algorithms &
comPu‘hrﬁonal
comPlexi‘N

learning o
objectives -

hardware

+ learn basic principles of algorithmic design
+ learn how those principles are used for sorting

+ learn how algorithmic comPlexiﬂ is computed

’roda1

— how do
.wha* IS Iogm they relate? what is an
in computing - algorithm

N
.:.ay ﬂc')

how 1o measure
algori‘l’hmic comPlexiﬂ?

logic

) ¥ the intellectual tool for

reasoning about the

truth and falsity of
L statements

boolean algebra

assume that p , g and r are boolean variables (or
statements) and that 7' =true, F = false, we have:

- <& not
V & or
A < and

NN TS

q
F
T
F
T

N TN >

NNTT |

N TN TR

NN <

Associative Rules:
Distributive Rules:
Idempotent Rules:
Double Negation:
DeMorgan’s Rules:

Commutative Rules:

Absorption Rules:
Bound Rules:
Negation Rules:

(PAgQ) AT <= pA(gAT)
pA(gVr)& (pAg)V(pAT)
PAD D

——p & p
—(pAq) & —pV g

PAGES qAD

pV(pAq) & p
pANF&F pANT &S p

pA(-p) & F

(pVg)Vr<pVigVr)
pV(gAT)Ee PV APVT)
pVpEp

~(pVq) & —pA—gq
pVqg<=qgVp
pA(PVQq) &p

pVT <T pVEF&SDp
pV(-p) =T

the word “algorithm” comes from
Mubhammad ibn Musa al-Khwarizmi
(780-850), the name of a Persian
mathematician who worked in the
touse of Wisdom, in Bagdad

definition

an algorithm is a well-defined
computational procedure that takes
some input values and produces some
output values as the solution o
a well-specified problem

definition

an algorithm can be expressed in a natural
language (e.g., English), as a computer program
(e.g., in scala), or even in some hardware design,
via the appropriate layout of transistors

the PageRank algorithm was

developed at Stanford University by
Larry Page and Sergey Brin as part of a research project,
which led to a functional prototype at the origin o Google \nc.

the human
genome project

this project aimed at identifying
the 20'000-25'000 genes in human
DNR, based on 3.3 billion chemical
base pairs, and at developing
sophisticated algorithms for
analy2ing this data

from math to algorithms

v ifxz>0
/@) = vV—r ifx<0

function f(x : real)

if x >0

[« sqri(x) def f(x: Double) : Double = {
else if (x < @) Math.sqrt(-x) else Math.sqrt(x)

f «— sqrt(—x) }

e as——— —— e ~ _
f(r1, 22, ...y 2) = E L
1=1
def f(X: List[Double]) : Double = {

function f(x : array[1l..n] of real) \1:3? ?)‘im: 2)0 .
f<0 sum = sum + X
fori=1tondo }

f o f +ai]

¥

| ee— S———-

INTRODUCTION
TO ALGORITHMS

BY T. H. CORMEN ET AL.
3RD EDITION
MIT PRESS, 2009

http://mitpress.mit.edu/catalog/author/default.asp?aid=344

the sorting problem

specification

Input: A sequence of n numbers (a;, as, ..., a,).

Output: A permutation (reordering) (ai, aé, ..., a,) of the input sequence such
thata| <a, <--- <a,.

the sequence of numbers is stored in arrays
and numbers are also referred to as keys

inpu‘t-. A=(5,2.4,61,3)
ou*rpuf. A=(,2,3.4,5 6

sor ting algorithms

there exists various sor’ring
® Insertion sort

+ merge sort
+ heap sort
* quick sort
+ bucket sort
+ etfc...

insey tion sort

pseudo-code

for j < 2ton
do key < A[/]
1 <—] — 1
while ; > 0 and A[i] > key
do Al + 1| < Al7]
1 «— 1 — 1

