
classes,
object s &
methods

learning
objectives
learn about encapsulation and abstraction

learn about classes, object s and methods

learn how to create your own classes

learn about modularization and code reuse

hardware

your software

algorithms

system software

an algorithm focuses on a specific computational
procedure that solve a particular problem

a complete program is however composed of many
such algorithms, resulting in many lines of code

the linux kernel consists of 15 million lines of code
* 

the google codebase consists of 2+ billion lines of code
*

*January 2018

we need software engineering tools 
to manage this complexity

software engineering

software engineering

software engineering tools are of different kinds, e.g., methodologies (agile),
abstract notations (uml), source-oriented tools (ide, git), programming

language constructs that help encapsulate complexity (objects)

software engineering

in this course, we are mainly interested in programming
language constructs, in particular objects and functions

today we focus on classes, objects and methods

this is known as the object-oriented approach

what's an object s?
represents particular
“things” from the real
world, or from some

problem domain (e.g., “my
blue rocking chair”)

what's a class?
represents 

all object s of  
a given kind,
e.g., “chairs”

what it does

how it does it

implementationspecification vs

no need to know how
object s are built to use
them, only what can be

done with them

the viewpoint of someone
simply wanting to use

object s (not design them)

encapsulation principle: allows
us to hide (encapsulate) the

complexity of object s

a class specifies the set of
common behaviors offered by
object s (instances) of that class

specification viewpoint

methods & parameters
object have methods

(operations) that can be
invoked (called) and define

their possible behaviors

the set of (public) methods of an object can be seen
as it s contract with the world (it s specification)

when we want an object to
do something for us, we call

one of it s methodschair.rotate(45)

methods may have
parameters to pass

additional information
needed to execute it

chair.rotate(45)

methods & parameters

the implementation viewpoint is
concerned with how an object
actually fulfills it s specification

(it s contract)

how it does it

the fields and methods
define how the object will
behave and are defined by

it s
class

implementation viewpoint

instances
many instances
(object s) can be
created from a

single class

 the class can be seen
as a kind of object
factory (or a mold)

the source code of classes defines
the attributes (fields) and methods

all object s of the class have

fields

class Chair

isBroken (boolean)
age (integer)

model (string)
color (string)

instance myChair

age

color

isBroken

model

"green"

"shell"

5

false

each object stores it s own
values for each field

field values

field values
represent the
object’s state

two chair instances
class Chair

isBroken (boolean)
age (integer)

model (string)
color (string)

instance myFirstChair

isBroken false

age 50

model "wood"

color "brown"

instance mySecondChair

isBroken false

age 5

model "shell"

color "green"

complex numbers

Supplemental Notes on Complex Numbers,
Complex Impedance, RLC Circuits, and Resonance

Complex numbers

Complex numbers are expressions of the form

z = a + ib,

where both a and b are real numbers, and i =
√
−1. Here a is called the real part

of z, denoted by a = Re (z), and b the imaginary part of z, b = Im (z). A complex
number is thus specified by two real numbers, a and b, and therefore it is convenient
to think of it as a two-dimensional vector, plotting the real part on the x-axis, and
the imaginary part on the y-axis. This is called the complex plane.

a=Re(z)

b=Im(z)
z=a+ib

φ

Figure 1: The complex plane

One can manipulate complex numbers like real numbers. For instance, we can add
z1 = a1 + ib1 and z2 = a2 + ib2:

z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2).

Just like with vectors, we just have to add the components, which are here the real
and imaginary parts. We can also multiply complex numbers:

z1z2 = (a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a2b1 + a1b2),

where we used that i2 = −1.
A useful notion is the one of the complex conjugate of z, denoted by z∗. It is

obtained by multiplying the imaginary part by (−1), which means the we are reflecting
the vector in the complex plane across the x-axis. I.e., if z = a + ib, then z∗ = a− ib.
If we now calculate

zz∗ = (a + ib)(a − ib) = a2 + iab − iab + b2 = a2 + b2,

1

quick
reminder

with

Supplemental Notes on Complex Numbers,
Complex Impedance, RLC Circuits, and Resonance

Complex numbers

Complex numbers are expressions of the form

z = a + ib,

where both a and b are real numbers, and i =
√
−1. Here a is called the real part

of z, denoted by a = Re (z), and b the imaginary part of z, b = Im (z). A complex
number is thus specified by two real numbers, a and b, and therefore it is convenient
to think of it as a two-dimensional vector, plotting the real part on the x-axis, and
the imaginary part on the y-axis. This is called the complex plane.

a=Re(z)

b=Im(z)
z=a+ib

φ

Figure 1: The complex plane

One can manipulate complex numbers like real numbers. For instance, we can add
z1 = a1 + ib1 and z2 = a2 + ib2:

z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2).

