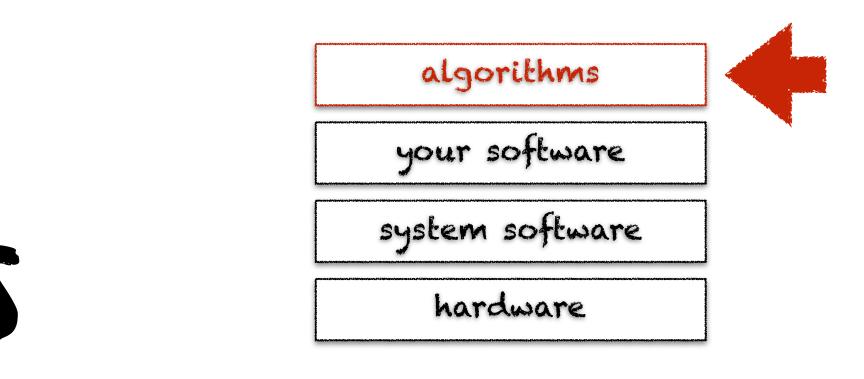


olgorithm

learning objectives

- + learn about typical graph algorithms

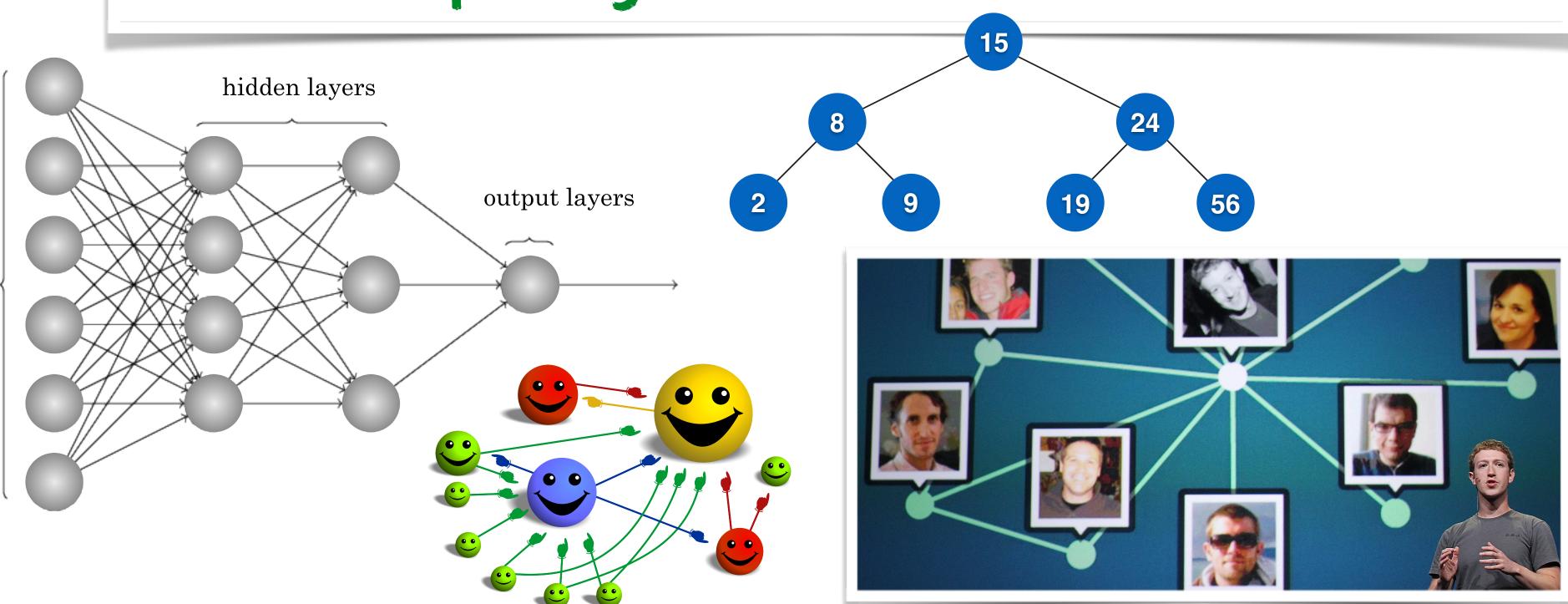


learn what graphs are in mathematical terms

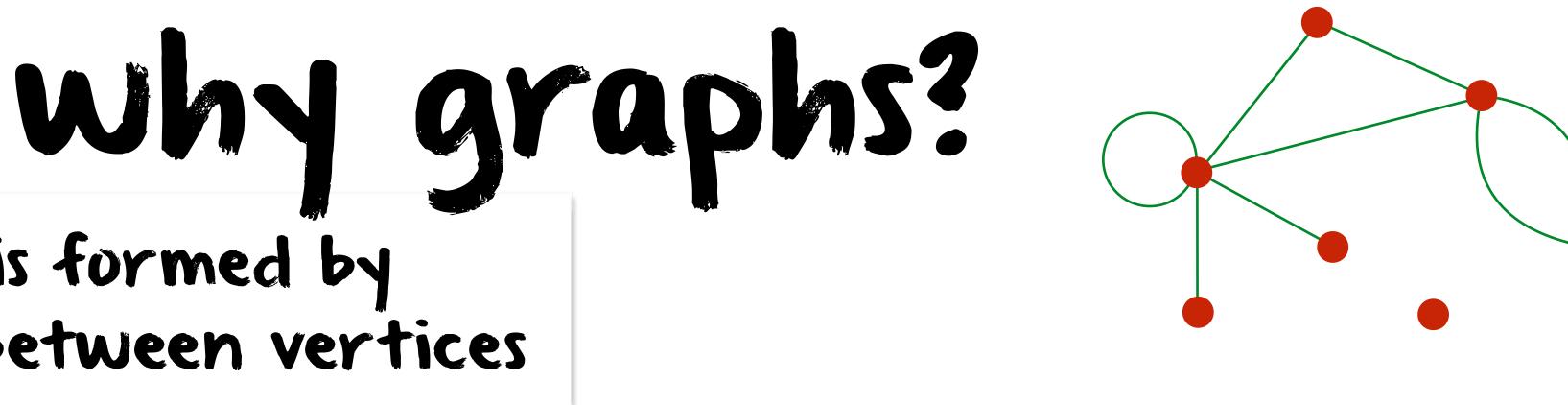
learn how to represent graphs in computers

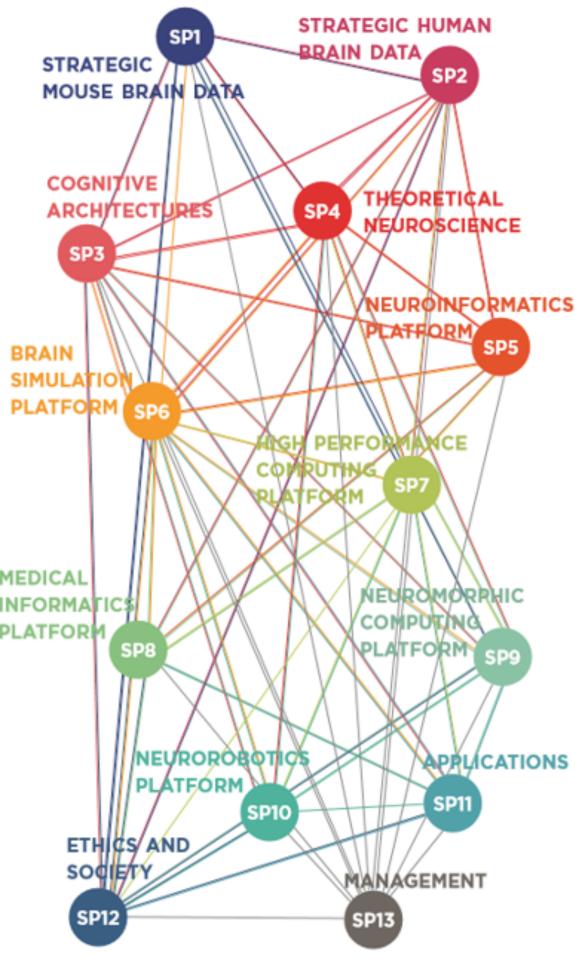
intuitively, a graph is formed by vertices and edges between vertices

graphs are used in numerous fields to model relationships (edges) between elements (vertices)

