

learning o
objectives -

+ learn what the searching problem is about
+ learn two algorithms for solving this problem

+ learn the importance of data structures

the problem

the searching problems comes \1n two variants:

@ does a collection contann a given element?

ec O CN|e=10

& what s the value associated with some ke~,
N a given associative array ?

let v e (kv)| (kbv) ENXR A =T

sequential search

the simplest searching algorithm
based on a brute-force approach

SEQUENTIAL-SEARCH of key in A[1. . n] also called linear search
fori—1ton S—
if A[i] == key
return /rue
return false

worst case: O(n)
. best case: O(1)

-

def sequentialSearch(theKey : Int, theArray: Array[Int]) : Boolean = {

for (key <- theArray)
if (key == theKey)
return true
return false

}

dichotomic search

a dichotomic search consists in selecting
between two mu’rualw exclusive alternatives
(dichotomies) at each step of the algorithm

international morse code

[]
BEmmeee = Veoo .
°
. KX X o o I
Yo . * ° Y mmm o HEN mmm
~ o ° Foomme 4 B KX
~ N L K
ooooo
o0
] o nmm mmm mmm

o ©8 o® og§ I ¥
BOOL OOOW BOWOYH @) G iEEEE

S@OBOO0D OSOOOOD GOGOOOOD BOCOBOGD

binam search

this algorithm requires a sorted collection

also called haf-interval search or logarithmic search

BINARY-SEARCH of key in A[1. . n]

low =1 at each step, it reduces
high=n
while low < high do the search space by haH
mid =| e by excluding the half
- 2 — e
if A[mid] > key then that cannot contain
high = mid — 1 the searched key

else if A[mid] < key then
low = mid + 1
else return frue
return false

 —— EEE——————

worst case: O(log n)
best case: O(1)

def binarySearch(theKey : Int, theArray: Array[Int]) : Boolean = {
var low = 0

var high = theArray.size - 1

b
while (low <= high) { 1
val mid = (low + high)/2; searc
if (theKey < theArray(mid)) {
high = mid - 1
} else if (theKey > theArray(mid))
low = mid + 1
else
return true
}

return false;

}

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[2]

[10]

[11]

[12]

[13]

[14]

[15]

13

17

20

34

41

46

55

03

74

/8

81

82

93

99

def binarySearch(theKey : Int, theArray: Array[Int]) : Boolean = {
var low = 0

var high = theArray.size - 1

b
while (low <= high) { 1
val mid = (low + high)/2; searc
if (theKey < theArray(mid)) {
high = mid - 1
} else if (theKey > theArray(mid))
low = mid + 1
else
return true
}

return false;

}

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[2]

[10]

[11]

[12]

[13]

[14]

[15]

13

17

20

34

41

46

55

03

74

/8

81

82

93

99

mid

74 > 46

def binarySearch(theKey

: Int, theArray: Arrayl[Int]) : Boolean = { °
var low = 0 b‘nar
var high = theArray.size - 1
while (low <= high) {
val mid = (low + high)/2; searc
if (theKey < theArray(mid)) {
high = mid - 1
} else if (theKey > theArray(mid))
low = mid + 1
else
return true
}
return false;
}
[0] [1] [2] [3] [4] [3] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]
3 3 13 17 29 34 41 46 05 03 74 /8 31 32 93 99
mfid
3 3 13 17 25 34 41 40 05 63 74 78 81 82 93 99
1

mid

74 <78

def binarySearch(theKey : Int, theArray: Array[Int]) : Boolean = {
var low = 0

var high = theArray.size - 1

binam
search

while (low <= high) {

val mid = (low + high)/2;

if (theKey < theArray(mid)) {
high = mid - 1

} else if (theKey > theArray(mid))
low = mid + 1

else
return true

s
return false; ’
s
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]
3 8 13 17 25 34 41 46 55 03 74 /8 81 82 93 99
mfid
3 3 13 17 25 34 41 40 55 03 74 78 31 32 93 99
mtid

3 3 13 17 25 34 41 40 55 63 74 /8 31 32 93 99

mid
74 > 63

def binarySearch(theKey : Int, theArray: Array[Int]) : Boolean = {
var low = 0

var high = theArray.size - 1

b

while (low <= high) { 1
val mid = (low + high)/2; searc
if (theKey < theArray(mid)) {
high = mid - 1

} else if (theKey > theArray(mid))
low = mid + 1

else
return true

s
return false;
s
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]
3 8 13 17 25 34 41 46 55 03 74 /8 81 82 93 99
mfid
3 3 13 17 25 34 41 40 55 03 74 78 31 32 93 99
mtid
3 3 13 17 25 34 41 40 55 63 74 /8 31 32 93 99
.