Ali + 1] < key

——————-

All. . n] is an array of integer of size n
array Ais sorted in place

examPle

overview

for j < 2ton
do key < AlJ]
1 «—] — 1
while i > 0 and A[i] > key
do Ali + 1] < Ali]
I «— 1 — 1

Ali + 1] < key

insertion sort P&,
3 S

y

r4 rA
-

e

A

b

v
VJ

=P for j < 2ton
do key < A[]J]
1 «—] — 1
whilei > 0 and A[i] > key
do A[i + 1] < Ali]
1 «—1— 1

Ali + 1] < key

T —

insertion sort P&,
3 S

y

.~
o

v
VJ

for j < 2ton
=P do key < A[]J]
1 <—] — 1
while i > 0 and A[i] > key
do Ali + 1] < Ali]
1 «—1— 1

Ali + 1] < key

B

insertion sort P&,
3 S

.~
o

y

v
VJ

for j < 2ton
do key < A[/]
— | «—] — 1
while i > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «—1— 1

Ali + 1] < key

e ——

insertion sort P&,

3 S
rere

y

A
A

o

v
VJ

for j < 2ton
do key < A[/]
1 <—] — 1
=3 whilei: > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «—1— 1

Ali + 1] < key

e ——

insertion sort P&,

3

y

rere

S

A
A

o

v
VJ

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
=P do Ali + 1] < Ali]
1 «—1— 1

Ali + 1] < key

e ——

insertion sort P&,

3

y

rere

S

A
A

o

v
VJ

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
do A[i + 1] < A[i]
— | <«] — |
Ali + 1] < key

e ——

insertion sort P&,

3

y

rere

S

A
A

o

v
VJ

for j < 2ton
do key < A[/]
1 <—] — 1

== while i > 0 anc

| Ali] > key

do Al + 1]

«— Al1]

1 <— 1 — |

Ali + 1] < key

e ——

insertion sort P&,

3 S
rry

y

f4 fA
*

A

b

v
VJ

for j < 2ton
do key < A[]J]
1 «— J— 1
while i > 0 and A[i] > key
do A[i + 1] < AJi]
1 «—1— 1

=P Ali + 1] < key

e ——

N

insertion sort P&,

2

5
&

e
Y

*

4

SJ

<«

S

-.". ER - aa - D ccmts o PV, XTI Ve % 7 B - /J
" Ay

‘ /l
(N N

b

v
VJ

=P for j < 2 ton
do key < A[]J]

1 «— J— 1
while i > 0 and

| Ali] > key

do Al + 1]

«— Ali]

1 <— 1 — |

Ali + 1] < key

T —

2

insertion sort P&,
y

L

X’

oY
o

4

SJ

S

o

v
VJ

for j < 2ton
= d0 key < Alj]
1 <—] — 1
while i > 0 and A[i] > key
do Ali + 1] <« Al1]
I «— 1 — 1

Ali + 1] < key

B

insertion sort P&,

A . N 7 W q 4 ™ 4
/‘ 0 /‘
v A v N

o

v
VJ

for j < 2ton
do key < A[/]
— «—] — 1
while i > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «—1— 1

Ali + 1] < key

e ——

insertion sort P&,

w-."'. = By o T Az - - ,/ ~_-_ = 2 me & ? o e e : //’
1 \ N 1 v \ [/ 4 N
/‘ [/‘
v A v N

o

A
A

v
VJ

for j < 2ton
do key < A[/]
1 <—] — 1
=3 while i > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «—1— 1

Ali + 1] < key

e ——

insertion sort P&,

S

grae e e e e el | il L2 e S S
g) [AY 4
3 ‘ :

& £ ;

A
A

o

v
VJ

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and

| Ali] > key

—p do Afi + 1]

«— Al1]

1 <— 1 — |

Ali + 1] < key

e ——

y

insertion sort P&,

S

A
A

o

v
VJ

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
do A[i + 1] < A[i]
— | <«] — |
Ali + 1] < key

e ——

y

insertion sort P&,

S

A
A

o

v
VJ

for j < 2ton
do key < A[/]
1 <—] — 1

== while i > 0 and

| Ali] > key

do Al + 1]

