bemg tested o

number of tested code 1items
coverage = X 100 %
total number of code 1tems » whatever countable and identifiable

— code element that can be
| tested, e.q., a method,
a function or a class

—— — — = = p— — e —— — —— — — e ——
P ———— E—— e —— — E— i

o unf *esfs can be seen as ﬂme sPeuhcahon of fhe ﬂ'em ‘ro be fesfed
+ unit tests are often developed before the actual item is \Mplemenfech

+ unit tests act as a safeﬂ net whenever refactoring the code

[TestNG] Running:
SimpleUnitTests

decoding with key = 26

decoding with key = 7

2 tests passed, 2 tests failed. (0.002 s) encoding with key = 26
) ; encoding with key = 7

? ._!_J TeStNG tEStS Falled e
o= /8 ch.unil.doplab.CaesarNGTest.testDecodingWith_26 Failed: java.lang.AssertionError: expected [Cowards die many times before their deaths] but found [rubbish] SimpleUnitTests

—

o= /8, ch.unil.doplab.CaesarNGTest.testDecodingWith_7 Failed: java.lang.AssertionError: expected [Cowards die many times before their deaths] but found [rubbish] e T T

E(c)=(c+ k) mod 26

Di(c)=(c—k mod 26 . .

E.(DEAF) = GHDI

D,(GHDI) = DEAF
A|lB|C|D

unit testin

E

I:

9

exav\nple

caesay cipher

E,.(DEAF) = E,(DEAF) = D, (DEAF) = D(DEAF) = DEAF

public class CaesarNGTest {
public CaesarNGTest() { }

unit testin

public static void setUpClass() throws Exception { } 4— executed before the e am . 'e
class 15 tested P

9

@AfterClass
public static void tearDownClass() throws Exception ({ }4_ exgcufed aﬁer

the class was tested cacsay C‘Pher
@BeforeMethod
public void setUpMethod() throws Exception { } — execu"’ed bedf()re QQCh “’QS“' me‘rh()d is Qxecu“’ed

@AfterMethod
public void tearDownMethod() throws Exception { }4— QXQCU‘rQCl G‘H'QY' each test me{’hod 1S execu‘l’ed

@Test

. : : : N public class Caesar {
public void testEncodingWith 7() { — unr" «"es{’ o{ Q mefhod private int key;

int key = 7;

System.out.println("encoding with key = " + key); public Caesar(int key) {

String message = "Cowards die many times before their deaths”; this.key = key;

Caesar instance = new Caesar(key); }

String expResult = "Jvdhykz kpl thuf aptlz ilmvyl aolpy klhaoz"; public void setKey(int key) {

String result = instance.encode(message); this.key = key % 26;

assertEquals(result, expResult); test asser tion P | |
} public String encode(String message) {

return “not yet implemented’;

@Test !

. : : : . public String decode(String message) {
public void testDecodingWith 26() { — unr" "’QS“’ ()f Qa me‘rh()d return “not yet implemented";

int key = 26;

System.out.println('decoding with key = " + key); } }
Caesar 1nstance = new Caesar(key);; .
String message = "Cowards die many times before their deaths”;

String result = instance.decode(message);

assertEquals(result, message); test assey ton asserfions ﬂre ‘rhe meChanism
through which unit tests are
— automatically assessed

but unit testing is not enough

+ in addition to their business functionalities, applications have critical
technical requirements, such as rehability, security, scalability, etc.

+» these requirements are orthogonal to the business domain, ie.,
they can be found in many other applications

. achieving code reuse 15 difficult when business concerns and
technical concerns are ’righ’rl\, interwoven in the same code

a flexible software architecture supporﬁng
separation of concerns, which allows for the
reuse of both business code and technical code

separation of concerns

general principle

Let me try to explain to you, what to my taste is characteristic for all intelligent thinking.
It is, that one is willing to study in depth an aspect of one's subject matter in isolation for
the sake of its own consistency, [...] occupying onese only with one of the aspects.

We know that a program must be correct and we can study it from that viewpoint only;
we also know that is should be efficient and we can study its efficiency on another day
[...] But nothing is gained - on the contrary - by tackling these various aspects
simultaneously. It is what | sometimes have called “the separation of concerns” [...]

R scientific discipline separates a fraction of human knowledge from the rest: we have to
do 5o, because, compared with what could be known, we have very, very small heads.

