asynchronous

interactons

develop

Iearning
ob_)ec’rives

ldeploy

+ learn what asqnchronous interactions are
* learn about asynchronous methods in java
+ learn about ‘|’Cpludp sockets and web sockets

+ learn about message-orien’red middleware and jms*

*java messaging service

what is an asqnchronous interaction?

no bﬁocking of ﬂ"? chent no polling by the client when a
until the server is done oqyit is expected from the server

chent seyvey chent seyvey chent seyvey

' workForMe (...)

workForMe(...) workForMe(...)

>
. } actual 1sResultReady () } actual } actual
. work , work i work
: isResultReady () i
result isResultReady () N result
(optional) | (optional)
result
synchronous polling asynchronous

as1nchronous interactions allow to achieve time decoupling

as~,nchronous methods

asynchronous methods

a session bean can imPlemerﬂ’

these objects are

they rely on the notion qjso called promises
of future objects — —

— the container returns

chent

as1nchronous method support

server the control to the client

workForMe (...)

workForMe (...)

before the method is
ad’uall1 invoked n

get()

future result §

background

L — e

> actual
work

actual result

GeD@ (O

actual result

" the client can try to get the
result but might be blocked
o it is not ready yet

serveyr side
A

asynchronous methods

/| eremote an asynchronous method must return
ublic interface PortfolioRemote { . o
ppublic Future<Double> computeValue(); VOld oYy a Future<VV> ObjeC‘r
} |

L e—

e —— S ————

@Stateful
public class Portfolio implements PortfolioRemote { |‘F |‘|’ re‘rurns VOid, rr

@Resource

SessionContext context; cannot declare QXCQP‘ﬁonS

| — P ——

@Asynchronous

public Future<Double> computeValue() {
double value = ...;
return new AsyncResult<Double>(value);

}
}

the chent can use the Future<v> objec’r to retrieve
the actual result or to cancel the invocation

side

chen

/ as1nchronous methods

public interface PortfolioRemote {
public Future<Double> computeValue();

}

Future<Double> value = myPortfolio.computeValue();

System.out.println("Portfolio is worth $" + value.get());

Future<Double> value = myPortfolio.computeValue();
try {

System.out.println("'Portfolio is worth $" + value.get(5, TimeUnit.SECONDS));
} catch (TimeoutException ex) {

value.cancel (true);

System.err.println(' Timeout: operation was cancelled");

\ }
[@Asynchronous
public Future<Double> computeValue() {
1f (context.wasCancelCalled()) {
System.err.println('Call to computeValue() was cancelled");
return null;
}

double value = ...; // Processor-intensive computation
return new AsyncResult<Double>(value);

serveyr side
A

as1nchrono

UsS messa
using sockets

distributed application

apphication

~ presentation

session

logical peer-to-peer link

session

><

~ transport

data hnk

7') 1 data link

~ physical link

the 0s51* model

*oPen s~,sfems interconnection

apphication

g\ng

€ stream oriented
@ reliable channels
@ fifo ordering

. presentation

- transport

data link "

N fifo = first in first out

fransmission
control
protocol

internet
protocol

I

« packet oriented

@ best-effort routing

@ error detection

« datagram fragmentation

UsS messa
using sockets

asynchrono

g\ng

internet protocol
an ip address is used b1 the 1p protocol
to address computers and routers

an ip V4 address consists of 32-bits (4 bx,’res) and is often
written in dotted decimal format, e.q., 130.223.171.8

Class First byte Networks Hosts Address format
A 1-120 |2/ -2 |= 126 P24 — 2 = 16777214 netid host id
3 128—-191 214 = 16'384 216 — 2 = 05534 net 10 nost 10
C 192223 | 221 =| 2097162 | 26 =2 = 254 net 10 nost 10
D 224239 multicast
- 240247 reserved

UsS messa
using sockets

asynchrono

internet protocol
p V4 address

A ONNNNNNN . HHHHHHHH . HHHHHHHH . HHHHHHHH
3 1AONNNNNN.NNNNNNNN.HHHHHHHH . HHHHHHHH
C 11ONNNNN.NNNNNNNN.NNNNNNNN.HHHHHHHH
D

1119MMMM . MMMMMMMM ; MMMMMMMM . MMMMMMMM
= 1111RRRR.RRRRRRRR.RRRRRRRR.RRRRRRRR

g\ng

N network ID bits M multicast address bit
H host ID bits R reserved bits

UsS messa
using sockets

asyncwono

9\ng

addresses encoded on 128 bits

internet protocol
p V& address

= 2% 5 3.4 % 10>® available addresses

&
2.F6 X 10 km

.25 X 107° kwmt ~ 10 X earth-moon

= 101€ X dista
earth-sun

UsS messa
using sockets

as1nchrono

g\ng

an ip address designafes a machine

addressing apphcations

apphication § qpplication § application
 process process § process .