«— Al1]

1 <— 1 — |

Ali + 1] < key

e ——

insertion sort P&,

2

y

4
A

e

S

A
A

b

v
VJ

for j < 2ton
do key < A[]J]
1 «— J— 1
while i > 0 anc

| Ali] > key

do Al + 1]

«— Ali]

1 <— 1 — |

— Ali + 1] < key

e ——

N

insertion sort P&,

2

4
A

e

e

4

3

5

VJ

ke

-

e
Y

X’

4

S

SJ

b

v
VJ

=3 for j < 2ton
do key < A[]J]

1 «— J— 1
while i > 0 and

| Ali] > key

do Al + 1]

«— Ali]

1 <— 1 — |

Ali + 1] < key

T —

insertion sort P&,
| 2 3| 5

N Sl = - y . , Sop
R T AN A i S ;
o
/
! 2
'
’

A
A

L

X’

4

VJ

X’

ide | [idh M
rY

4

SJ

o

v
VJ

for j < 2ton
= 0 key < Alj]
1 <—] — 1
while i > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «<— 1 — 1

Ali + 1] < key

ke

B

insertion sort P&,
| 2 S

A
A

rere

o

L

v
VJ

for j < 2ton
do key < A[/]
— | «—] — 1
while i > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «—1— 1

Ali + 1] < key

e ——

insertion sort P&,
| 2 S

A
A

rere

o

L

v
VJ

for j < 2ton
do key < A[/]
1 <—] — 1
=3 while i > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «—1— 1

Ali + 1] < key

e ——

N

insertion sort P&,

2

4
A

e

S

A
A

b

v
VJ

for j < 2ton
do key < A[]J]
1 «— J— 1
while i > 0 anc

| Ali] > key

do Al + 1]

«— Ali]

1 <— 1 — |

=P Ali + 1] < key

e ——

N

insertion sort P&,

2

4
A

e

e

4

3

5

VJ

ke

-

e
Y

X’

4

SJ

=3 for j < 2ton
do key < A[]J]

1 «— J— 1
while i > 0 and

| Ali] > key

do Al + 1]

«— Ali]

1 <— 1 — |

Ali + 1] < key

T —

insertion sort P&,
| 2 3 Yy

e

L

for j < 2ton
=3 do key < AlJ]
1 <—] — 1
while i > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «<— 1 — 1

Ali + 1] < key

B

insertion sort P&,
| 2 3

rere

L

for j < 2ton
do key < A[/]
— | «—] — 1
while i > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «—1— 1

Ali + 1] < key

e ——

insertion sort P&,
| 2 3

rere

L

for j < 2ton
do key < A[/]
1 <—] — 1
=3 whilei > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «—1— 1

Ali + 1] < key

e ——

insertion sort P&,

D
)
- |
N 4 N 4 N : ‘]
4 * ’ . |

L

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
=P do Ali + 1] < A[i]
1 «—1— 1

Ali + 1] < key

e ——

inser tion sort Py

y

) g) e y
4 | f,
sdo o

N

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
do A[i + 1] < A[i]
— | <«] — |
Ali + 1] < key

S

inser tion sort Py

y

) g) e y
4 | f,
sdo o

N

for j < 2ton
do key < A[/]
1 <—] — 1
=3 while ; > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «—1— 1

Ali + 1] < key

S

insertion sort P&,

y

L]
b
! 2 =5
N 4 N -y q
4 ; "
s o

e
b

L

LA

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
=P do Ali + 1] < Ali]
1 «—1— 1

Ali + 1] < key

e ——

insertion sort P&,

y

4 S 2 mes PV DRIV N 2P Y- ;,
» 4 1]
/l
‘)

e
b

LA

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
do A[i + 1] < A[i]
— | <«] — |
Ali + 1] < key

e ——

insertion sort P&,

y

4 S 2 mes PV DRIV N 2P Y- ;,
» 4 1]
/l
‘)

e
b

LA

for j < 2ton
do key < A[/]
1 <—] — 1
- While i > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «—1— 1