Just like with vectors, we just have to add the components, which are here the real
and imaginary parts. We can also multiply complex numbers:

z1z2 = (a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a2b1 + a1b2),

where we used that i2 = −1.
A useful notion is the one of the complex conjugate of z, denoted by z∗. It is

obtained by multiplying the imaginary part by (−1), which means the we are reflecting
the vector in the complex plane across the x-axis. I.e., if z = a + ib, then z∗ = a− ib.
If we now calculate

zz∗ = (a + ib)(a − ib) = a2 + iab − iab + b2 = a2 + b2,

1

Supplemental Notes on Complex Numbers,
Complex Impedance, RLC Circuits, and Resonance

Complex numbers

Complex numbers are expressions of the form

z = a + ib,

where both a and b are real numbers, and i =
√
−1. Here a is called the real part

of z, denoted by a = Re (z), and b the imaginary part of z, b = Im (z). A complex
number is thus specified by two real numbers, a and b, and therefore it is convenient
to think of it as a two-dimensional vector, plotting the real part on the x-axis, and
the imaginary part on the y-axis. This is called the complex plane.

a=Re(z)

b=Im(z)
z=a+ib

φ

Figure 1: The complex plane

One can manipulate complex numbers like real numbers. For instance, we can add
z1 = a1 + ib1 and z2 = a2 + ib2:

z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2).

Just like with vectors, we just have to add the components, which are here the real
and imaginary parts. We can also multiply complex numbers:

z1z2 = (a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a2b1 + a1b2),

where we used that i2 = −1.
A useful notion is the one of the complex conjugate of z, denoted by z∗. It is

obtained by multiplying the imaginary part by (−1), which means the we are reflecting
the vector in the complex plane across the x-axis. I.e., if z = a + ib, then z∗ = a− ib.
If we now calculate

zz∗ = (a + ib)(a − ib) = a2 + iab − iab + b2 = a2 + b2,

1

Supplemental Notes on Complex Numbers,
Complex Impedance, RLC Circuits, and Resonance

Complex numbers

Complex numbers are expressions of the form

z = a + ib,

where both a and b are real numbers, and i =
√
−1. Here a is called the real part

of z, denoted by a = Re (z), and b the imaginary part of z, b = Im (z). A complex
number is thus specified by two real numbers, a and b, and therefore it is convenient
to think of it as a two-dimensional vector, plotting the real part on the x-axis, and
the imaginary part on the y-axis. This is called the complex plane.

a=Re(z)

b=Im(z)
z=a+ib

φ

Figure 1: The complex plane

One can manipulate complex numbers like real numbers. For instance, we can add
z1 = a1 + ib1 and z2 = a2 + ib2:

z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2).

Just like with vectors, we just have to add the components, which are here the real
and imaginary parts. We can also multiply complex numbers:

z1z2 = (a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a2b1 + a1b2),

where we used that i2 = −1.
A useful notion is the one of the complex conjugate of z, denoted by z∗. It is

obtained by multiplying the imaginary part by (−1), which means the we are reflecting
the vector in the complex plane across the x-axis. I.e., if z = a + ib, then z∗ = a− ib.
If we now calculate

zz∗ = (a + ib)(a − ib) = a2 + iab − iab + b2 = a2 + b2,

1

Supplemental Notes on Complex Numbers,
Complex Impedance, RLC Circuits, and Resonance

Complex numbers

Complex numbers are expressions of the form

z = a + ib,

where both a and b are real numbers, and i =
√
−1. Here a is called the real part

of z, denoted by a = Re (z), and b the imaginary part of z, b = Im (z). A complex
number is thus specified by two real numbers, a and b, and therefore it is convenient
to think of it as a two-dimensional vector, plotting the real part on the x-axis, and
the imaginary part on the y-axis. This is called the complex plane.

a=Re(z)

b=Im(z)
z=a+ib

φ

Figure 1: The complex plane

One can manipulate complex numbers like real numbers. For instance, we can add
z1 = a1 + ib1 and z2 = a2 + ib2:

z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2).

