33.209.29 . 33.208
07.205.230.105
33 0876151110 07.205.2494 bB5 230.110 07.205.230N 23
07.20%.230.128
06
07 blle ok 1 07.205.230.117
07.205.280.169 07.205.234
7.206/230102
9 07.205.230.174
07.205
OTNRL5
207205230104
5.230.118 /205/730 .205.230.18%
205,249.117
bAA205.230 26
205.230.113(5 506 230/t _ 07.205.
07.205.230.1%9
07.205.280.155
7.205.249.10 | 0%.205.230.0v8 07 20




learning o
objectives -

* learn what graphs are in mathematical terms
+ learn how to represent graphs in computers

+ learn about fs,pical graph algorithms



input layers

wlﬂ graphs?
intuitively, a graph is formed by
vertices and edges between vertices

graphs are used in numerous fields to model
relationships (edges) between elements (ver tices)

' ‘ hidden layers

.

SINS *
'/.-. \
\}\3\3’6"6\}"//
RO
PR
VN

k ‘

.

1' ."\
l‘ \
| \ \// -
s B A . . ‘|| ] ,// h .
— ’ : 1 . 4 \
M . N\ ~ ‘..‘. "._‘~ /
\ y/ \ X
. o 8 YU\
\ L VY §
| BUTING \
N / \
-’ \
N\ \
“ \\

STRATEGIC HUMAN

P2

= 3RAIN DATA
STRATEGIC : .
MOUSE BRAI \
SP4 ~
¥e0n

COGNITIVE RETICAL
ARCHITECTURE \\

OSCIENCE

\qw |

Sp3 # ,‘
RO RMATICS
HQOR
|
-F---

——

NEYROROROTIGS
|| PLATEORM )

MANAGEMENT




what's a graph?

formally, a graph is a tuple G = (V E) of sets,
where V is a set of vertices (or nodes or points)
and £ is a set of edges such that:

ECV XV

examPle=

V=1{1,2,3,4,5,6,7} 6 @ ®:

E=11,25,11,41,121,12,31,12,41,12,55,14, 7}



vV =1{1,2,3,4,5,6,7)
E={{1,2},{1,4},{2},{2,3},{2,4},{2,5}, {4, 7}}

_ — ’m —— e

dlred’ed
E=1(1,2),(1,4),(2,2),(2,3),(4,2),(4,7),(5,2),(7,4) }

—_— D ——— e ——— ———— —

- — —_— . o — B - . _— - - — I e ——— e — — —— —
) e — - = S __ _ i - i

oneni'ecl | 6@ @3

E={(1,2),(1,4),(2,2),(2,3), (4,2), (3D, (5,2), (7,4)}




notations £ metrics

let G be graph, G.V denotes its set of vertices and G.E ts set of edqges

the edge between vertices x and y is noted (x,yj, (x,y) or simply xy

the order of G, written |G, is the number of its
vertices, whereas |G| denotes its number of edges

raph G 15 sparse f |G| <« |G and it s dense £ |Gl = |GI?
grap i P

two vertices x and y are adjacent or neighbors ¥ xyc G

f all the vertices of G are pairwise adjacent, then G is complete




notations £ metrics

a path from vertex x to vertex yis a sequence (v, vy, ..., vy 0f vertices
vieV wWhere x =vy and y =vi, such that Vic {1, ... &k :(vi1 v)EE

a graph is connected o every pair of vertices is connected via a path

a path (vo, v1, ..., v 15 @ cycle f vertices v) = v,

we can store attributes in vertices and edqges using the dotted notation,
e.q., v.color stores a color attribute in vertex v, while e.weight and
(x,y).weight store a weight attribute in edge ¢ and edge (x,y) respectively




notations £ metrics

let G =(V,E) and G' =(V',E') be two graphs, ¥ V' C V and E' C E,
then G’ is a subgraph of G, which we write G' C G

let G =(V,E) and G' =(V',E') be two graphs and G’ C G,
¥ V' =V, G’ is a spanning subgraph of G

the degree (or valency) of a vertex vis the
number of neighbors of v and is noted d(v)

we defined §(G) =min {d@) | veV} we defined A(G)=max {d@) | veV}
as the minimum degree of G as the maximum degree of G

1
we defined J(G) = V] Z d(v) as the average degree of G

veV




represenhng graphs

d\YQC“'QC‘ 1| — 2| —— 1 2 3 4 5 6 17
o | Ll 9| — 3 0 1 0 1 0 0 0
] 0 1 1. 0 0 0 O
AL T 0 000 0 0 O
0 1 0 0 0 0 1
o | YT 2 0 1. 0 0 0 0 O
6 0 00 0O O 0 O
7| — 4 0 001 0 0 O
aclJacenq ||S‘|’ ad;acenq matyrix

an adjacency list is best suited for representing a sparse graph

most graph algorithms rely on adjacenq hsts

an adjacency matrix is best suited for representing a dense graph or when the
algorithm needs to know quickly i there exists an edge connecting two vertices




re

undirected

presenting graphs

1]
'

adjacenq matrix

|
'