Ali + 1] < key

e ——

insertion sort P&,

y

L
b
-
~-."'. e DU PV PRI e P - ;,
N - 4 1 4 1
‘l /‘ {
v A * ’

e
b

LA

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
=P do Ali + 1] < A[i]
1 «—1— 1

Ali + 1] < key

e ——

insertion sort P&,

2 3
rere

y

e
b

LA

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
do A[i + 1] < A[i]
— | <«] — |
Ali + 1] < key

e ——

insertion sort P&,

2 3
rere

y

e
b

LA

for j < 2ton
do key < A[/]
1 <—] — 1
== while i > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «—1— 1

Ali + 1] < key

e ——

insertion sort P&,

D
o
b
y q A 4 A
' i * ’

y

e
b

LA

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
= do A[i + 1] < AJi]
1 «—1— 1

Ali + 1] < key

e ——

insertion sort P&,

! 2 3
rere

y

e
b

1O |

LA

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
do A[i + 1] < A[i]
— | <«] — |
Ali + 1] < key

e ——

insertion sort P&,

! 2 3
rere

y

e
b

1O |

LA

for j < 2ton
do key < A[/]
1 <—] — 1
=g Wwhile i > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «—1— 1

Ali + 1] < key

e ——

>

insertion sort P&,

2

1O |

3

4

-

e

y

5

A

e
Y

v L I A 4 ’
for j < 2ton
do key < A[]J]
1 «— J— 1
while i > 0 and A[i] > key
do A[i + 1] < A[i]
1 «—1— 1

= Ali + 1] < key

e ——

>

<%

insertion sort P&,
y

2

1O |

3

4

-

e

X’

4

5

VJ

A

e
Y

B

: 4

<«

SJ

)
-
B
X

=P for | < 2ton
do key < A[]J]
1 «— J— 1
while i > 0 and A[i] > key
do A[i + 1] < AJi]
1 «—1— 1

Ali + 1] < key

T —

y

! 2 3 S

>

1O |

e
b

e

LA

<%

for j < 2ton
=0 key < Al]]
1 <—] — 1
while i > 0 and A[i] > key
do Ali + 1] <« Al1]
I «— 1 — 1

Ali + 1] < key

B

! 2 3

1O |

rere

for j < 2ton
do key < A[/]
— | «—] — 1
while i > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «—1— 1

Ali + 1] < key

e ——

! 2 3

1O |

rere

for j < 2ton
do key < A[/]
1 <—] — 1
== while i > 0 and A[i] > key
do A[i + 1] < A[i]

1 <— 1 — |

Ali + 1] < key

e ——

! 2 3

1O |

rere

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
=P do Ali + 1] < Ali]
1 «—1— 1

Ali + 1] < key

e ——

! 2

1O |

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
do A[i + 1] < A[i]
— | <«] — |
Ali + 1] < key

e ——

! 2

1O |

for j < 2ton
do key < A[/]
1 <—] — 1
- While i > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «—1— 1

Ali + 1] < key

e ——

! 2

1O |

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
= do A[i + 1] < AJi]
1 «—1— 1

Ali + 1] < key

e ——

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
do A[i + 1] < A[i]
— | <«] — |
Ali + 1] < key

e ——

for j < 2ton
do key < A[/]
1 <—] — 1
- While i > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «—1— 1

Ali + 1] < key

e ——

y

>

L3 = =2 . P - J .
IS SO - R - PV DT e
s [
. "
/
i 2
§ U
A
"
Y

rere

v

<%

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
= do A[i + 1] < AJi]
1 «—1— 1