Just like with vectors, we just have to add the components, which are here the real
and imaginary parts. We can also multiply complex numbers:

z1z2 = (a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a2b1 + a1b2),

where we used that i2 = −1.
A useful notion is the one of the complex conjugate of z, denoted by z∗. It is

obtained by multiplying the imaginary part by (−1), which means the we are reflecting
the vector in the complex plane across the x-axis. I.e., if z = a + ib, then z∗ = a− ib.
If we now calculate

zz∗ = (a + ib)(a − ib) = a2 + iab − iab + b2 = a2 + b2,

1

complex pane

we see that zz∗ is a positive real number, and
√

zz∗ is just the length of the vector z
in the complex plane.

To calculate the quotient of two complex numbers, we multiply both the denomi-
nator and the numerator with the complex conjugate of the denominator:

z1

z2
=

a1 + ib1

a2 + ib2
=

(a1 + ib1)(a2 − ib2)

(a2 + ib2)(a2 − ib2)

=
a1a2 + ia2b1 − ia1b2 + b1b2

a2
2 + b2

2

=
a1a2 + b1b2

a2
2 + b2

2

+ i
a2b1 − a1b2

a2
2 + b2

2

.

Example: We calculate 1/i. The complex conjugate of i is −i, hence we get

1

i
=

(1)(−i)

(i)(−i)
=

−i

1
= −i.

Thus 1/i = −i.
Let’s check this result. i times it’s inverse must of course be 1. We have

i
1

i
= 1 = i(−i) = −i2 = −(−1) = 1.

It works out!

Since a complex number can be thought of as a two-dimensional vector, it can be
specified either by its components (the real and imaginary parts), or by its length and
the angle it makes with the x-axis (see figure 1). We already saw that the length,
denoted by |z|, is given by |z| =

√
zz∗. From figure 1, we see that the angle is given

by

tanφ =
Im (z)

Re (z)
.

In particular,
z = |z| (cos φ + i sin φ) .

This can be conveniently rewritten, making use of Euler’s formula:

eiφ = cos φ + i sin φ. (1)

This formula can be derived by a Taylor expansion of both the exponential and the
sine and cosine. It tells as the the complex number eiφ is a vector of length 1 that
makes an angle φ with the x-axis. Hence we see that any complex number z can be
written as

z = |z|eiφ,

|z| being the magnitude of z and φ being the angle between z and the x-axis.

Example: Let’s calculate the magnitude and angle of z = −1 + i. The magnitude
is

√
zz∗, and zz∗ = (−1 + i)(−1 − i) = 2. The angle is determined by tanφ =

2

we see that zz∗ is a positive real number, and
√

zz∗ is just the length of the vector z
in the complex plane.

To calculate the quotient of two complex numbers, we multiply both the denomi-
nator and the numerator with the complex conjugate of the denominator:

z1

z2
=

a1 + ib1

a2 + ib2
=

(a1 + ib1)(a2 − ib2)

(a2 + ib2)(a2 − ib2)

=
a1a2 + ia2b1 − ia1b2 + b1b2

a2
2 + b2

2

=
a1a2 + b1b2

a2
2 + b2

2

+ i
a2b1 − a1b2

a2
2 + b2

2

.

Example: We calculate 1/i. The complex conjugate of i is −i, hence we get

1

i
=

(1)(−i)

(i)(−i)
=

−i

1
= −i.

Thus 1/i = −i.
Let’s check this result. i times it’s inverse must of course be 1. We have

i
1

i
= 1 = i(−i) = −i2 = −(−1) = 1.

It works out!

Since a complex number can be thought of as a two-dimensional vector, it can be
specified either by its components (the real and imaginary parts), or by its length and
the angle it makes with the x-axis (see figure 1). We already saw that the length,
denoted by |z|, is given by |z| =

√
zz∗. From figure 1, we see that the angle is given

by

tanφ =
Im (z)

Re (z)
.