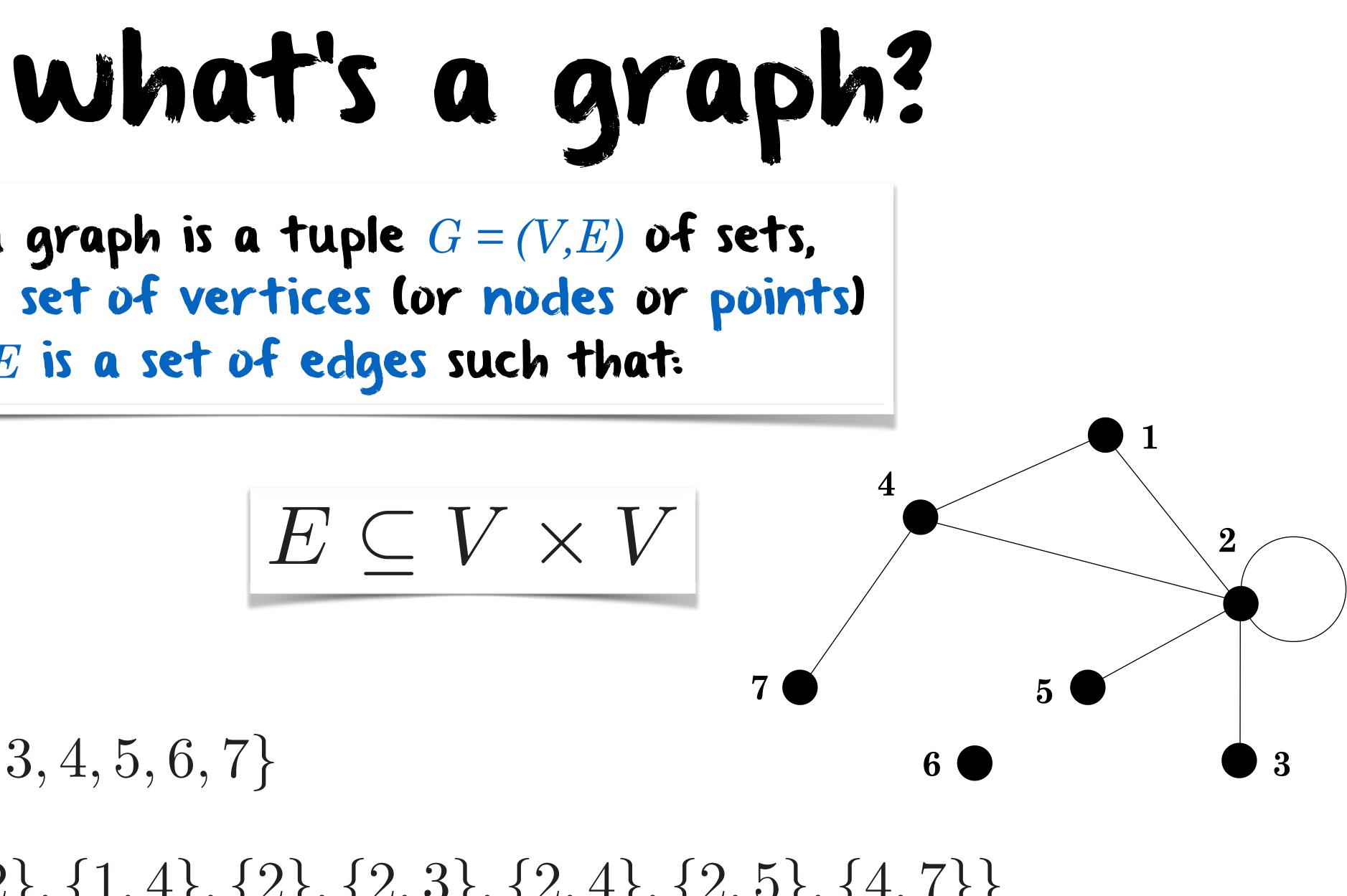


input layers





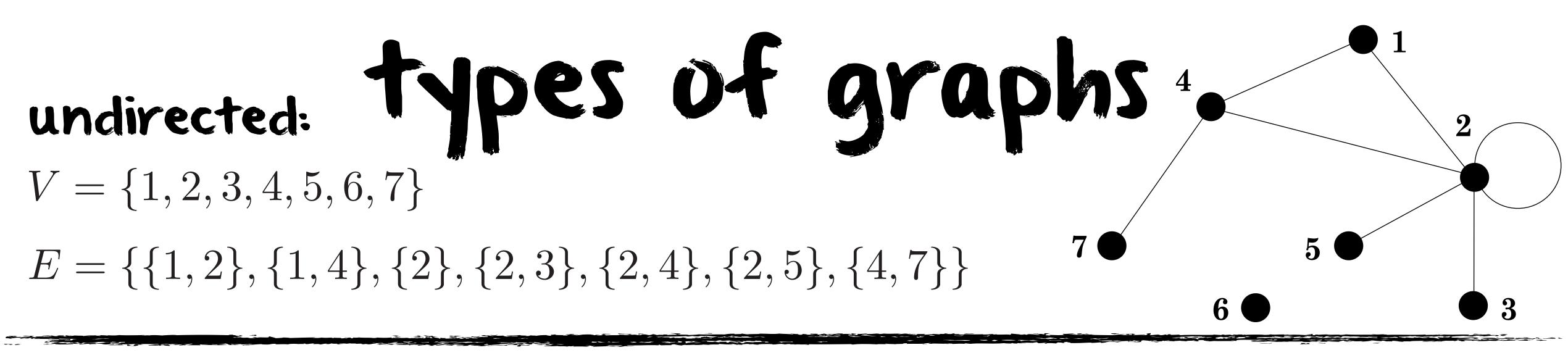
formally, a graph is a tuple G = (V, E) of sets, where V is a set of vertices lor nodes or points) and E is a set of edges such that:



example:

 $V = \{1, 2, 3, 4, 5, 6, 7\}$

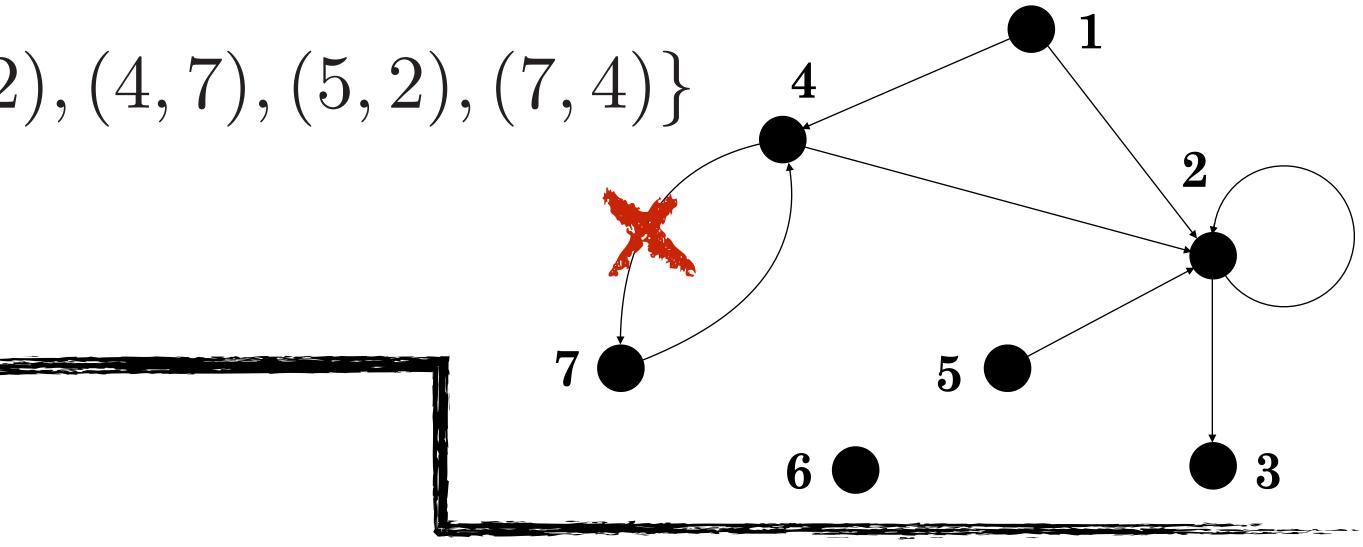
 $E = \{\{1, 2\}, \{1, 4\}, \{2\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{4, 7\}\}\}$



directed: $E = \{(1,2), (1,4), (2,2), (2,3), (4,2), (4,7), (5,2), (7,4)\}$

oriented:

 $E = \{(1,2), (1,4), (2,2), (2,3), (4,2), (4,2), (5,2), (7,4)\}$



notations & metrics

let G be graph, G.V denotes its set of vertices and G.E its set of edges

the order of G, written |G|, is the number of its vertices, whereas $\|G\|$ denotes its number of edges

if all the vertices of G are pairwise adjacent, then G is complete

- the edge between vertices x and y is noted $\{x,y\}$, (x,y) or simply xy

 - graph G is sparse if $\|G\| \ll |G|^2$ and it is dense if $\|G\| \approx |G|^2$
 - two vertices x and y are adjacent or neighbors if $xy \in G$

notations & metrics

- a path from vertex x to vertex y is a sequence $\langle v_0, v_1, \dots, v_k \rangle$ of vertices $v_i \in V$ where $x = v_0$ and $y = v_k$, such that $\forall i \in \{1, \dots, k\} : (v_{i-1}, v_i) \in E$
 - a graph is connected if every pair of vertices is connected via a path

a path $\langle v_0, v_1, \dots, v_k \rangle$ is a cycle if vertices $v_0 = v_k$

we can store attributes in vertices and edges using the dotted notation, e.g., v.color stores a color attribute in vertex v, while e.weight and (x,y). weight store a weight attribute in edge e and edge (x,y) respectively

notations & metrics

let G = (V, E) and G' = (V', E') be two graphs, if $V' \subseteq V$ and $E' \subseteq E$, then G' is a subgraph of G, which we write $G' \subseteq G$

the degree (or valency) of a vertex v is the number of neighbors of v and is noted d(v)

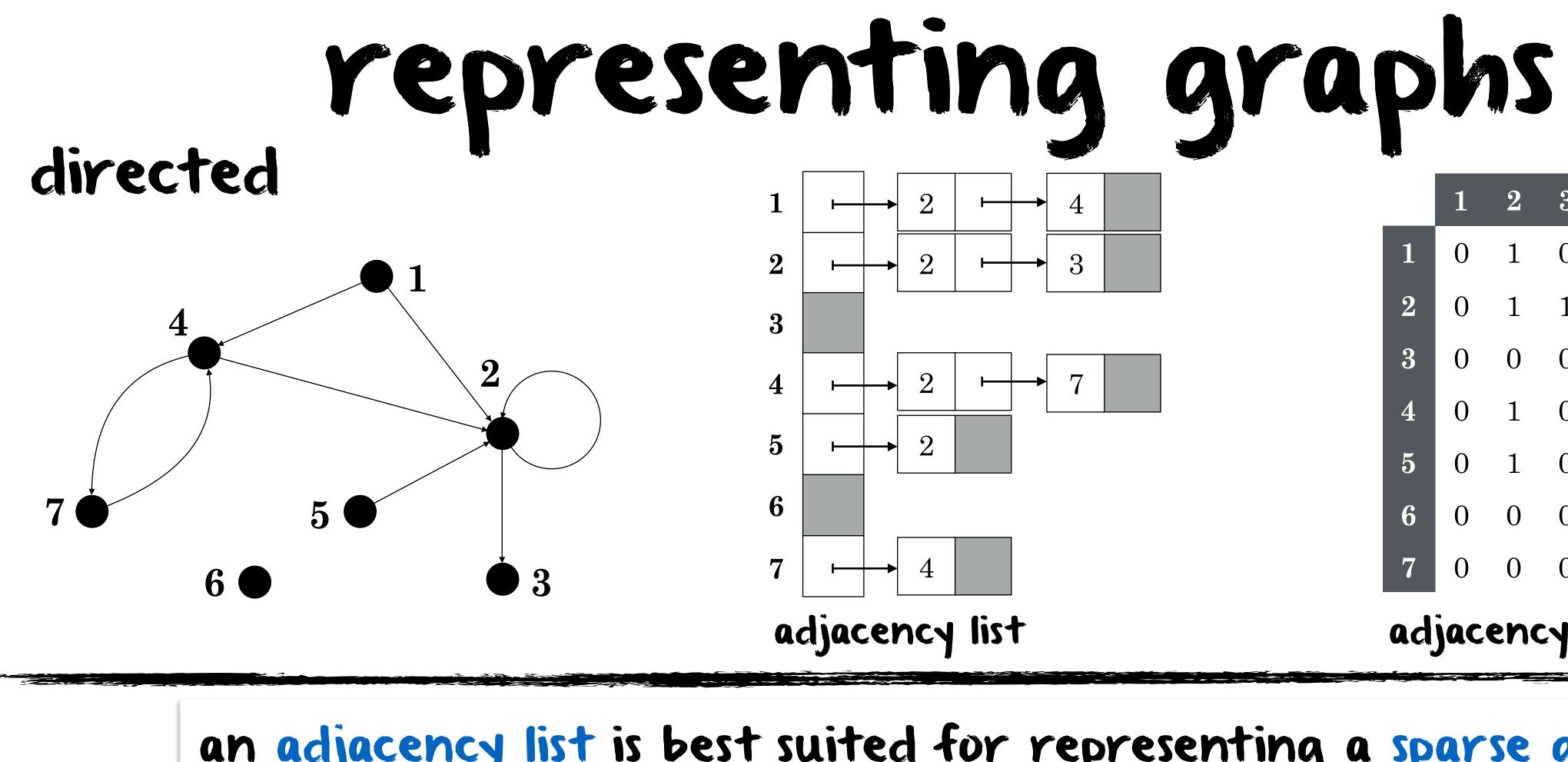
we defined $\delta(G) = \min \{ d(v) \mid v \in V \}$ as the minimum degree of G

we defined
$$d(G) = \frac{1}{|V|} \sum_{v \in V}$$

let G = (V, E) and G' = (V', E') be two graphs and $G' \subseteq G$, if V' = V, G' is a spanning subgraph of G

we defined $\Delta(G) = \max \{ d(v) \mid v \in V \}$ as the maximum degree of G

d(v) as the average degree of G



most graph algorithms rely on adjacency lists

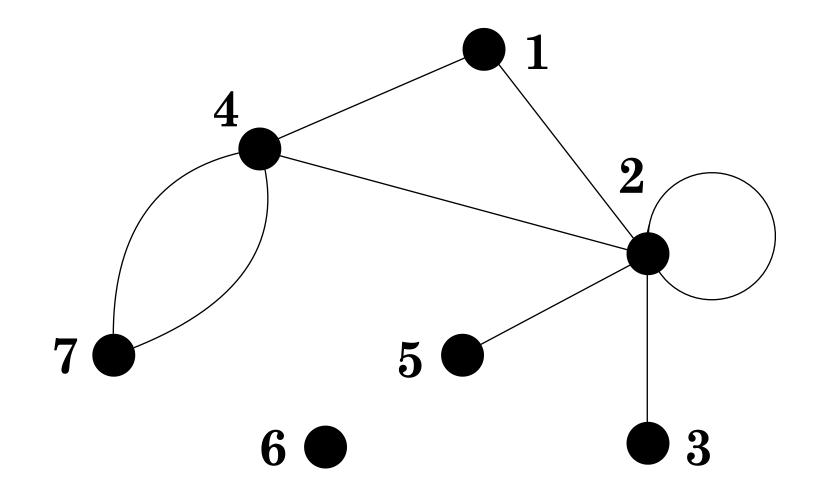
an adjacency matrix is best suited for representing a dense graph or when the algorithm needs to know quickly if there exists an edge connecting two vertices