a port numbeyr designa’res an
application within a machine

e this s known as

‘|’CP or udp - -
> oPe,raﬁng sqs’rem POY‘r mult |plexmg

p

.
mac ‘ne a o) N 2 mac ‘ne 4 i
R S ot - N S e ey L 3 ~ s o 3 3 T TR ~ > e < C - =T = 3 Gt 2 - T — v (S =2 - 3 TS - > AUy < v - s = 3 e e T :
\

UsS messa
using sockets

asynchrono

g\ng

sockets are programming abstractions represen'ring
bidirectional communication channels between processes

there exists two types of sockets, namely
tcp sockets and upd sockets

in java, sockets are instances of various
classes found in the java.net package

UsS messa
using sockets

asynchrono

g\ng

Transmission ola oL
control Lbla_——~_bla bla
protocol

user

datagram
protocol

connection reliable i{e message
oriented channels ordering oriented

UsS messa
using sockets

asyncwono
tep sockets

g\ng

since tcp is connection-oriented, we have
two classes for tcp sockets in java

chent T
public class Socket { sey vey
public Socket(String host, int port) {..} public class ServerSocket |
public OutputStream getOutputStream() {..} :
public InputStream getInputStream() {{..} public ServerSocket(int port) {..}
public void close() {..} public Socket accept() {..}
} }

this captures the asymmetry when
esfablishing a communication channel

L —

UsS messa
using sockets

asyncwono

e
public class DictionaryServer {

SOCke | s private static Map dico = Map.of('inheritance", "héritage", "distributed", "réparti');

public static void main(String[] args) {
Server ServerSocket connectionServer = null;
Socket clientSession = null;
PrintWriter out = null;
BufferedReader in = null;

try {
connectionServer = new ServerSocket(4444);
clientSession = connectionServer.accept();
out = new PrintWriter(clientSession.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(clientSession.getInputStream()));

String word, mot;

while ((word = in.readLine()) != null) {
mot = (String) dico.get(word);
1if (mot == null) {
mot = "sorry, no translation available for \"" + word + "\" !";
}
out.println(mot);
}
out.close(); in.close(); connectionServer.close(); clientSession.close();

} catch (IOException e) {
System.out.println(e);
System.exit(1l);

‘pr
sockets
chent

asyncwono

public class DictionaryClient {

public static void main(String[] args) {

Socket mySession = null;

PrintWriter out null;

BufferedReader in = null;

Buf feredReader stdIn = null;

try {

if (args.length < 1) {

System.out.println("Hostname missing.");
System.exit(1l);

}

mySession = new Socket(args[0], 4444);

out = new PrintWriter (mySession.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader (mySession.getInputStream()));
stdIn = new BufferedReader (new InputStreamReader (System.in));

String fromServer, fromUser;

System.out.println("'Go on, ask the dictionary server!'");
while (! (fromUser = stdIn.readLine()).equals('quit”)) {
out.println(fromUser);
fromServer = in.readLine();
System.out.println("-> " + fromServer);
}
out.close(); in.close(); stdIn.close(); mySession.close();

} catch (UnknownHostException e) {
System.err.println("Host Unknown:
System.exit(1l);

} catch (IOException e) {
System.err.println("'No connection to:
System.exit(1l);

+ args[0]);

+ args[0]);

UsS messa
using sockets

9\ng

4

UsS messa
using sockets

asynchrono

the concept of streams
(unix and java)

g\ng

streams offer a unified programming
abstraction for reading and writing data

streams can encapsulate various ’qpes of data sources,
e.g., files, b1’re arrays n memory, sockets, etc.

streams can encapsulate other streams
to stack up processing of the data

in java, streams are instances of various
classes found in the java.io package

UsS messa
using sockets

g\ng

asynchrono

the concept of streams
(unix and java)

Socket clientSession= connectionServer.accept();
Buf feredReader in= new BufferedReader(new InputStreamReader(clientSession.getInputStream()));

da‘r:?ource J
—~—
N byte stream -
chan;;;;ﬂ;;;;m
printer and writer classes are buffered character stream

sPecial streams manipulaﬁng
onl1 characters

L —

standard oPeraﬁng s1sfems-level input and output streams are
also accessed via java streams (System.in & System.out)

UsS messa
using sockets

asynchrono
the concept of object streams

fact the network knows nothing problem 50 how can we send an object
7 about objects, only bytes ~ qgraph across the network?