In particular,
z = |z| (cos φ + i sin φ) .

This can be conveniently rewritten, making use of Euler’s formula:

eiφ = cos φ + i sin φ. (1)

This formula can be derived by a Taylor expansion of both the exponential and the
sine and cosine. It tells as the the complex number eiφ is a vector of length 1 that
makes an angle φ with the x-axis. Hence we see that any complex number z can be
written as

z = |z|eiφ,

|z| being the magnitude of z and φ being the angle between z and the x-axis.

Example: Let’s calculate the magnitude and angle of z = −1 + i. The magnitude
is

√
zz∗, and zz∗ = (−1 + i)(−1 − i) = 2. The angle is determined by tanφ =

2

we see that zz∗ is a positive real number, and
√

zz∗ is just the length of the vector z
in the complex plane.

To calculate the quotient of two complex numbers, we multiply both the denomi-
nator and the numerator with the complex conjugate of the denominator:

z1

z2
=

a1 + ib1

a2 + ib2
=

(a1 + ib1)(a2 − ib2)

(a2 + ib2)(a2 − ib2)

=
a1a2 + ia2b1 − ia1b2 + b1b2

a2
2 + b2

2

=
a1a2 + b1b2

a2
2 + b2

2

+ i
a2b1 − a1b2

a2
2 + b2

2

.

Example: We calculate 1/i. The complex conjugate of i is −i, hence we get

1

i
=

(1)(−i)

(i)(−i)
=

−i

1
= −i.

Thus 1/i = −i.
Let’s check this result. i times it’s inverse must of course be 1. We have

i
1

i
= 1 = i(−i) = −i2 = −(−1) = 1.

It works out!

Since a complex number can be thought of as a two-dimensional vector, it can be
specified either by its components (the real and imaginary parts), or by its length and
the angle it makes with the x-axis (see figure 1). We already saw that the length,
denoted by |z|, is given by |z| =

√
zz∗. From figure 1, we see that the angle is given

by

tanφ =
Im (z)

Re (z)
.

In particular,
z = |z| (cos φ + i sin φ) .

This can be conveniently rewritten, making use of Euler’s formula:

eiφ = cos φ + i sin φ. (1)

This formula can be derived by a Taylor expansion of both the exponential and the
sine and cosine. It tells as the the complex number eiφ is a vector of length 1 that
makes an angle φ with the x-axis. Hence we see that any complex number z can be
written as

z = |z|eiφ,

|z| being the magnitude of z and φ being the angle between z and the x-axis.

Example: Let’s calculate the magnitude and angle of z = −1 + i. The magnitude
is

√
zz∗, and zz∗ = (−1 + i)(−1 − i) = 2. The angle is determined by tanφ =

2

we see that zz∗ is a positive real number, and
√

zz∗ is just the length of the vector z
in the complex plane.

To calculate the quotient of two complex numbers, we multiply both the denomi-
nator and the numerator with the complex conjugate of the denominator:

z1

z2
=

a1 + ib1

a2 + ib2
=

(a1 + ib1)(a2 − ib2)

(a2 + ib2)(a2 − ib2)

=
a1a2 + ia2b1 − ia1b2 + b1b2

a2
2 + b2

2

=
a1a2 + b1b2

a2
2 + b2

2

+ i
a2b1 − a1b2

a2
2 + b2

2

.

Example: We calculate 1/i. The complex conjugate of i is −i, hence we get

1

i
=

(1)(−i)

(i)(−i)
=

−i

1
= −i.

Thus 1/i = −i.
Let’s check this result. i times it’s inverse must of course be 1. We have

i
1

i
= 1 = i(−i) = −i2 = −(−1) = 1.

It works out!

Since a complex number can be thought of as a two-dimensional vector, it can be
specified either by its components (the real and imaginary parts), or by its length and
the angle it makes with the x-axis (see figure 1). We already saw that the length,
denoted by |z|, is given by |z| =

√
zz∗. From figure 1, we see that the angle is given

by

tanφ =
Im (z)

Re (z)
.

In particular,
z = |z| (cos φ + i sin φ) .