3 3 13 17 25 34 41 40 55 03 74 /8 31 32 93 99

mid
74 =74

search performance

sequential search

p=1.0 p=0.5 p=0.25 p=0.0
n p=1.0 p=05 p=0.25 p=0.0
800'000 ns
4'096 17'130 ns 18'306 ns 23'912 ns 24'645 ns
600'000 ns
8'192 20'962 ns 31'311 ns 42'125 ns 46'303 ns
400'000 ns 16'384 43'458 ns 98216 ns 135'982 ns 100'311 ns
32'768 189'951 ns 382'093 ns 237'106 ns 266'952 ns
200'000 ns
65'536 264'791 ns 377919 ns 395'050 ns 460'229 ns
O ns ' ' ' . '
4096 g192 16184 65536 131072 131'072 465'458 ns 621'136 ns 763112 ns 780'680 ns
binary search
p=1.0 p=0.5 p=0.25 p=0.0
n =1. = 0. =0.2 = 0.
p 0 p=0.5 p=0.25 p=0.0 260 s
4'096 206 ns 191 ns 77 ns 78 ns
8'192 108 ns 92 ns 79 ns 75 ns 195 ns
16'384 129 ns 98 ns 79 ns 93 ns
130 ns
32'768 251 ns 186 ns 128 ns 111 ns
65'536 216 ns 142 ns 119 ns 81 ns 65 ns
131'072 219 ns 174 ns 134 ns 164 ns
O ns
4'096 8'192 16'384 32'768 65'536 131'072

search performance

sequential search

p=1.0 p=0.5 p=0.25 p=0.0
n p=1.0 p=05 p=0.25 p=0.0
800'000 ns
4'096 17'130 ns 18'306 ns 23'912 ns 24'645 ns
600'000 ns
8'192 20'962 ns 31'311 ns 42'125 ns 46'303 ns
400'000 ns 16'384 43'458 ns 98'216 ns 135’982 ns 100'311 ns
32'768 189'951 ns 382'093 ns 237'106 ns 266'952 ns
200'000 ns
65'536 264'791 ns 377919 ns 395'050 ns 460'229 ns
O ns ' ' ' . '
4096 g192 16184 65536 131072 131'072 465'458 ns 621'136 ns 763112 ns 780'680 ns
binary search
p=1.0 p=0.5 p=0.25 p=0.0
n p=1.0 p=0.5 p=0.25 p=0.0
4'096 206 ns 191 ns 77 ns 78 ns
8'192 108 ns 92 ns 79 ns 75 ns
16'384 129 ns 98 ns 79 ns 93 ns
32'768 251 ns 186 ns 128 ns 111 ns
65'536 216 ns 142 ns 119 ns 81 ns
131'072 219 ns 174 ns 134 ns 164 ns
8'192 16'384 32'768 65'536

search perfor

nance

sequential search >
p=0.5 p=0.25 p=0.0
n p=1.0 p=05 p=0.25 p=0.0
800'000 ns
4'096 17130 ns 18'306 ns 23'912 ns 24'645 ns
600'000 ns
8'192 20'962 ns 31'311 ns 42'125 ns 46'303 ns
400'000 ns 16'384 '458 ns 98'216 ns 100'311 ns
68 '093 ns 266'952 ns
200'000 ns
65'536 264'791 ns 377'919 ns 395'050 ns 460'229 ns
O ns | ' ' §|
“ Sloe o eees R 131'072 65'458 621'136 ns 11 780’
binary se m a ‘ c ﬁ
p=1.0 p=0.5 p=0.25 p=0.0
n p=1.0 p=0.5 p=0.25 p=0.0
4'096 206 ns 191 ns 77 ns 78 ns
8'192 108 ns 92 ns 79 ns 75 ns
100 ns
16'384 129 ns 98 ns 79 ns 93 ns
32'768 251 ns 186 ns 128 ns 111 ns
10 ns
65'536 216 ns 142 ns 119 ns 81 ns
131'072 219 ns 174 ns 134 ns 164 ns
1ns
4'096 8'192 16'384 32'768 65'536 131'072