g\ng

solution any java object can be encoded into a stream of
' bytes and recreated from it by implementing
the java.io.Serializable interface

thns process is known as object serialization ;EJI

2 1011011101011001010101010110010111001001101 B

%
'.' |

ObjectOutputStream out = new ObjectOutputStream(sessionWithServer.getOutputStream());
out.writeObject (senderCollection);

sendeyr receivey

ObjectInputStream in = new ObjectInputStream(sessionWithClient.getInputStream());
Collection receiverCollection = (Collection) in.readObject();

UsS messa
using sockets

asynchrono qing
since udp 15 connectionless, we have
only one class for udp sockets in java

——— e s

udp sockets

public class DatagramSocket {

public DatagramSocket() {..} public class DatagramPacket {

public DatagramSocket(int port) {..} :

public void send(DatagramPacket packet) {..} public DatagramPacket(..) {..}

public void receive(DatagramPacket packet) {..} public byte[] getData() {..}

public void close() {..} public InetAddress getAddress() {..}
} }

| — N ————

the DatagramPacket class is key

when working with udp sockets it captures the message-oriented
S nature of udp sockets

L — N ——-

UsS messa
using sockets

N9
udP SOCke‘rs public class QuoteServer ({

public static void main(String[] args) throws Exception {
DatagramSocket socket = null;
BufferedReader in = null;
socket = new DatagramSocket(4445);
in = new BufferedReader(new FileReader('one-liners.txt"));
String quote = null;

asyncwono

boolean moreQuotes = true;

i while (moreQuotes) {
Life is wonderful. Without it we'd al be dead, byte[] buf = new byte[256];
Daddy, why doesn't this magnet pick up this floppy disk?
Give me ambiguity or give me something else. DatagramP acC ket paC ket = new DatagramP acC ket (bu f ’ bu f ° length) ;
l.R.S.: We've got what it takes to take what you've got! .
We are born naked, wet and hungry. Then things get worse. SOC ket .Yecelve (paC ket) ;
Make it idiot proof and someone will make a better idiot. _ . .
He who laughs last thinks slowest! qUOte = 1ln.re adLlne () ;
Always remember you're unique, just like everyone else. . -
"l\/IV\c/)rg hray, Triggeg” 'L'JNro tuhalnEs, IJ'-L%Joy, II'm s\{u;fyed!" 1 f (qU-Ote == nu l l) {
A flashlight is a case for holding dead batteries. — °
Lottery: A tax on people who are bad at math. moreQUOte S = f a l S€E 4
Error, no keyboard - press F1 to continue. —_— " " °
There'stooymuch blood in my caﬁeinleiystem. bU'f - (NO more 4 bye !) ° getBYteS () 4
Artificial Intelligence usually beats real stupidity. — °
Hralrclj 1/vork halls a futtljreupa{/off. Lazrinesslz)allyls{)ﬁ NOW. } = l S€ { bu f qU.Ote ° getBYte S () 4 }
"Very f , Scotty. Now b d lothes." — °
Puerirtyanlljigrrr?:/ Thceoh;/unt?r% fee.:rn:[]ha(t)vsvgm?(/)ﬁeo, ssfnewhere may be happy.].: netAddre SS addre SS paC ket ° getAddre SS () r
s el g e et g, int port = packet.getPort();
| don't suffer from insanity. | enjoy every minute of it packet = new DatagramPacket(buf, buf.length, address, port);

Better to understand a little than to misunderstand a lot.

socket.send(packet);

}

socket.close();

UsS messa
using sockets

asyncwono

9\ng

udp sockets

public class QuoteClient {
public static void main(String[] args) throws Exception {
1if (args.length != 1) { System.out.println("'Missing hostname"); System.exit(1l); }
DatagramSocket socket = new DatagramSocket();
InetAddress address = InetAddress.getByName(args[0]);
Buf feredReader stdIn = new BufferedReader(new InputStreamReader (System.in));
System.out.println("'Go on, ask for a quote by typing return!");
while (!stdIn.readLine().equals('quit”)) {
byte[] buf = new byte[256];
DatagramPacket packet = new DatagramPacket(buf, buf.length, address, 4445);
socket.send(packet);
packet = new DatagramPacket(buf, buf.length);
socket.receive(packet);
String received = new String(packet.getData()).trim();
System.out.println("-> " + received);

}

socket.close();

UsS messa
using sockets

as1nchrono qing
usey

datagram
protocol

__one-to-one communication

— — — e —————— —r po— JE——— — —— E—————s

B — = e — e — e e ——————— e ——

one-’ro-mam communication

udp multicast

a multicast address hes in
range 224.0.0.0 , 239.255.255.255]
and defines a multicast group

L —

\n java, udp multicast is
accessed via MulticastSocket,
a subclass of patagramSocket