This can be conveniently rewritten, making use of Euler’s formula:

eiφ = cos φ + i sin φ. (1)

This formula can be derived by a Taylor expansion of both the exponential and the
sine and cosine. It tells as the the complex number eiφ is a vector of length 1 that
makes an angle φ with the x-axis. Hence we see that any complex number z can be
written as

z = |z|eiφ,

|z| being the magnitude of z and φ being the angle between z and the x-axis.

Example: Let’s calculate the magnitude and angle of z = −1 + i. The magnitude
is

√
zz∗, and zz∗ = (−1 + i)(−1 − i) = 2. The angle is determined by tanφ =

2

intuitive interpretation

multiplication
subtraction

addition

class Complex(object): 
 def __init__(self, re, im): 
 self.re = re 
 self.im = im 
 
 def add(self, other): 
 return Complex(self.re + other.re, 
 self.im + other.im) 
 
 def sub(self, other): 
 return Complex(self.re - other.re, 
 self.im - other.im) 
 
 def mul(self, other): 
 return Complex(self.re*other.re - self.im*other.im, 
 self.im*other.re + self.re*other.im)

z1 = Complex(2,-1) 
z2 = Complex(2,-4)
 
z = z1.add(z2) 
print("{0} + {1} = {2}".format(z1,z2,z)) 

z = z1.sub(z2) 
print("{0} - {1} = {2}".format(z1,z2,z)) 

z = z1.mul(z2) 
print("{0} * {1} = {2}".format(z1,z2,z))

2-i + 2-4i = 4-5i
2-i - 2-4i = 3i
2-i * 2-4i = -10i

complex numbers quick
reminder

class Complex(object): 
 def __init__(self, re, im): 
 self.re = re 
 self.im = im 
 
 def __add__(self, other): 
 return Complex(self.re + other.re, 
 self.im + other.im) 
 
 def __sub__(self, other): 
 return Complex(self.re - other.re, 
 self.im - other.im) 
 
 def __mul__(self, other): 
 return Complex(self.re*other.re - self.im*other.im, 
 self.im*other.re + self.re*other.im)

z1 = Complex(2,-1) 
z2 = Complex(2,-4)
 
z = z1 + z2 
print("{0} + {1} = {2}".format(z1,z2,z)) 

z = z1 - z2 
print("{0} - {1} = {2}".format(z1,z2,z)) 

z = z1 * z2 
print("{0} * {1} = {2}".format(z1,z2,z))

2-i + 2-4i = 4-5i
2-i - 2-4i = 3i
2-i * 2-4i = -10ioperator overloading

complex numbers
multiplication

subtraction
addition

quick
reminder

complex numbers
class Complex(val re: Double, val im: Double) {

 def add(c: Complex) = new Complex(re + c.re, im + c.im)

 def +(c: Complex) = new Complex(re + c.re, im + c.im)

 def +(d: Double) = new Complex(re + d, im)

 def this(re: Double) = this(re, 0)

}

implicit def fromDouble(d: Double) = new Complex(d)

val z1 = new Complex(2,-1) 
val z2 = new Complex(2,-4) 
 
var z = z1.add(z2) 
println(s"$z1 + $z2 = $z")
z = z1 + z2 
println(s"$z1 + $z2 = $z")
z = z1 + 6  
println(s"$z1 + 6 = $z") 
 
z = 6 + z1  
println(s"6 + $z1 = $z")

2.0-1.0i + 2.0-4.0i = 4.0-5.0i
2.0-1.0i + 2.0-4.0i = 4.0-5.0i
2.0-1.0i + 6 = 8.0-1.0i
6 + 2.0-1.0i = 8.0-1.0i

operator & constructor overloading

implicit conversion

class declaration
class Complex(val re: Double, val im: Double) {

 def add(c: Complex) = new Complex(re + c.re, im + c.im)

 def +(c: Complex) = new Complex(re + c.re, im + c.im)

 def +(d: Double) = new Complex(re + d, im)

 def this(re: Double) = this(re, 0)
}
implicit def fromDouble(d: Double) = new Complex(d)

class Complex(object):

 def __init__(self, re, im): 
 self.re = re 
 self.im = im

 def add(self, other): 
 return Complex(self.re + other.re, 
 self.im + other.im)

 def __add__(self, other): 
 return Complex(self.re + other.re, 
 self.im + other.im)

class declaration & constructor

class declaration

method

method

operator overloading

operator overloading

constructor

constructor overloading

implicit conversion

modularization consists in dividing a complex object into
elemental objects that can be developed independently

the encapsulation offered by objects is
the cornerstone of modularization

because it hides implementation details

abstraction & modularization

once elemental objects have been
developed and tested, they can be

assembled into a more complex object

this is known as code reuse

12 : 30one four-digit display?

