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learning 

objectives

learn basic principles of algorithmic design 

learn how those principles are used for sorting 

learn how algorithmic complexity is computed

hardware

your software

algorithms

system software



today

what is logic 
in computing

what is an 

algorithm

how do 

they relate? 

how to measure 
algorithmic complexity? 



logic

the intellectual tool for 

reasoning about the 

truth and falsity of 

statements



Section 1: Propositional Logic

we can think of “equals” as a function with domain {F, T}2 and range {F, T}. In symbols,
“equals” : {F, T}2 → {F, T}. In what follows, we’ll replace “equals” with the symbol “⇔”
(equivalence) which is usually used in logic. We use the more familiar “=” for assigning
meaning and values. Thus

• q = “the sky is blue” assigns an English meaning to q.

• q = p∨ r says that q “means” p∨ r; that is, we should replace q by the statement form
p ∨ r.

• p = 1 means we are assigning the value 1 (true) to p.

Since propositional logic can be viewed as the study of Boolean functions, the tech-
niques we developed for proving results about Boolean functions (Venn diagrams, truth
tables and algebraic) can also be used in propositional logic. For convenience, we recall the
theorem for manipulating Boolean statements:

Theorem 1 (Algebraic rules for statement forms) Each rule states that two different
statement forms are equivalent. That is, they look different but have the same truth table.

Associative Rules: (p ∧ q) ∧ r ⇔ p ∧ (q ∧ r) (p ∨ q) ∨ r ⇔ p ∨ (q ∨ r)

Distributive Rules: p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)

Idempotent Rules: p ∧ p ⇔ p p ∨ p ⇔ p

Double Negation: ∼∼p ⇔ p

DeMorgan’s Rules: ∼(p ∧ q) ⇔ ∼p ∨ ∼q ∼(p ∨ q) ⇔ ∼p ∧ ∼q

Commutative Rules: p ∧ q ⇔ q ∧ p p ∨ q ⇔ q ∨ p

Absorption Rules: p ∨ (p ∧ q) ⇔ p p ∧ (p ∨ q) ⇔ p

Bound Rules: p ∧ 0 ⇔ 0 p ∧ 1 ⇔ p p ∨ 1 ⇔ 1 p ∨ 0 ⇔ p

Negation Rules: p ∧ (∼p) ⇔ 0 p ∨ (∼p) ⇔ 1

Truth tables and algebraic rules are practically the same as the tabular method and
algebraic rules for sets discussed in Section 1 of Unit SF. The next example explains why
this is so. You may want to read the first four pages of Unit SF now.

Example 1 (Logic and Sets) We’ve already pointed out that propositional logic and
Boolean arithmetic can be viewed as different aspects of the same thing. In this example,
we show that basic manipulation of sets are also related.

Suppose we are studying some sets, say P , Q and R. Let the corresponding lower case
letters p, q and r stand for the statement that x belongs to the set. For example p is the
statement “x ∈ P”.

Consider the distributive rule for sets:

P ∩ (Q ∪ R) = (P ∩ Q) ∪ (P ∩ R).

It is equivalent to saying that

x ∈ P ∩ (Q ∪ R) if and only if x ∈ (P ∩ Q) ∪ (P ∩ R)
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Logic

• A function can be written in many ways. For example, xy + x, x + yx, x(y + 1) and
(x + z)y + x − yz are all ways of writing the same function. Logicians refer to the
particular way a function is written as a statement form.

You may wonder why we’re concerned with statement forms since we’re not concerned
with function forms in other areas of mathematics but just their values. That is a miscon-
ception. We are concerned with function forms in algebra. It’s just that you’re so used
to the equality of different forms that you’ve forgotten that. Knowing that certain forms
represent the same function allow us to manipulate formulas. For example, the commu-
tative (ab = ba and a + b = b + a) and distributive (a(b + c) = ab + ac) laws allow us to
manipulate the function forms xy + x, x + yx and x(y + 1) to show that they all have the
same value; that is, they all represent the same function. As soon as the equality of the
function forms is less familiar, you’re aware of their importance. For example (au)v = auv,
sin(2x) = 2 sinx cosx and d(ex)/dx = ex.