Ali + 1] < key

e ——

y

rere

v

for j < 2ton
do key < A[/]
1 <—] — 1
while i > 0 and A[i] > key
do A[i + 1] < A[i]
— | <«] — |
Ali + 1] < key

e ——

y

rere

v

for j < 2ton
do key < A[/]
1 <—] — 1
== While i > 0 and A[i] > key
do Ali + 1] <« Ali]
1 «—1— 1

Ali + 1] < key

e ——

insertion sort P&,

3

< > P

cn o

y

4

-

e

R

: 4

vj

for j < 2ton
do key < A[]J]
1 «— J— 1
while i > 0 anc

| Ali] > key

do Al + 1]

«— Ali]

1 <— 1 — |

=P Al + 1] < key

e ——

insertion sort Py
y

! 2 3 S &

>

e e
b

i &b :

o

o o

¥ Rl i

<4

for j < 2ton
do key < A[J]
1 <—] — 1
while i > 0 and A[i] > key
do A[i + 1] < A[i]
1 «—1— 1

Ali + 1] < key

correctness v

an algorithm s correct
W for any input, it

terminates with the

correct output

|OOP nvariant

a boolean condition that must remain
true throughout the loop execution

Useq 1‘{) Prove that qp
“lgoritim gives the
correct answey

T

IOOP nvariant

proving a loop invariant is similar fo
a mathematical proot by induction

mathematical induction

l. prove base case (frue for n=0or n = 1)
2. prove inductive step (true for n = true for n+l)

|OOP invariant

l. prove invariant holds before the loop starts
2. prove invariant holds from iteration to iteration

|OOP nvariant

in mathematical induction, the
inductive step is used inﬁni’rivew

for algorithms, we have to show that the
loop terminates and that the invariant is
still true after the loop

|OOP nvariant

. inthiahzation
prove the invariant is true before the first iteration

2. maintenance
prove the invariant is true before some iteration

= invariant true before the next iteration

3. fermination
when loop terminates, the invariant gives us a useful
property for showing that the algorithm is correct

1 «—] — 1
while i > 0 and A[i] > key

do A[i + 1] < Al
at the start of each iteration, the ° l.[i_ . <1_ .

for loop consists of the elements Ali + 1] < key
originally in A[1..j—-1] but in
sor fed order

_ for j < 2ton
QXQMP e o ter < AL

invariant

initialization: before the first iteration, j =2 so the A[1..;— 1] subarray is simply
element A[1], which is trivially sorted

maintenance: at each iteration, we shuffle elements of subarray A[1..j-1] to
the right until proper position for A[j] is found, where it is inserted; so, at the
start of next iteration, the new augmented A[1..;j— 1]is also sorted

termination: the loop stops when j =rn + 1, so we then have
A[l..j—1] = A[l..n] , the whole array, which we know to be sorted
thanks to the maintenance property we just proved

the same problem
but different a

..may lead to different performance

divide £ conquer

a classical way o solve comPlex problems

break the inithal
problem info several
subproblems that are
easier to solve than
the original problem

No, we’re just learning how to divide.
When you get to business school,
you’ll learn how to divide

and conquer

divide £ conquer

recursion as a sPeciaI case

@ divide the initial problem into several subproblems
that are smaller instances of the original problem

4 conquer by computing solutions
to those subproblems recursivew

& combine the smaller solutions into
a solution to the initial problem

No, we’re just learning how to divide.
When you get to business school,
you’ll learn how to divide

and conquer

def factorial(n: Int) : Int
| |

}

if (n == 0

}

n::l){
1

else {

}

n x factorial(n-1)

factorial
Qs examPle

{

initial call

1lst recursive call

2nd recursive call

3rd recursive call

3rd recursive
2nd recursive
lst recursive

initial

call returns
call returns
call returns

call returns

A A

—h
—~

NSRS DS

"’