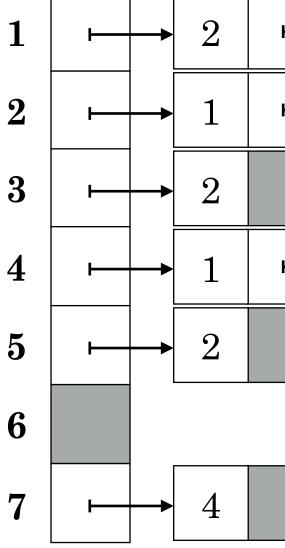
an adjacency list is best suited for representing a sparse graph

adjacency matrix

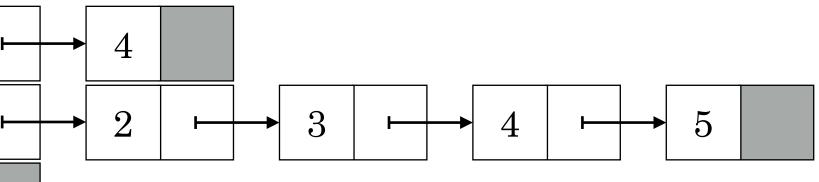
	1	2	3	4	5	6	7
1	0	1	0	1	0	0	0
2	0	1	1	0	0	0	0
3	0	0	0	0	0	0	0
4	0	1	0	0	0	0	1
5	0	1	0	0	0	0	0
6	0	0	0	0	0	0	0
7	0	0	0	1	0	0	0