Since some of you may still be confused, let’s restate this. For our purposes, we shall
say that two statement forms are different as statement forms, or simply different if they
“look different.” They are the same if they “look the same.” This is not very precise, but is
good enough. Thus, for example, p∨q and q∨p look different and so are different statement
forms. We say that two statement forms are logically equivalent (or simply equivalent) if
they have the same truth table. The statement forms p ∨ q and q ∨ p are equivalent (have
same truth table). Likewise, (p ∧ q) ∨ r and (p ∨ r) ∧ (q ∨ r) are different statement forms
that are equivalent, as may be seen by doing a truth table for each form and comparing
them. We are familiar with these ideas from high school algebra. For example, x(y + z)
and xy + xz look different but are equivalent functions.

Sometimes we’ll let our logic hat slip and use Boolean function terminology. In par-
ticular, we’ll often use 0 instead of “false” and 1 instead of “true.”

The constant functions are particularly important and are given special names.

Definition 1 (Tautology, contradiction) A statement form that represents the con-
stant 1 function is called a tautology. In other words, the statement form is true for all
truth values of the statement variables. A statement form that represents the constant 0
function is called a contradiction. In other words, the statement form is false for all truth
values of the statement variables.

Recall the some of the basic functions studied in Unit BF: not, and and or, denoted
by ∼, ∧ and ∨, respectively. We defined these three functions by giving their values in
tabular form, which is called a truth table just as it is for Boolean functions in Unit BF.
In that unit, definitions were as follows, where we have replaced 0 and 1 by F and T to
emphasize “false” and “true;” however, we’ll usually use 0 and 1.

p ∼p

F T
T F

p q p ∧ q

F F F
F T F
T F F
T T T

p q p ∨ q

F F F
F T T
T F T
T T T

p q p “equals” q

F F T
F T F
T F F
T T T

We said there were three functions, but there is a fourth table. Besides, p “equals” q isn’t a
function—is it? What happened? The statement p “equals” q is either true of false. Thus,
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what's an 

algorithm?



origins

the word “algorithm” comes from 

Muhammad ibn Musa al-Khwarizmi 

(780-850), the name of a Persian 

mathematician who worked in the 

House of Wisdom, in Bagdad 



definition

an algorithm is a well-defined 

computational procedure that takes 

some input values and produces some 

output values as the solution of 
a well-specified problem



an algorithm can be expressed in a natural 

language (e.g., English), as a computer program 

(e.g., in scala), or even in some hardware design, 

via the appropriate layout of transistors

definition



the PageRank algorithm was 

developed at Stanford University by  

Larry Page and Sergey Brin as part of a research project, 

which led to a functional prototype at the origin of Google Inc.

google

PR(pi) =
1� d

N
+ d

X

pj2M(pi)

PR(pj)

L(pj)



the human 

genome project

this project aimed at identifying 

the 20’000-25’000 genes in human 

DNA, based on 3.3 billion chemical 

base pairs, and at developing 

sophisticated algorithms for 

analyzing this data 



from math to algorithms

f(x1, x2, ..., xn) =
n�

i=1

xi

f(x) =
� ⇤

x if x ⇥ 0⇤
�x if x < 0

function f(x : real) 
if  x  ≥  0 
 f  ← sqrt(x) 
else 
 f  ← sqrt(–x)

function f(x : array[1..n] of real) 
f ← 0 
for i = 1 to n do   
 f ← f + x[i]

def f(x: Double) : Double = { 
  if (x < 0) Math.sqrt(-x) else Math.sqrt(x) 
}

def f(X: List[Double]) : Double = { 
  var sum = 0.0 
  for (x <- X) { 
    sum = sum + x 
  }  
  sum  
}



book

Introduction  

to Algorithms 

by T. H. Cormen et al.   

