
SOAR – LAB 2

Introduction to Code Versioning, Debugging, loggers,
Refactoring and Profiling

Objective: This lab will provide an introduction to several key concepts
of effective and collaborative code development

Step 1: Login in to your GitLab Account: https://gitlab.unil.ch

You should be able to login using your UNIL credentials
(username (not email), UNIL password)

Gitlab is an Open source software to collaborate on code

Step 2: Download and Install Sourcetree: https://www.sourcetreeapp.com/

Sourcetree is a free git client to visualize and manage your repositories

Step 3: Versioning

Clone the repository containing the source code of todays lab on your local machines
to perform todays Lab exercises.

Enter the following into sourcetree [New -> clone from URL]
Source URL: https://gitlab.unil.ch/adiallo4/soar_lab2.git	

In case, you are on Linux machine, you can directly clone the repository using the
following command in the Terminal

git	clone	https://gitlab.unil.ch/adiallo4/soar_lab2.git			

Step 4: Coding

a. Open the downloaded project in NetBeans

b. Execute the code [Right	click	on	the	project	->	Run]	

c. Make sure that the code Builds and Executes
 (You should be able to see the game screen) (don’t play too much)

Step 5: Versioning

Create a branch in Netbeans [Team	->	Branch	->	Create	Branch]	
Use you last name as the name of the branch

Step 6: Coding

Switch to your branch [Team	->	branch	->	switch	to	branch	->	choose	your	branch]

Add the following line in the main class
system.out.println(“It	works!”);	

Commit this change on your branch [Team->	Commit	->	Enter	commit	message	->	commit]	

Now push [Team	->	Remote	->	Push]	

Step 7: Using Loggers

Navigate to the Main Class file and declare the logger

private	static	final	Logger	LOGGER	=	Logger.getLogger("Hello");	

Then in the main method, show a message using Logger
	
LOGGER.info("It	works");	

Now, repeat it for Class Enemy to check the collision.

Step 8: Debugging

Add a breakpoint in the Enemy.checkCollision() method and run in debug mode (click
the icon next to the run button)

In order to add a breakpoint, you simply need to click on the corresponding code line.

Now the game will stop once there is a collision.

Step 9: examine local variables, objects and method calls in the stack trace

Step 10: rename the Enemy.isdead variable into Enemy.isgone with preview before
actually doing the refactoring
[Rick	click	on	the	variable	->	refactor	->	rename	->	preview]	

Make sure to preview before refactoring to check all the changes performed due to
renaming.

Now click on Do Refactoring.

Step 11: Similar to Step 10, rename the Enemy.follow() method into Enemy.chase()	with
preview before actually doing the refactoring

Step 12: Now rename the Enemy class into EnemyImpl with preview before actually
doing the refactoring

Step 13: extract an interface from the EnemyImpl class (will all public methods) and
name it Enemy, explain the rational by saying you want to add new types of enemies
in the game (not just crows)

[Right	click	on	the	class	->	Refactor	-	>	Extract	interface	->	Select	all	methods	->	Rename	new	
interface	to	Enemy]	

Step 14: run the project in profiling mode in telemetry mode (graphs)

[Profile	project	->	configure	session	->	Telemetery]	

Now click the Profile button in the tool bar to collect profiling data

Check the memory usage, CPU, Garbage collection and other stats.

Step 15: run the project in profiling mode in method mode (time spent in each method
/ hotspots)

[Profile	->	Methods]	

Here you see execution time and stats related to each method.