representing graphs undirected



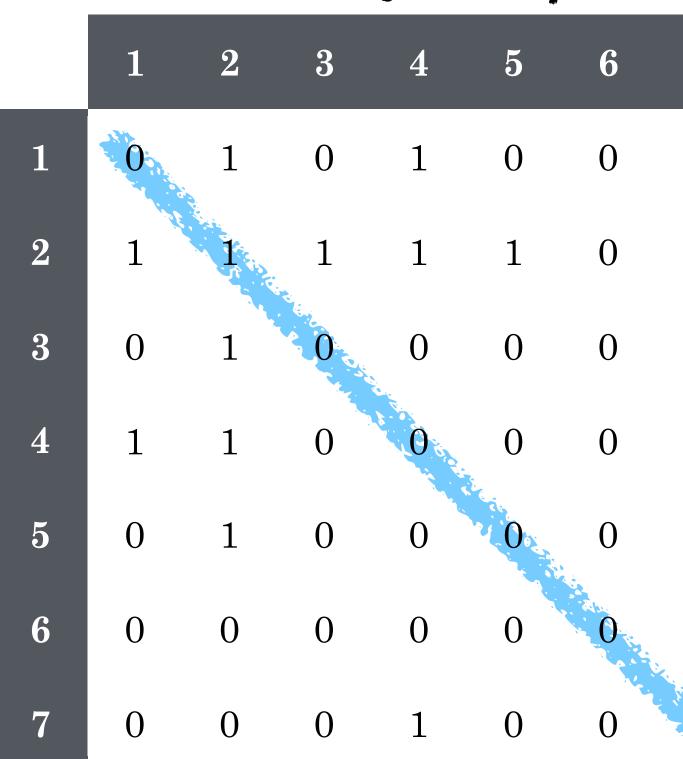


adjacency list



7

adjacency matrix



 $\mathbf{2}$

minimum spanning tree

single-source shortest paths

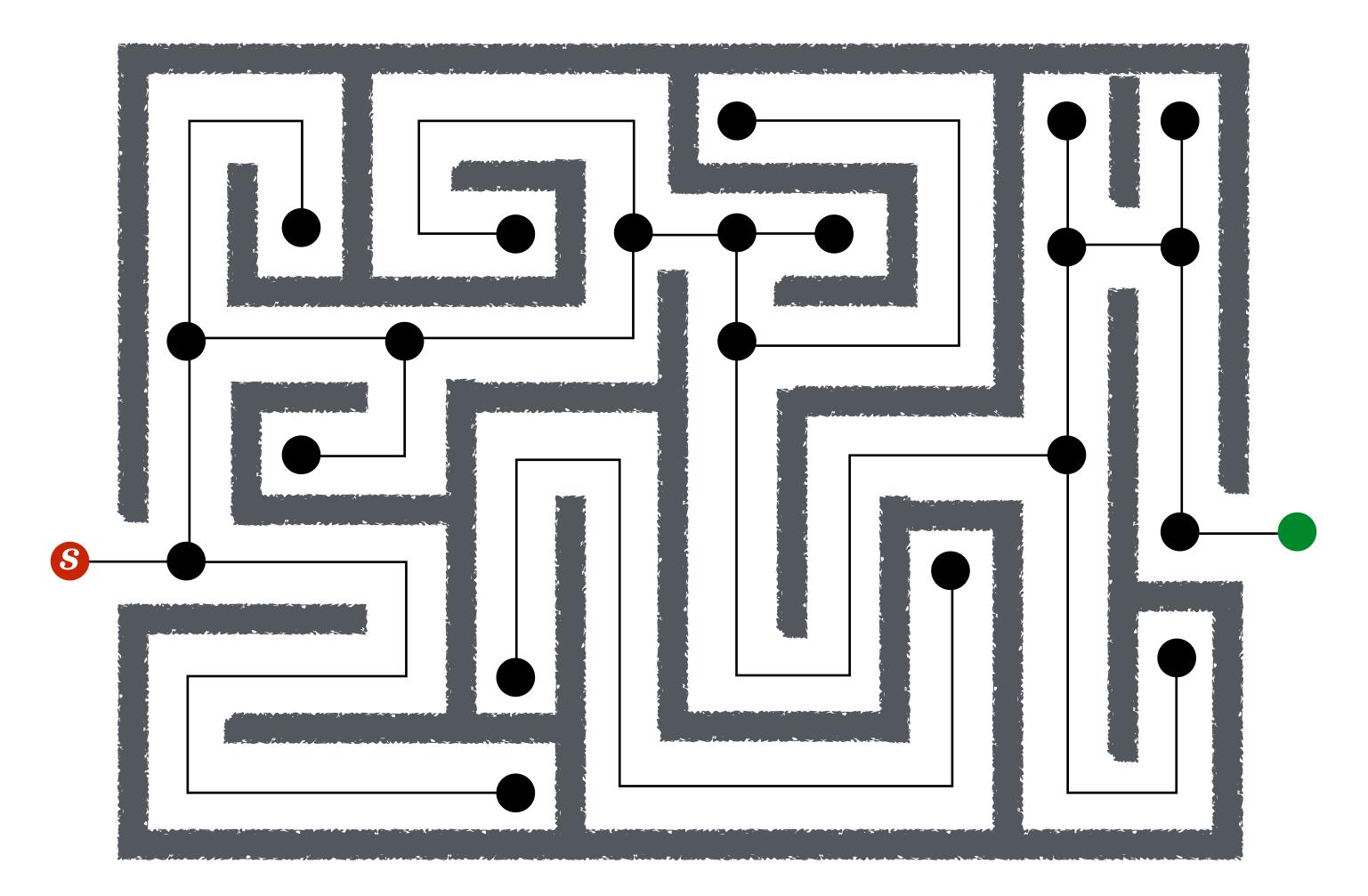
typical problems

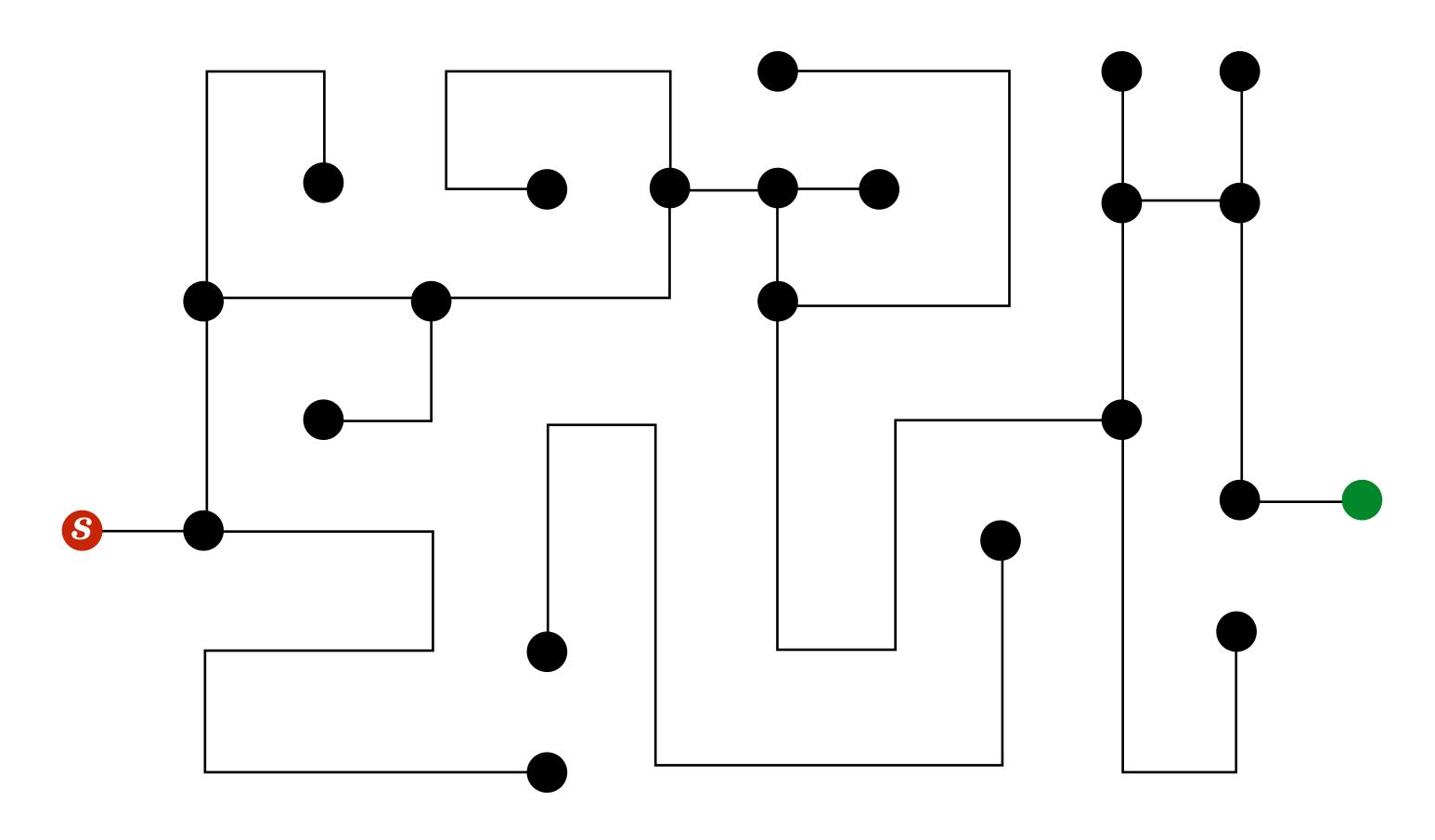
given graph G and a source vertex $s \in G$, it discover every vertex reachable from s

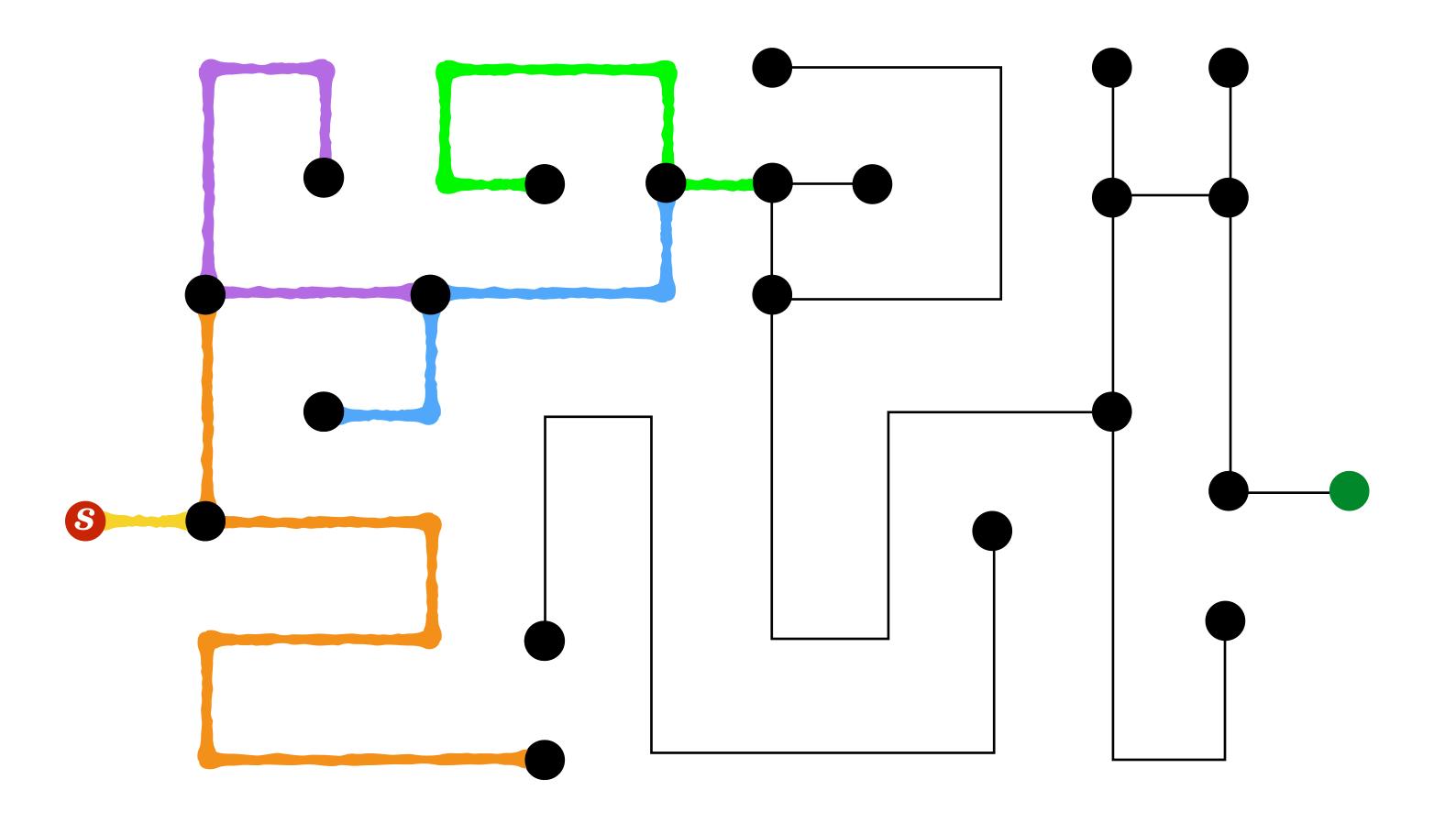
it computes the distance from s to every vertex $v \in G$

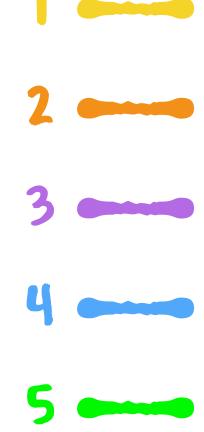
it produces a breadth-first tree rooted at s that contains all reachable vertices from s

the search is said to be breadth-first because it discovers all vertices at distance k from s before discovering any vertices at distance k + 1