3rd Edition 

MIT Press, 2009

http://mitpress.mit.edu/catalog/author/default.asp?aid=344


the sorting problem



specification

the sequence of numbers is stored in arrays 

and numbers are also referred to as keys



example

input output

input: A = ⟨5, 2, 4, 6, 1, 3⟩ 

output: A = ⟨1, 2, 3, 4, 5, 6⟩



sorting algorithms

there exist s various sorting 

insertion sort 

merge sort 

heap sort 

quick sort 

bucket sort 

etc...



A[1. . n] is an array of integer of size n

insertion sort
pseudo-code

array A is sorted in place



example

❶

❹

❷

❺

❸

❻

overview
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insertion sort



correctness 

an algorithm is correct 
if for any input, it 

terminates with the 

correct output



loop invariant

a boolean condition that must remain 

true throughout the loop execution

used to prove that an algorithm gives the 
correct answer



proving a loop invariant is similar to  
a mathematical proof by induction

loop invariant

1. prove base case (true for n = 0 or n = 1) 

2. prove inductive step (true for n � true for n+1) 

1. prove invariant holds before the loop starts 

2. prove invariant holds from iteration to iteration

mathematical induction

loop invariant



in mathematical induction, the 

inductive step is used infinitively

loop invariant

for algorithms, we have to show that the 

loop terminates and that the invariant is 

still true after the loop



1. initialization 
prove the invariant is true before the first iteration 

2. maintenance 
prove the invariant is true before some iteration 
� invariant true before the next iteration 

3. termination 
when loop terminates, the invariant gives us a useful 

property for showing that the algorithm is correct

loop invariant



example

at the start of each iteration, the 

for loop consist s of the elements 

originally in A[1. . j – 1] but in 
sorted orderin

v
a
r
ia

n
t

initialization:  before the first iteration, j = 2  so the A[1. . j – 1] subarray is simply 

element A[1] , which is trivially sorted

maintenance:  at each iteration, we shuffle elements of subarray A[1. . j – 1] to 
the right until proper position for A[j] is found, where it is inserted; so, at the 

start of next iteration, the new augmented A[1. . j – 1] is also sorted

termination:  the loop stops when  j = n + 1,  so we then have 
A[1. . j – 1]  =  A[1. . n] , the whole array, which we know to be sorted 

thanks to the maintenance property we just proved



the same problem

but different algorithms...

..may lead to different performance



break the initial 
problem into several 

subproblems that are 

easier to solve than 
the original problem

a classical way to solve complex problems

divide & conquer



divide & conquer

recursion as a special case

divide the initial problem into several subproblems 

that are smaller instances of the original problem 

conquer by computing solutions 
to those subproblems recursively 

combine the smaller solutions into 
a solution to the initial problem



def factorial(n: Int) : Int = { 
  if (n == 0 || n == 1) { 
    1  
  }  
  else {  
    n * factorial(n-1)  
  }  
}

factorial  
as example

f(4) = 
= 4 * f(3) 
= 4 * 3 * f(2) 
= 4 * 3 * 2 * f(1) 
= 4 * 3 * 2 * 1 
= 4 * 3 * 2 
= 4 * 6 
= 24

1st recursive call →
initial call → 

2nd recursive call →
3rd recursive call →

3rd recursive call returns →
2nd recursive call returns →
1st recursive call returns →

initial call returns →



merge sort

4 7 2 1 7 4 5

4 7 2 1 7 4 5

4 7 2 1 7 4 5

574 2 1 7 4

4 7 1 2 4 7 5

1 2 4 7 4 5 7

1 2 4 4 5 7 7

divide & conquer



divide: break the sequence 

of n numbers into pairs 

conquer: sort the 

subsequences recursively 

using merge sort 

combine: merge the sorted 

subsequences to produce the 

final sorted array

merge sort

4 7 2 1 7 4 5

4 7 2 1 7 4 5

4 7 2 1 7 4 5

574 2 1 7 4

4 7 1 2 4 7 5

1 2 4 7 4 5 7

1 2 4 4 5 7 7



‣ function MERGE-SORT(A, p, r) sorts 
array  A  between indices  p  and  r

‣ initially,  p = 1  and  r = n

4 7 2 1 7 4 5

4 7 2 1 7 4 5

4 7 2 1 7 4 5

574 2 1 7 4

4 7 1 2 4 7 5

1 2 4 7 4 5 7

1 2 4 4 5 7 7

merge sort



function MERGE(A, p, q, r) 
assumes: 