7| — 4

adjacenq st




1’1pical problems

breadth-first search

minimum sPanning tree

single-source shortest paths



breadth-first search

given graph G and a source vertex s = G,
it discover every vertex reachable from s

it computes the distance from s to every vertex v € G

it produces a breadth-first tree rooted at s
that contains all reachable vertices from s

the search is said to be breadth-first because it
discovers all vertices at distance % from s before
discovering any ver tices at distance . + 1




breadth-£first search




breadth-first search




breadth-first search




from: Introduction to Algorithms
by T. H. Cormen et al.
3rd Edition
MIT Press, 2009

(g)

(1)

breadth-first search

Q |s 0
0
O |r|t|x 9,
1 2 2
O |x|Vv|u Q
2 3
r S t U
Q |uly (h) 0,
3 3
y
v.d
0O 0 v.color
V.TT

BFS(G, s)
r 1 foreachvertexu € G.V — {s}
1 2 u.color = WHITE
3 u.d = oo
4 u.m = NIL
5 s.color = GRAY
¥ |y 6 s.d=20
7 7 s.m = NIL
8 0 =10
9 ENQUEUE(Q, s)
10  while O # ¢
11 u = DEQUEUE(Q)
B4 12 for cach v € G.Adj|u]
53 13 if v.color == WHITE
14 V.color = GRAY
15 v.d = u.d+1
16 V.T = U
17 ENQUEUE(Q, v)
18 u.color = BLACK

distance from source s

white : undiscovered
grey . discovered with some neighbors discovered
black : discovered with all neighbors discovered

predecessor 1n bread-first tree




minimum sPanning tree

a weighted graph G, = (G,w) is a tuple composed of
a graph G =(V,E) and of a function w: £ - R

associating a weight w. to each edge e c E
@ | e

_— — —_ e — = — = ey — e — — - ~ e - - -
= e — = = = = N — ’m-«j—‘f— — —— —_ —— — — [ w__.c R ——- = =
—— - S - — — P ——— 3 e
—— e —— I _ - — —— — -~ —— — =~ e —-_— —_— — o —— = — — —

a minimum (wmghﬂ sPannmg free of graph Guw = (G, w)
is a connected subgraph (V',E') such that:

V=V (2,

(V',E') does hot contain any c1cles

Z We is minimal across all subgraphs fulfilling @ and @

ec k)’




minimum sPanning tree

a disjoint-set data structure maintains a collection s ={S;,S:,..., S
of disyoint dynamic sets where each set is identified by a member
of the set known as its representative

a disjoint-set data structure supports the following operations:

MAKE-SET(x) creates a new set whose only
member and its representative is x

UNION(x,y) merges the dynamic sets that contain x and y, say
S: and S,, info a new set that is the union of these two sets

FIND-SET(x) returns the representative of the set containing x




minimum sPanning tree - Kruskal's algoriﬂmm

MST-KRUSKAL(G, w)

A=0
for each vertex v € G.V (a)
MAKE-SET (v)
sort the edges of G.E into nondecreasing order by weight w
for each edge (u,v) € G.E, taken in nondecreasing order by weight
if FIND-SET (1) # FIND-SET(v)
A= AU{u,v)}
UNION(u, v)
return A

7

O 0 ~J O\ U K~ W N =

(c) (d)

() (h)
from: Introduction to Algorithms
by T. H. Cormen et al.

3rd Edition
MIT Press, 2009




minimum sPanning tree - Kruskal's algoriﬂmm

A=10
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each edge (1, v) € G.E, taken in nondecreasing order by weight
if FIND-SET (1) # FIND-SET(v)
A= AU{(u,v)}
UNION(u, v)
return A (1)

O OO0 1 ON Ui =~ W N —

(k) 1)

(m) (n)

from: Introduction to Algorithms
by T. H. Cormen et al.
3rd Edition
MIT Press, 2009



e e e % e
minimum sPannmg tree - Kruskal's ﬂlgOY Thnm
MST-KRUSKAL(G, w)

1 A=10

2 for each vertex v € G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u,v) € G.E, taken in nondecreasing order by weight

6 if FIND-SET(u#) # FIND-SET(v)

7 A= AU{u,v)}
8 UNION(u, v)
9 return A

the Kruskal's algorithm is greedq, 1.e., it makes
locall1 optimal choice at each step

from: Introduction to Algorithms
by T. H. Cormen et al.
3rd Edition
MIT Press, 2009