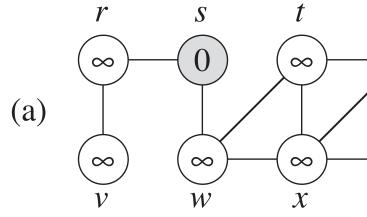


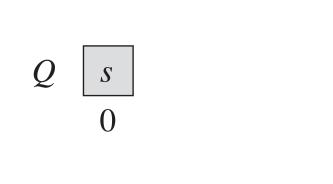


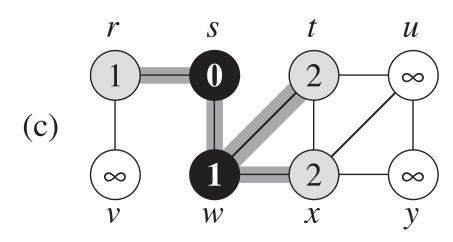
 ∞

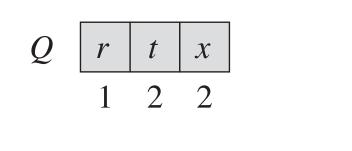
 ∞

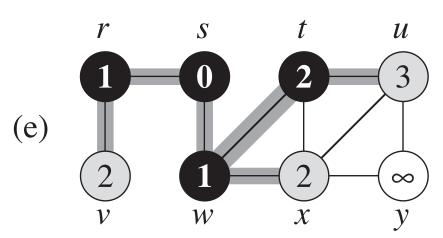
ν

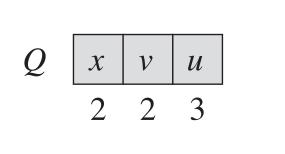


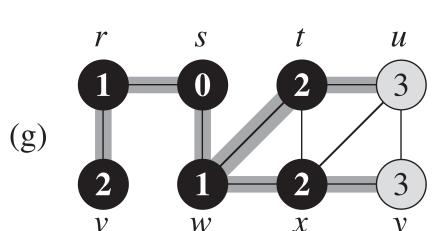


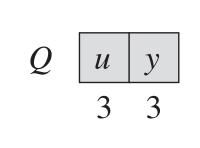


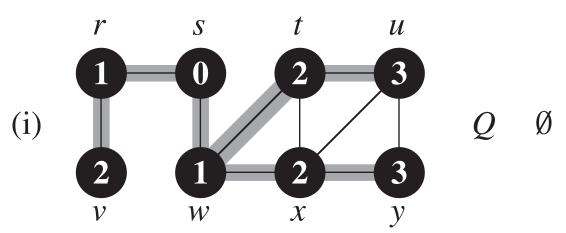










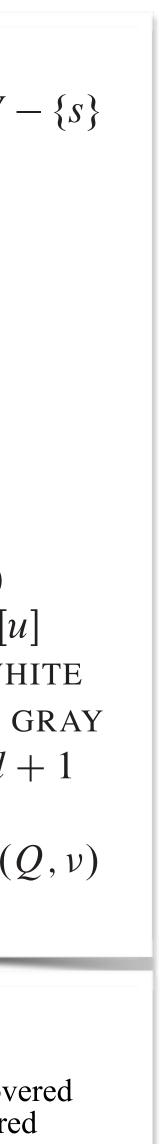


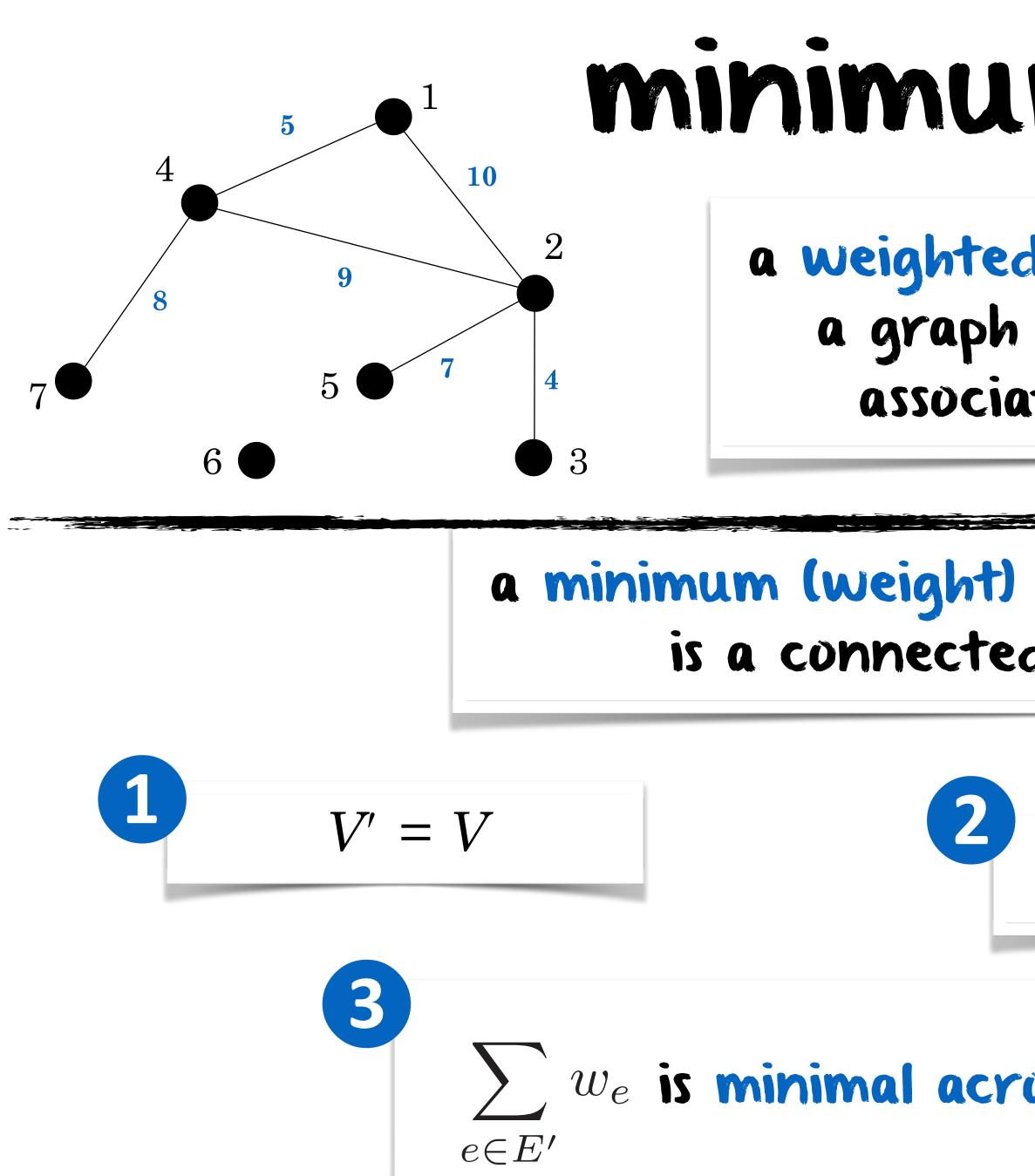
from: *Introduction to Algorithms* by T. H. Cormen et al. *3rd Edition* MIT Press, 2009

f					5(P	Q			
(1)	r			u					BFS	S(G,s)
(b)					Q	W r	r		1	for each vertex $u \in G.V -$
	$\underbrace{(\infty)}_{V}$	(1)- w	$-\underbrace{\infty}_{x}$	$-(\infty)$		Ţ	I		2	u.color = WHITE
	V	VV	\mathcal{A}	У					3	$u.d = \infty$
(d)	r 1 2		2	<i>u</i>					4	$u.\pi = \text{NIL}$
				$-\infty$		t x v	1	5	s.color = GRAY	
					Q		t x v 2 2 2		6 7	s.d = 0
				$-(\infty)$		2			7 0	$s.\pi = \text{NIL}$
	V	W	X	У					8 9	$Q = \emptyset$ ENQUELIE $(Q = g)$
	r	S	t	U					9 10	ENQUEUE (Q, s) while $Q \neq \emptyset$
(f)	1 2 V			-(3)		v u y 2 3 3		10		
				- <u>3</u> y	Q			11	u = DEQUEUE(Q) for each $v \in G.Adj[u]$	
							3 3		12	if $v. color == WHIT$
									13	v.color = GR
	r 1 2		2	U					15	v.d = u.d +
(h)				3					16	v.a = u.a $v.\pi = u$
					Q	2 y			17	ENQUEUE(Q ,
				-(3)		3			18	u.color = BLACK
	V	W	x	y					10	DLITCH
					d		dictor	oo fr		
				<i>V.C</i>	I	I	distance white			overed
				<i>V.C</i>	color		grey	•	discov	ered with some neighbors discovere ered with all neighbors discovered

 $\mathcal{V}.\pi$

predecessor in bread-first tree





minimum spanning tree

a weighted graph $G_w = (G, w)$ is a tuple composed of a graph G = (V, E) and of a function $w : E \to \mathbb{R}$ associating a weight w_e to each edge $e \in E$

a minimum (weight) spanning tree of graph $G_w = (G, w)$ is a connected subgraph (V', E') such that:

(V',E') does not contain any cycles

 w_e is minimal across all subgraphs fulfilling (1) and (2)

minimum spanning tree

a disjoint-set data structure maintains a collection $S = \{S_1, S_2, ..., S_k\}$ of disjoint dynamic sets where each set is identified by a member of the set known as its representative

a disjoint-set data structure supports the following operations:

MAKE-SET(x) creates a new set whose only member and its representative is x

> UNION(x, y) merges the dynamic sets that contain x and y, say S_x and S_y , into a new set that is the union of these two sets

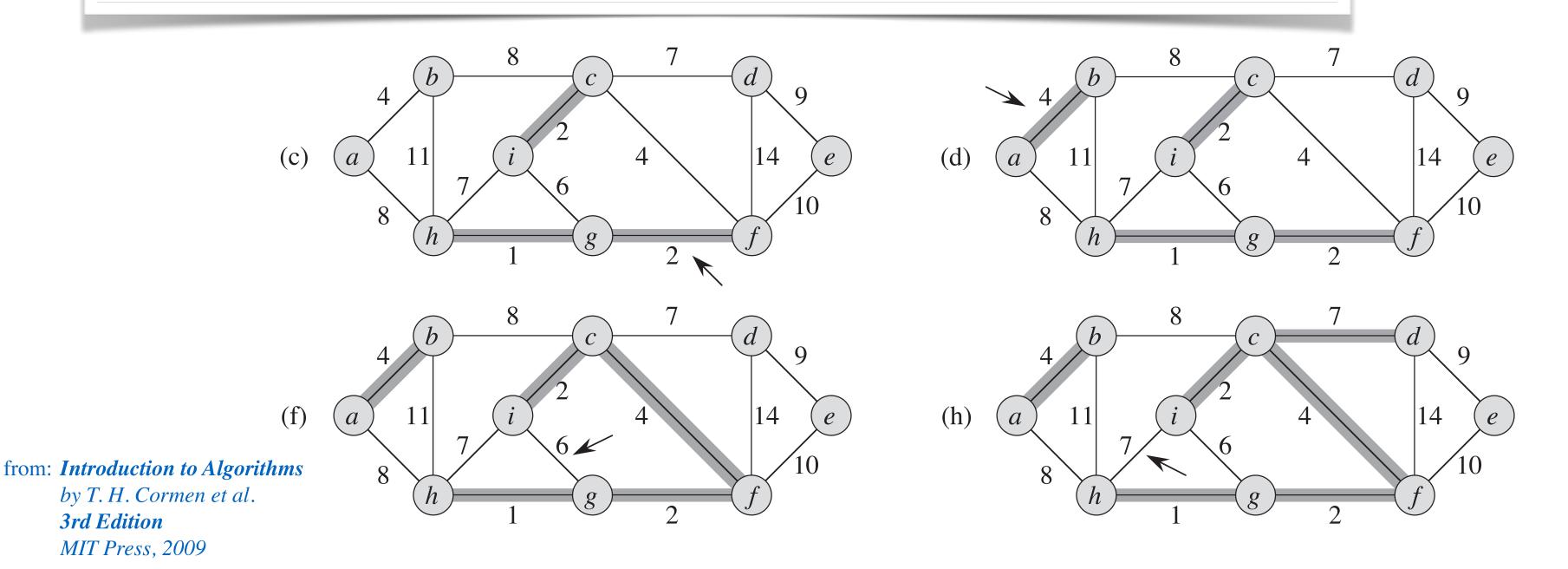
FIND-SET(x) returns the representative of the set containing x

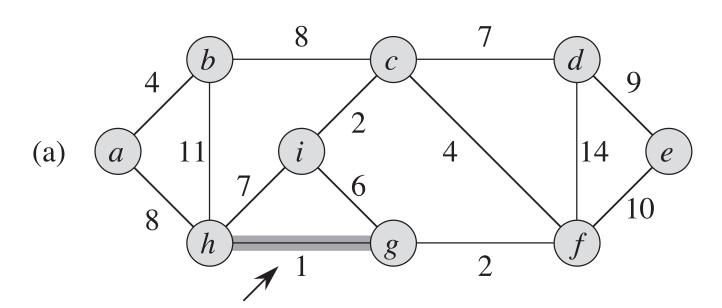


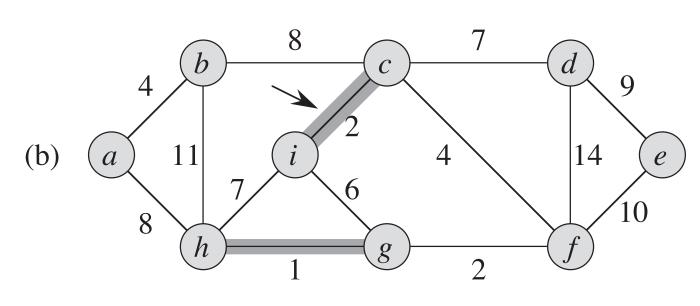
minimum spanning tree - Kruskal's algorithm

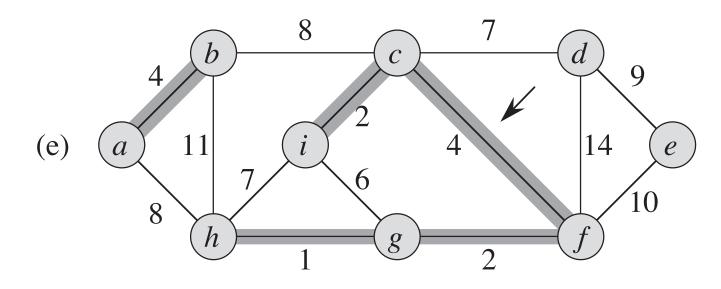
MST-KRUSKAL(G, w)

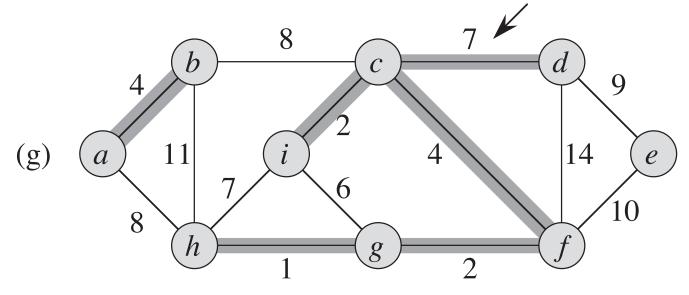
```
A = \emptyset
   for each vertex v \in G.V
        MAKE-SET(\nu)
3
   sort the edges of G.E into nondecreasing order by weight w
4
   for each edge (u, v) \in G.E, taken in nondecreasing order by weight
5
       if FIND-SET(u) \neq FIND-SET(v)
6
            A = A \cup \{(u, v)\}
7
            UNION(u, v)
8
9
   return A
```









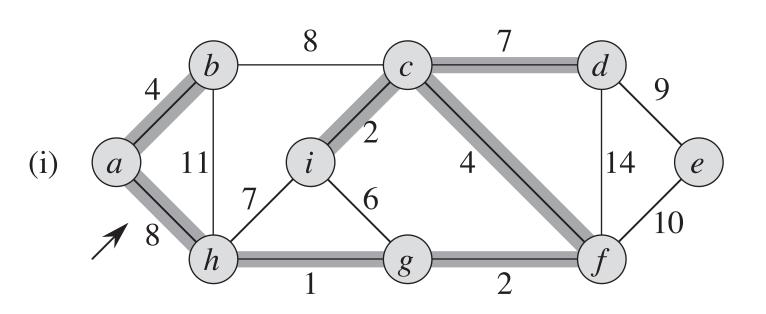


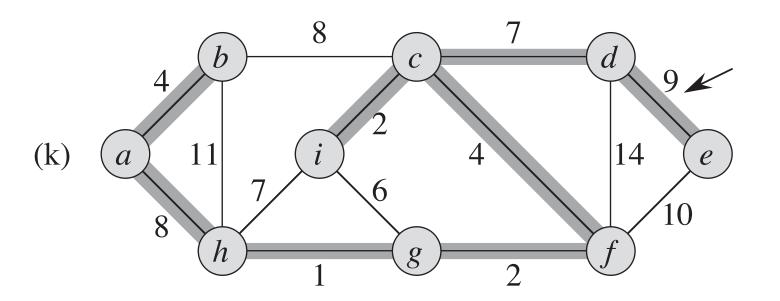
minimum spanning tree - Kruskal's algorithm