two two-digit displays? 30 12

abstraction & modularization
example of a digital clock

OR

class NumberDisplay(val limit: Int, private var value : Int = 0) { 
 
 def increment() { 
 value = (value + 1) % limit 
 }  
 
 def set(value: Int) { 
 this.value = value % limit 
 }  
 
 def get : Int = { this.value } 
 
 override def toString: String = { 
 if(value < 10) 
 "0" + value 
 else  
 value.toString 
 }  
}

NumberDisplay class

val number = new NumberDisplay(24) 
println(s"number = $number") 
 
number.set(22) 
println(s"number = $number") 
 
number.increment() 
println(s"number = $number") 
 
number.increment() 
println(s"number = $number")

number = 00
number = 22
number = 23
number = 00

class ClockDisplay() { 
 val hours = new NumberDisplay(24) 
 val minutes = new NumberDisplay(60) 
 
 def timeClick { 
 minutes.increment() 
 if (minutes.get == 0) 
 hours.increment() 
 }  
 
 def set(hours:Int, minutes:Int) { 
 this.hours.set(hours) 
 this.minutes.set(minutes) 
 }  
 
 override def toString: String = hours + ":" + minutes 
}

ClockDisplay class
val clock = new ClockDisplay 
println(s"clock = $clock") 
 
clock.set(10,58) 
println(s"clock = $clock") 
 
clock.timeClick 
println(s"clock = $clock") 
 
clock.timeClick 
println(s"clock = $clock") 
 
clock.set(23,59) 
println(s"clock = $clock") 
 
clock.timeClick 
println(s"clock = $clock") 

clock = 00:00
clock = 10:58
clock = 10:59
clock = 11:00
clock = 23:59
clock = 00:00

public class NumberDisplay {
 private int limit;
 private int value;

 public NumberDisplay(int limit, int value){
 this.limit = limit;
 this.value = value;
 }
 public NumberDisplay(int limit){
 this(limit, 0);
 }
 public int get() { return value; }
 public void set(int value) {
 this.value = value;
 }
 public void increment(){
 value = (value + 1) % limit;
 }
 public String toString(){
 if(value < 10) { return "0" + value; }
 else { return "" + value; }
 }
}

NumberDisplay class

var number = new NumberDisplay(24);
System.out.println("number = " + number);

number.set(22);
System.out.println("number = " + number);

number.increment();
System.out.println("number = " + number);

number.increment();
System.out.println("number = " + number);

number = 00
number = 22
number = 23
number = 00

public class ClockDisplay {
 private NumberDisplay hours;
 private NumberDisplay minutes;
 private String displayString;

 public ClockDisplay(){
 hours = new NumberDisplay(24,0);
 minutes = new NumberDisplay(60, 0);
 }
 public void timeTick(){
 minutes.increment();
 if(minutes.get() == 0) {
 hours.increment();
 }
 }
 public void set(int hours, int minutes) {
 this.hours.set(hours);
 this.minutes.set(minutes);
 }
 public String toString(){
 return hours + ":" + minutes;
 }
}

ClockDisplay class
var clock = new ClockDisplay();
System.out.println("clock = " + clock);

clock.set(10,58);
System.out.println("clock = " + clock);

clock.timeTick();
System.out.println("clock = " + clock);

clock.timeTick();
System.out.println("clock = " + clock);

clock.set(23,59);
System.out.println("clock = " + clock);

clock.timeTick();
System.out.println("clock = " + clock);

clock = 00:00
clock = 10:58
clock = 10:59
clock = 11:00
clock = 23:59
clock = 00:00

object diagram

clock:
ClockDisplay

hours

minutes

:NumberDisplay

limit

value

24

17

:NumberDisplay

limit

value

60

24