X ¥ ¥ ¥ ¥ %

S WWwWwWw —h

¥ ¥ ¥ ¥ W
N NN —h

l

d

LN
-
N
i
N
N
<

\—
N
™
4

/4|5

415|7

/4

417

—
a\

12

112|14|4|5/7|7

112\4|7

417

417

divide: break the sequence

of n numbers into pairs

4\71211|74|5
4/\>
7121 7|4/5 conquer: sort the
\ / -
o[4 5/ subsequences recursively
71 (2 5| using merge sort
i
1]2 / >/ combine: merge the sorted
21417 457 subsequences to produce the
112/14/4/57|7 final sorted array

MERGE-SORT (A, p, 1)
if p<r 4|7

theng < [(p +r)/2]

MERGE-SORT(A, p, q) 4| |7

MERGE-SORT(A, g + 1,r)
MERGE(A, p,q,r) 4.7

24

» function MERGE-SORT(A, p, 7) sorts
array 4 between indices p and r

» inthally, p=1 and r=n

1 /145
— T
2|1 4 5
Y
/4 5
Y
12 / 5
/ 4157
1/2\4\4|5|7|7

function Merce(A, p, g, 7)
assumes:

p 1 <p<qg <r<n

» subarrays 4[p.q] and MERGE(A 7.0.7)
Alq +1..r] are sorted ny < q—p+1

No <— 1 — ¢
create arrays L[1..n;+ 1] and R[1..n, + 1]
an examplet fori < 1to n
do L[i] < Alp +1i — 1]
for j < 1ton,

merge sor t

@ (17|89 214|6 do R[j] < Alg + j]
L[I11+lj<—
@ /189 2|4/6 1 R[ng—i—lf<—gz
® |7/89 46 12 <1
<«]
4. /|89 6 124 zork<—pt0r
doif L[i] < R[]
& |7/89 1246 then A[k]j<— L[i]
® 112/4/6/7/8/9 e

else A[k] < R[/]
J<—J+1

Rrwrs

6
-

¥ |

A
-

o

merge sor t

¥
A\

3
-

o > P

cn o

Rrwrs

* ¥

6
L]

o
o
o

. 4
9

merge sor t

A
A

o

o > P

el

*
A\

rere

* ¥

6
L]

o
o
o

. 4
9

merge sor t

A
L]

o

P |

*
VJ

b
o
¥

*
EJ

merge sor t

rere

* ¥

ey

cn o

merge sor t

rere

* ¥

ey

cn o

merge sor t

rere

* ¥

ey

cn o

merge sor t

ey

cn o

merge sor t

ey

O

cn o

O

merge sor t

ey

cn o

O

<« ®

N

merge sor t

ey

cn o

ey

cn o

O

<« ®

N

ol

e

X’

 J

*

e

X’

4

ey

cn o

O

<« ®

N

ol

e

X’

 J

*

e

X’

4

ey

cn o

O

<« ®

N

ol

e

X’

 J

*

e

X’

4

O

<« ®

N

ol

e

X’

 J

*

e

X’

4

O

<« ®

N

ol

e

X’

 J

*

e

X’

4

O

<« ®

N

ol

e

X’

 J

*

e

X’

4

>
,
‘4
\

)
v,
by
.
‘
P
VL, \,

”

&
&
w

-
£J

O

<« ®

N

ol

e

X’

 J

*

e

X’

4

o
,
o
\
)
v,
y
.
‘
R,
”

&
&
w

-
£J

ey

R

o > P

\O

merge sor t

e

s o

o > P

cn o

O

<« ®

O

<« ®

N

o > P

cn o

-

e

o > P

cn o

O

<« ®

PR,
ey

cn o

O

<« ®

o > P

od

merge sor t

s & ,-
o % f

algoriﬂmm ana

algorithm analysis aims at
predicting the resources
needed by an algorithm to
produce its output, as a

measure of its efficiency

memory footprint iﬂ H

network bandwidth R\\ |

hereafter we mainiy focus on
comPu‘l’a’rional time as a measure
of the algoriﬂam efficienq

usually, the computational time
depends on the size of the data
taken as input b1 the algoriﬂam

example

INSERTION-SORT(A) cost times
for j < 2ton C n
do key < Alj] CH n—1
| «—] — 1 cy, n—1
while i > 0 and A[i] > key ¢s > i ,t,
do Ali + 1] < Ali] C Z;’.:Z(tj — 1)
I <— 1 — 1 C7 Z’;:z(tj — 1)