E.W. Dijkstra, On the role of scientific thought
EWD 477, 30th Rugust 1974, Neuen, The Netherlands

separation of concerns

general principle - an examPle

void transfer(float money,
Account source,
Account destination,
User user) {
check whether this user 1s allowed to perform the transfer
begin transaction

load source & destination accounts from database(s)

withdraw money from source
credit money to destination

store source & destination accounts to database(s)
end transaction

securiﬂ
consisfenq

persis1'ence

business Iogic

persisfence
consis‘l’enq

separation of concerns

general principle - an examPle

void transfer(float money,
Account source,
Account destination,
User user) {

o)

withdraw money from source business

check securiﬂ
begin transaction (consisfenq)
load data (persistence)

technical concerns
should be separated

from business concerns

store data (persistence) —
end transaction (consistency)

credit money to destination logic

o)

separation of concerns

invocation interception as basic mechanism

‘ client \ ‘ Interceptor \ ‘ Techwieal code \ ‘anka \
: -

transfter(...

|

|

-------------------------------- }}
doBefore(...) |

|

|

|

|

|

|

check securiﬂ :

begin fransaction :

< load data :

: :

! |
;
|
|
|
|
|
|
|

<
transfer(...) business
logic

doAfter(...)

store data
end transaction

separation of concerns

different approaches

+ when does interception occur? + how do we deal with technical concerns?

v at compile-time (static interception) v b1 coding and assembling technical objects
v at run-time (dynamic interception) v by declaring technical requirements

- __ p— p— B e ———— =SS — =
e _ i i — - — . R — —_ e o —— ———— e e — — ———

e ———— e e ——— ————————

+» the aspect-) programming model
v when? at compile-time
v how? b1 coding and assembling

* “.he en“.erprise java beans componen‘r M()de| Benoit Garbinato, Rachid Guerraoui, and Karim R. Mazouni.

Distributed programming in GARF. In Rachid Guerraoui,

- - Oscar Nierstrasz, and Michel Riveill, editors, Object-Based
v when? at compile-time

Distributed Programming, pages 225-239, Berlin, Heidelberg,
1994. Springer Berlin Heidelberg.

v how? b1 declaring via annotations

separation of concerns

the a5pec1'-j programming model a5pec1'-orien1’ecl programming

assume we have some Bank class :

public class Bank {

vold transfer(float money, Account src, Account dest, User user){ ... }

¥

we add the technical code as follows -

aspect techCode
{ pointcut callTransfer() : call(void Bank.transfer(float, Account, Account, User));

vefore() : callTransfer() {

check security
begin transaction
load data

¥

after() returning : callTransfer() {

store data
end transaction

¥

¥

separation of concerns

the enterprise java beans model
is based on two kesl notions

the component is a server-side software unit encapsulating
some business logic and deploqed into a dedicated container
this is the actual enterprise java bean (ejb)

the container is the hosting environment interfacing the ejb
with its clients and with the low-level platform services,
and ultimately managing all technical aspects for the ejb

it 15 also known as the e)b container

separation of concerns

the enterprise java beans model is just one part of java ee*
which heavily relies on the component/containers dichotomy

client side java ee serveyr

web container

: java server faces serviets java server pages
web clients ’
apphcation client container ' e)b container

apphication chent

database

*java en’rerprise edition

the enterprise java beans model

types of enterprise beans

+ a session bean represents a session with a client applhcation and can be either:
P PP

» stateless: it belongs to a client onlxl during a method call
» stateful: it belongs to a client during the whole session

+ a singleton is an object which class can have only one instance

> any reference to a bean of that class point to the same single instance
» a singleton is stateful by definition (otherwise use a stateless session bean)

+ a message-driven bean s an objecf that can receive asynchronous messages
» we Will come back these beans when discussing asxlnchronous interactions

enterprise java beans model

containeyr resPonsibiliﬁes

the container intercepts client calls to manage
the ¢pb Ii‘feqcle and its technical aspects

application logic
@ BankBean) coded by bean provider

transaction control, threading, security,

management services suppled
persis1’ence, pooling, memory managemerrt

by container provider

distributed transactions, < middieware services
distributed objects, resource access -
supphed b1 servey

java virtual machine

the enterprise java beans model

container as interceptor
of business methods

the enterprise java beans model

bean provider tasks

creates the bean class,

Bank — BankB])
- ankbean coding business methods

creates an interface for the bean

the enterprise java beans model

container provider tasks

provide an
— ejb-comPliarﬂ’
container

Bank) ‘

BankBean

implements the remote interface,
1.e., provides the interceptor object

the enterprise java beans model

Q ’qpical session bean

@Local
public 1nterface Bank {

public void transfer(Account source, Account destination,double amount)
throws BankingException;

void initialize();

¥
<
2
g @Stateful
= public class BankBean implements Bank {
. " @Resource
QO T > -
c . SessionContext ctx;
;
g public void transfer(Account source, Account destination,double amount)
v throws BankingException { ... }
public void initialize() { ... }

the enterprise java beans model
dependency injection

with dependency injection, an object does not
set its dependencies to other objects itselt

with dependency injection, an object’s field can be
set by an external actor; in our case the container

dependenq injecﬁon allows us to decouple
various components at the code level

dependenq injection is expressed bs,
the programmer via annotations

anhotations

an annotation is a portion of text that expresses
information about the code directly in the code

an annotation does not directly modiﬂ the semantics

the enterprise java beans model

@Stateless
@Stateful
@LocalBean
@Remote
@Resource
@EJB

@Remove

of your code but the way it is treated by tools @PostConstruct

java alwas,s had ad hoc annotation, e.q., java @
comments, the transient ke\,word, etc. ¢

since version S, Java suppor ts general and extensible
annotations mechanism, using the @ character