‣ 1  ≤  p  ≤  q  <  r  ≤ n 

‣ subarrays A[p..q] and  
A[q +1..r] are sorted 

an example:

1 7 8 9 2 4 6

17 8 9 2 4 6

1 27 8 9 4 6

1 2 47 8 9 6

1 2 4 67 8 9

1 2 4 6 7 8 9

❶

❹

❷

❺

❸

❻

merge sort
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algorithm analysis



aim of analysis

algorithm analysis aims at 

predicting the resources 

needed by an algorithm to 

produce it s output, as a 

measure of it s efficiency



typical resources

computational time

 memory footprint

network bandwidth



example

hereafter, we mainly focus on 

computational time as a measure 

of the algorithm efficiency 

usually, the computational time 

depends on the size of the data 

taken as input by the algorithm



let  T (n)  be the running time of the insertion sort, so:

example



let  T (n)  be the running time of the insertion sort, so:

example



best case scenario

best case: the array is already sorted 

A[1. . n] ≤ key  at start of each while loop 

all tj are equal to 1

best case form: an + b ( linear function of n ) 
this is known as the lower bound of the algorithm



worst case: the array is sorted in reverse order 

A[1. . n] > key  throughout each while loop 

key compared with all numbers left to the j-th position, 
i.e., to j – 1 numbers

worst case form: an2 + bn + c (quadratic function of n) 
this is known as the upper bound of the algorithm

worst case scenario



best case vs. worst case

we are usually interested in the worse case, 

which represents the maximum growth rate, 

also known as order of growth

we usually keep only the higher power of  n 
and say that the insertion sort algorithm has 

a worse-case running time of O(n2)  
(it reads “order of n square”)



c1 n2 steps to sort n 

numbers, with c1 a 
constant independent of n

insertion sort IA  

c2 n log2 n steps to sort n 

numbers, with c2 a 
constant independent of n

merge sort MA

costs

vs.



vs.

let’s assume that c1 =  c2 = 2 
(good programmer and compiler)

c1 and c2 depend on how the algorithm was 

actually implemented and compiled

let’s assume IA  and MA  
both run on a computer executing 

1 billion (109) instructions per second

insertion 
sort

merge 
sort



input data

finally, let’s assume IA  and  MA have to  

sort 1 million (106) numbers 

Q: how much time will it take?



with 10 million numbers, the difference is even bigger 
2.3 days for IA and less than a second for MA !

2 × (106)2 instructions
109 instructions/second

 =  2000 seconds  =  33 minutes

results

insertion sort IA  merge sort MAA: A: 

2 × 106 log2 106  instructions
109 instructions/second

=  0.04 seconds  =  40 milliseconds



let’s penalize MA

let’s assume that c1 = 2 
(good programmer & compiler)

let’s assume that c2 = 50           

(lousy programmer & compiler)

insertion sort IA

merge sort MA



let’s assume IA  runs on a 

computer executing 1 billion 

(109) instructions per second

let’s assume MA runs a computer 

executing only 10 million (107) 

instructions per second

let’s penalize MA



task

let’s assume IA  and  MA have to  

sort 1 million (106) numbers  

with their respective implementations and 

on their respective computers 

Q: how much time will it take?



with 10 million numbers, the difference is even bigger 
2.3 days for IA and just under 20 minutes for MA !

50 × 106 log2 106  instructions
107 instructions/second

2 × (106)2 instructions
109 instructions/second

results

insertion sort IA  merge sort MAA: A: 

 =   2000 seconds  =   33 minutes =   100 seconds  =   1.6 minute