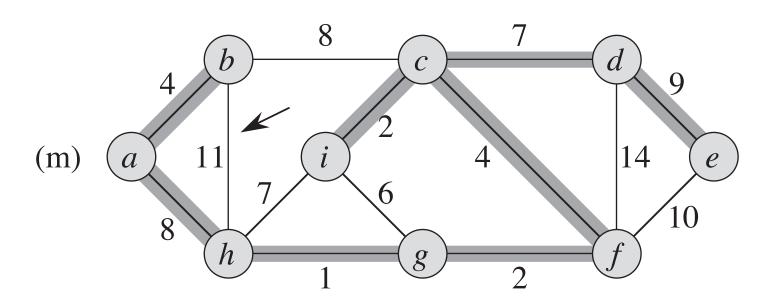
MST-KRUSKAL(G, w)

- $1 \quad A = \emptyset$
- 2 **for** each vertex $\nu \in G.V$
- 3 MAKE-SET (ν)
- 4 sort the edges of G.E into nondecreasing order by weight w
- 5 for each edge $(u, v) \in G.E$, taken in nondecreasing order by weight
- 6 **if** FIND-SET $(u) \neq$ FIND-SET(v)
- 7 $A = A \cup \{(u, v)\}$
- 8 UNION(u, v)

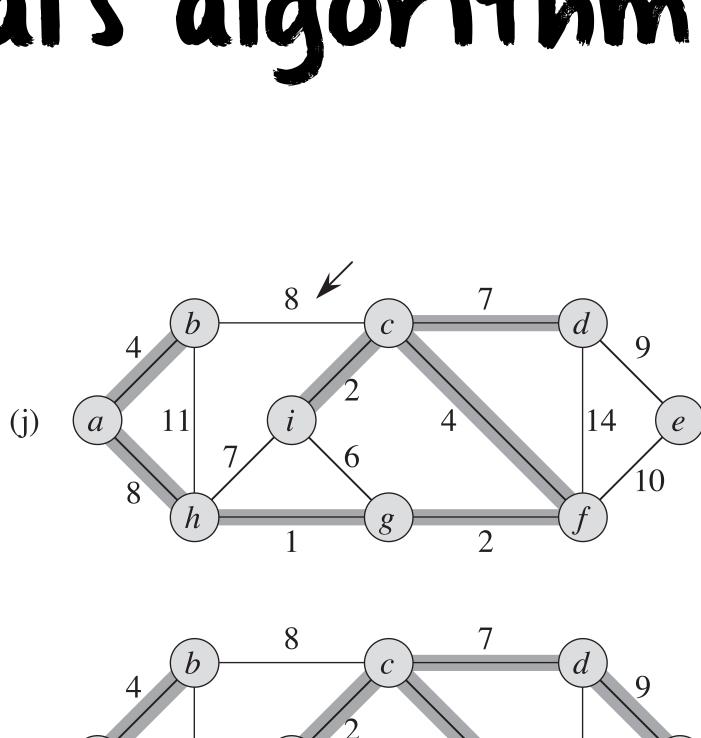
```
9 return A
```

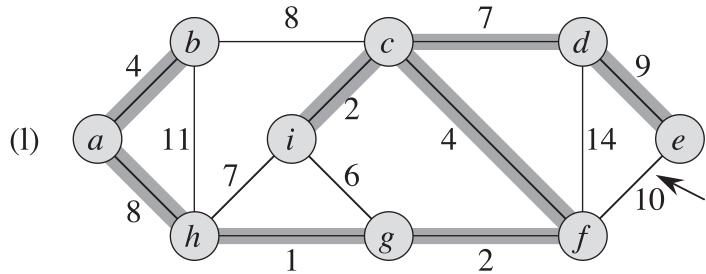


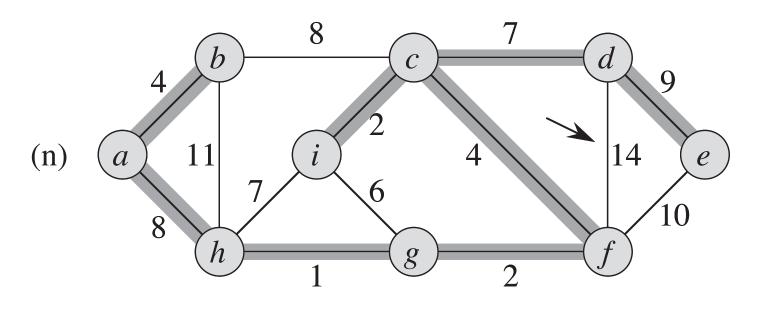




from: *Introduction to Algorithms* by T. H. Cormen et al. *3rd Edition* MIT Press, 2009







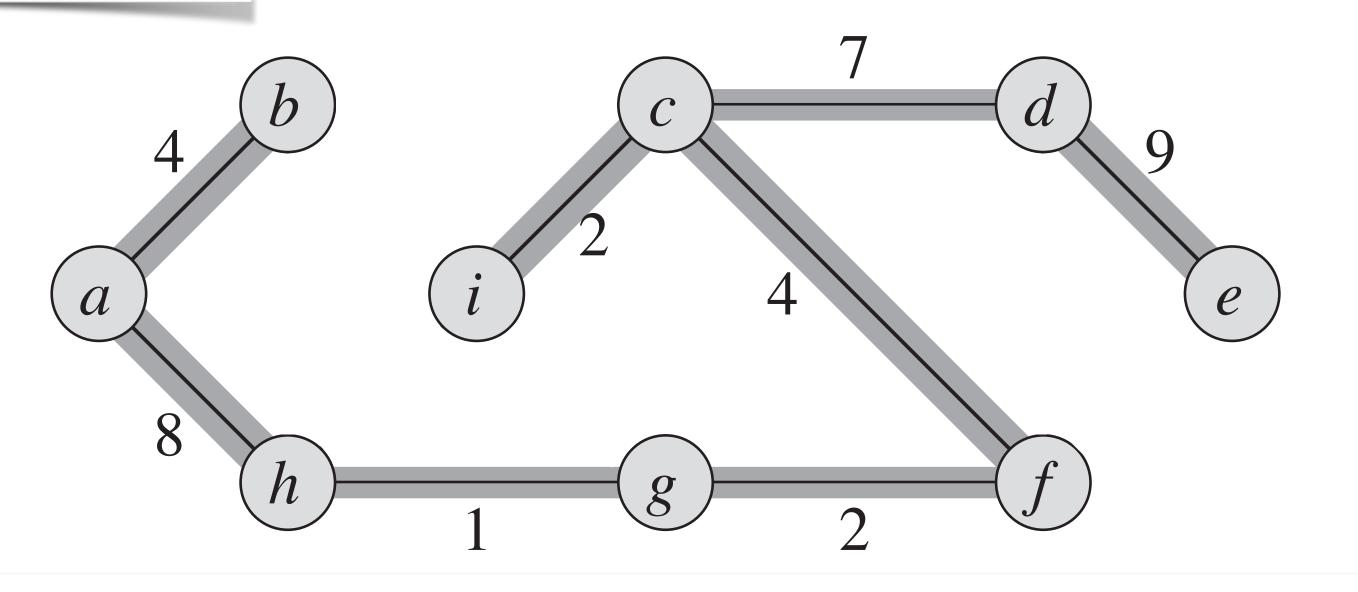
minimum spanning tree - Kruskal's algorithm

MST-KRUSKAL(G, w)

- 1 $A = \emptyset$
- 2 for each vertex $\nu \in G.V$
- MAKE-SET(ν) 3
- sort the edges of G.E into nondecreasing order by weight w4
- for each edge $(u, v) \in G.E$, taken in nondecreasing order by weight 5
- **if** FIND-SET $(u) \neq$ FIND-SET(v)6

$$A = A \cup \{(u, v)\}$$

- UNION(u, v)8
- 9 return A



the Kruskal's algorithm is greedy, i.e., it makes locally optimal choice at each step

from: Introduction to Algorithms by T. H. Cormen et al. **3rd Edition** MIT Press, 2009