data structures

the performance of an
algorithm often also depends
on the data structure

the binary search requires a sorted
collection, so part of the cost goes
into sorting the collection

n an array

single operation

T erTrmeeyteranme T accessing Q parﬁcular element n

[0] [1] [2] [3] [4] [5] [6] [7]

3 8 13 17 o5 34 41 46 a collection, sa1 Al[T]

memory for an Int

in a linked hst

3 —» 8 —» 13 —» 17 —» 25 —» 34 —» 41 o—r»| 46 | null
\A A A A A A A
. Y,
Y

potentially long list of operations to follow links until the searched element

data structures

37 " remove element add element 38
& [0] [1] [2] [3] [4] [5] [6] [7] [0] [1] [2] [3] [4] @ [5] [6] [7]
\ 3 8 13 17 | 25 | 34 | 41 46 3 8 13 17 34 41 46
S
- 3 8 13 17 34 <1 41 46 3 8 13 17 34 41 16 =
g 3 8 13 17 34 41 <1 46 3 8 13 17 34 41 = 46
. 3 8 13 17 34 41 46 3 8 13 17 34 38 41 46
S @
“"
t remove element
S — 3 —I+ 3 —1 13 —1 17 —1 o5 —| 34 — 41 — | 46 | nul
-3 3 — > 3 — > 13 — > 17 o > 34 —> 41 —— 46 | nul
Vi
& 38

add element .
-3 3 —— 3 — > 13 — > 17 — | 34 — > 41 — > 46 | nul
d=
% 3 — > 3 — > 13 —> 17 ——> 34 ? 41 — > 46 null
= v

.

38

search performance

p=1.0 p=0.5 p=0.25 = sequential search in a linked list
7001000 ns n p=1.0 p=0.5 p =0.25 p =0.0
4'096 6'376 ns 9'951 ns 11'516 ns 16'447 ns
525'000 ns
8'192 16'865 ns 25'425 ns 29'715 ns 34'780 ns
3501000 ns 16'384 35'585 ns 53'881 ns 75'148 ns 87'058 ns
32'768 82'872 ns 122'246 ns 146'411 ns 164'986 ns
175000 ns 65'536 169'044 ns 244'068 ns 303'836 ns 330'198 ns
131'072 355'536 ns 520'393 ns 649'836 ns 662'913 ns
0Ons
4'096 8'192 16'384 65'536 131'072
binary search in a linked list p=1.0 p=0.5 p=0.25 =
n p=1.0 p=0.5 p = 0.25 p=0.0 16000000 ns
4'096 89'863 ns 174'655 ns 200'748 ns 238'440 ns
12'000'000 ns
8'192 193'307 ns 360'377 ns 457'862 ns 565'766 ns
16'384 482'478 ns 886'582 ns 1'038'265 ns 1'187'520 ns 8000000 ns
32'768 1'098'888 ns 1'765'568 ns 2'146'730 ns 2'693'595 ns
65'536 2'593'438 ns 4'261'790 ns 5'019'401 ns 5'911'436 ns 4000000 ns
131'072 5'265'582 ns 9'724'940 ns 11'840'437 ns 14'867'349 ns
O |
nS4'096 8'192 16'384 32'768 65'536 131'072