@PreDestroy

PrePassivate

PostActivate

the enterprise java beans model

client developer tasks

dependency injection

|_>;@EJB @
Lprivate static Bank myBank;
" Bank. initializeC) @)
myBank.1nitialize() ; —mo———>
¢ Bank @ BankBean

myBank.transfer(.); ——

©)

stateless bean: no need for
an inthialization method

stateful bean: one or more
inthiahization methods (business method)

the enterprise java beans model

removing a session bean
to perform some house cleaning before stopping to use that bean

to indicate to the container that we no longer need that bean

@Stateful
public class BankBean implements BankRemote {

in the bean code by o
marking a method using - @Remove
the @Remove annotation public void delete() { ... }

S J

(")

in the clhient code b1 calling
that method on the bean

. J

hent \/ — ‘
delete Bank delete &
©

the enterprise java beans model

to ensure availability 3 resource POO"”Q @ o)
N i ankBean
scalability, the container jient; —
uses pooling strategies to client; — ool of b
* - Ly P
manage enterprise beans 2::::‘;3 - Bank @ BankBean > Finstances
S
cllen‘l'g
- , — e e e} @ BankBean
statetul session bean @ BonkBear \ | J
|
BankBean | sfafeless sesswn bean
chenty, — Bank —> BankBean > pool of ¢)b
instances
chent, —» Bank —> BankBean
client; —» Bank BankBean)

the enterprise java beans model

activation/passivation

the container can only host a limited number of session beans in memory

when more beans are needed, it uses passiva’rionlacﬁvaﬁon s'rra*eg~|

» passivation: write a bean to disk and remove it from volatile memory (swap out)
» activation: read a bean from disk and recreate it in volatile memory (swap in)
» usually follows a least recently used policy

the container can only manage par+t of the state of a passivated/activated
session bean, ie., primitive 1’1pes, serializable objects, context objects, etec.

for state (fields) outside this category, the bean provider
must manage activation/passivation programmatically

chent container

secondam store

call transfer()

instance
call passivate()
write state
>
> read state
>
call activate() .

@Stateful
public class BankBean implements Bank {

@ﬁFePassivate
public void passivate() { ... }

@PostActivate
public void activate() { ... }

-

the enterprise java beans model

activation/passivation

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import javax.annotation.Resource;
import javax.ejb.PostActivate;

import javax.ejb.PrePassivate;

import javax.ejb.Remove;

import javax.ejb.SessionContext;
import javax.ejb.Stateless;

@Stateful
public class BankBean implements Bank {

@Resource
SessionContext ctx;

public void initialize() { ... }

eRemove called by the

public void delete() { ... }

@PostConstruct Con'rainer Ohl\,
public void construct() { ... }

@PreDestroy f ﬂ'oe\| exist
public void destroy() { ... } (Opﬁonal)

@PrePassivate
public void passivate() { ... }

@PostActivate
public void activate() { ... }

S

the enterprise java beans model

local £ remote method invocations

client java ee server
< » N\ H web container
J @ ’ java server faces serviets java server pages
web chents local method
invocation
application client container e)b container
application client — @ e)b @ e)b @ e)b @ e)b

|

remote method invocation]

the enterprise java beans model

local method invocations

returned result true

e)b

T e R e S 2 R R O T P e P T & et e e g 2. P R RS e gees. An Be : oSS S Acy 8 2 o X e e e ecE T o g 2o DB s TP : goe g 2 ol e i oile |
o = = 2 e e X ~ a _ S ~ = . ~ = B o= ey L > = S < >
4
! [
!
.4 1 '
441
= . SRR A s e A4 |
4 = Y S m - 6
A
\
i
Y L] <«
2 v g NN ST TS g s
S ~ (S _ .
N
<

input parameter 20

transfer(20)

<+
callstack true

n memory

jus’r ohe process

the enterprise java beans model

remote method invocations

I
I
I
I

transfer(20)
<= >
true
a remote method is
_ transparently invoked

- ; across the network,
' ' as ¥ i+ was local

chent server
process process

the enterprise java beans model

remote method invocations

I
I
I
I

transfer(20)
<43
true
v
|
T |
chent servey
process process
request reply reply request

network

the enterprise java beans model

remote method invocations

@Remote
public 1nterface BankRemote {

public void transfer(Account source, Account destination,double amount)
throws BankingException;

void initialize();

@Stateful

public class BankBean implements BankRemote {
@Resource
SessionContext ctx;

public void transfer(Account source, Account destination,double amount)
throws BankingException { ... }

public void initialize() { ... }