A[i+1]<—k€y Cg n—1

let 7(») be the running time of the insertion sort, so:

T(n) = Z (cost of statement) - (number of times statement 1s executed)

all statements

example

let 7(n) be the running time of the insertion sort; so:

T'(n) = Z (cost of statement) - (number of times statement 1s executed)

all statements

I(n) = cin+ocin—1)+ca(n—1)+ cs Zt‘,- + ¢ Z(t‘,- — 1)
j=2 j=2

best case scenario

best case: the array IS alreadsl soy ted

* All..n]<key at start of each while loop
* all ;s are equal to |

I'(n) = cn+c(in—1)4+csn—1)4+cs(n—1) +cg(n — 1)
= (c1t+ct+ca+cs+cg)n—(ca+ca+¢cs5+cg).

best case form: an + b (linear function of n)
this is known as the lower bound of the algorithm

worst case scenario

worst case: the array is sorted n reverse order
* A[l..n]>key throughout each while loop

* key compared with all numbers left to the ;-1 position,
e, to /— 1 numbers

nn—+ 1 (n — 1 (n — 1
I'(n) = cln+cz(n—l)+<:4(n—l)+<:5< (>) l)+cﬁ<n(nz)>+67<n(nz))+Cs(n—l)

(CS 50 C7)112+(c + Cy + C4 &3 <6 7 C)n (cr + c4 + c5 + cy)
— | | | 1 2 4 rCg)N —(C2 T C4 T C5TC8) .
2 2 2 2 2 2

worst case form: an2 + bn + ¢ (quadratic function of »)
this is known as the upper bound of the algorithm

best case vs. worst case

we are usuall1 interested in the worse case,
which represents the maximum growfh rate,
also known as order of growth

we usually keep only the higher power of n

and say that the insertion sort algorithm has
a worse-case running time of O(n?)

(it reads “order of n square”)

inser tion sort /4 merge sort |/

c1 n? steps to sort 7 c2 n log> n steps to sort n
numbers, withc| a numbers, withc: a
constant independent of 7 constant independent of 7

c1 and cx depend on how the algorithm was
actually implemented and compiled

let’s assume thatc = ¢ =2
(good programmer and compiler)

let's assume /s and M

both run on a computer executing
| billion (10°) instructions per second

input data

finallj, let's assume /4, and M4 have to

sort | million (109) numbers

(Q: how much time will it take?

results

H'. inser tion sort /, H" merge sort A/,
2 x (106)2 instructions 2 x 106 [og> 106 instructions
109 jnstructions/second 10° instructions/second
= 2000 seconds = 33 minutes = 0.04 seconds = 40 milliseconds

with 10 million numbers, the difference is even bigger
2.3 days for 1, and less than a second for M4 !

/ /// 7/ ///////
G 7 s s A

insertion sort /4

let's assume thatc;, =2
(qood programmer & compiler)

merge sort M,

let's assume thatc, =50
(lousy programmer £ compiler)

let’s assume /4 runs on a
comPu‘rer execu’ring | billion
(109) instructions per second

let’s assume V4 runs a computer
——= | executing only 10 willion (107)

——
e T e
/’/’/’/

let's assume /4 and M4 have to

sort | million (106) numbers

with therr respective implementations and
on therwr respective computers

(Q: how much time will it take?

H'. insey tion sort /, H‘- merge sort A/,

2 x (109)2 instructions 50 x 109 log> 100 instructions
109 instructions/second 107 instructions/second
= 2000 seconds = 33 minutes = 100 seconds = 1.6 minute

with 10 million numbers, the difference is even bigger
2.3 days for /4 and just under 20 minutes for A7, !