search performance

binary search in an array

p=1.0 p=0.5 p=0.25 p=0.0
n p=1.0 p=05 p=0.25 p=0.0 260 ns
4'096 206 ns 191 ns 77 ns 78 ns
195 ns
8'192 108 ns 92 ns 79 ns 75 ns
16'384 129 ns 98 ns 79 ns 93 ns
130 ns
32'768 251 ns 186 ns 128 ns 111 ns
65'536 216 ns 142 ns 119 ns 81 ns 65 ns
131'072 219 ns 174 ns 134 ns 164 ns
0
r184'096 8'192 16'384 32'768 65'536 131'072
binary search in a linked list p=1.0 - 05 p=0.25 p=0.0
n p=1.0 p=0.5 p =0.25 p=0.0 16000000 ns
4'096 89'863 ns 174'655 ns 200'748 ns 238'440 ns
12'000'000 ns
8'192 193'307 ns 360'377 ns 457'862 ns 565'766 ns
16'384 482'478 ns 886'582 ns 1'038'265 ns 1'187'520 ns 8'000'000 ns
32'768 1'098'888 ns 1'765'568 ns 2'146'730 ns 2'693'595 ns
65'536 2'593'438 ns 4'261'790 ns 5'019'401 ns 5'911'436 ns 4000000 ns
131'072 5'265'582 ns 9'724'940 ns 11'840'437 ns 14'867'349 ns
0
nSZvoges 8'192 16'384 32'768 65'536

binar1 search trees

Q binam tree 15 a tree data structure where each
node has at most two children links, which are
referred to as the left child and the right child \ N\

=S —_— = —— = — = e — J— — e ——— e — e e o —— ——— —— — I

e ———————
e —— I

a binary search tree is a rooted binary tree
with the following proper ties:

% each node has a comparable ke\,

* the key of any hode is larger than the 17
keys of all nodes in that node's left subtree

18

* the key of any node is smaller than the keys a subtree is simply the tree
of all nodes in that node's right subtree that is a child of a node

bina\q search trees

in addition, each node migh‘l’ also contain:
4 a value (in the case of associative arra1s)
@ a link to its parent in the tree, often noted p

n full generality, a node of the binary search tree is
thus a tuple of the form (key, value, left, right, p)

these tuple elements are usually designated as
x.key x.value x.left x.right x.p

B < 7. root

24

the tree itself is usually noted 7" and
has a root attribute, noted 7.roor
pointing to the £irst node of 7

search trees

some algori’rhms

binar

INORDER-TREE-WALK (X) ITERATIVE-TREE-SEARCH (X, k)
1 if x £ NIL TREE-SEARCH (x, k) 1 while x # NIL and k # x.key
2 ::N.ORDER—TREE-WALK (x.left) I ifx == NIL or k == x. key 2 if £ < x.key
3 ;?rlnt x.key | 7 return x 3 X = x.le.ft
4 INORDER-TREE-WALK (x.right) 3 itk < x.key 4 else x = x.right
— 4 return TREE-SEARCH (x. left, k) > return x
5 else return TREE-SEARCH (x.right, k) — —
TREE-MINIMUM (x) o
I while x.left # NIL | 4——— pp peed to compare keys! TREE-INSERT(T,)
2 x = x.left Iy = NIL
3 return x -
2 x = T.root
3 while x # NIL
4 y =X
TREE-MAXIMUM /(x) TREE-SUCCESSOR (x) 2 if 2. key < xékey
1 while x.right # NIL 1 if x.right # NIL 7 elsefc ; jz';{: .
2 X = x.right 2 return TREE-MINIMUM (x.right) 8 zp =y '
3 return x 3 y=xp | 0 if y == NIL tree was
o — 4 while y # NIL and x == y.right 0 T root — = emP‘f1
5 X =y ‘ o -
from: Introduction to Algorithms 6 y = y.p }é elseif Zl. key _< y-key
by T. H. Cormen et al. 7 return y 1 Y- eﬁ __Z
3rd Edition 13 else y.right = 7

L — S

MIT Press, 2009

balanced trees rs

the height of a tree is the maximum / VaN _“g
distance of any node from the root in v
terms of number of edges to traverse NN\

a height-balanced (or simply balanced) tree is a
tree whose subtrees have the following proper ties:

* they differ in height by no more than one
o th are height-balanced as well

N . . . why is it interesting
SN/ »ooR ¥ R to use a balanced
\

VaN \ VaN binah, search tree?