L —

asynchronous messa

. 9ing
udp multicast using sockets
public class MulticastQuoteSender {

public static void main(String[] args) throws Exception {
MulticastSocket socket = null;
BufferedReader in = null;
socket = new MulticastSocket();
InetSocketAddress group = new InetSocketAddress(InetAddress.getByName(' '228.0.0.4"), 9000);

maximum number of NetworkInterface networkInterface = NetworkInterface.getByName('enl");
routers a multicast socket.setTimeToLive(1l);
packet can go through in = new BufferedReader(new FileReader('one-liners.txt"));
String quote = null;

before being deleted boolean moreQuotes = true;

while (moreQuotes) {
Thread.currentThread().sleep(2000);
byte[] buf = new byte[256];

quote = i1n.readLine();
1f (quote == null) {
moreQuotes = false;
buf = ("No more, bye!").getBytes();
} else {
buf = quote.getBytes();
}
System.out.println("About to multicast: " + new String(buf));

DatagramPacket packet = new DatagramPacket(buf, buf.length, group);
socket.send(packet);

}

socket.close();

tuning in

tuning out

asyncwono

udp multicast

public class MulticastQuoteReceiver {

public static void main(String[] args) throws Exception {

try (MulticastSocket socket

InetSocketAddress group

new MulticastSocket(9000)) {
new InetSocketAddress(InetAddress.getByName('"228.0.0.4"),

UsS messa
using sockets

9\ng

NetworkInterface netInterface = NetworkInterface.getByName(enl0");
socket.joinGroup(group, netInterface);

while (true) {

byte[] buf = new byte[256];
DatagramPacket packet

System.out.print('Waiting for the next quote:

= new DatagramPacket(buf, buf.length);

socket.receive(packet);
String received = new String(packet.getData());

System.out.println(received.trim());

1f (received.contains('bye")) {
break;

}

}

socket.leaveGroup(group,
socket.close();

} catch (Exception e) {

}

e.printStackTrace();

netInterface);

")

9000) ;

asynchronous messaging
udp multicast using sockets

creating a multicast route

deleting the multicast route

asqnchronous messa
using web sockets

g\ng

unhke http, which is a request- web sockets are similar to tcp
response protocol, the web socket sockets but they otfer streams
protocol is message-oriented and of messages, rather than
offers full-duplex channels streams of bytes

L e—

L —— N ——— e

most web browsers and servers support web sockets via two uri* schemes

ws://host:port/... for unenc,ﬂp‘l' ed streams wss://host:port/... for encrqpf ed streams

the web socket protocol is based on tcp and totally independent from
http, except for the handshake phase, which done via an http request
interpreted by the server as an upgrade request

*uniform resource identifier

| S messa
asinChr?gr?guweb sockets

9\ng

ONOoOUusS messa
using web sockets

as1nchr

<!DOCTYPE html>

web chent <html>

g\ng

<head>
— — <title>Start Page</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<hl>Collaborative Whiteboard App</hl>
<table>
<tr>
<td>
<canvas id="myCanvas" width="150" height="150" style="border:1lpx solid #000000; "></canvas>
</td>
<td>
<form name="inputForm">
<table>
<tr>
<th>Color</th>
<td><input type="radio" name="color" wvalue="#FF0000" checked="true">Red</td>
<td><input type="radio" name="color" wvalue="#0000FF">Blue</td>
<td><input type="radio" name="color" wvalue="#FF9900">0range</td>
<td><input type="radio" name="color" wvalue="#33CC33">Green</td>
</tr>
<tr>
<th>Shape</th>
<td><input type="radio" name="shape" value="square" checked="true">Square</td>
<td><input type="radio" name="shape" value="circle">Circle</td>
<td> </td>
<td> </td>
</table>
client code IS
N javaSCFipt — <script type="text§javascript " src="websocket. js"></§cript>
<script type="text/javascript" src="whiteboard.js"></script> 0
</body>p ' : g : ° lndeX .html
</html>

asqnchronous messa
using web sockets

g\ng

var wsUri = "ws://" + document.location.host + document.location.pathname + "whiteboardendpoint”;
console.log("wsURI: " + wsUri)

web chent

— —

var websocket = new WebSocket (wsUri);
web socket —— ()i

in javascript function sendText(json) {
console.log('"sending text:

+ json);

websocket.send(json);

}

websocket.onerror = function (evt) {
onError(evt)

}i

websocket.onmessage = function (evt) {
onMessage(evt)

¥

function onError(evt) {
writeToScreen(ERROR: ' + evt.data);

}

function onMessage(evt) {
console.log("' received: " + evt.data);

drawImageText (evt.data); WebSOC ket . j S
}

web chent

o —

B —

function defineImage(evt) {
var currentPos = getCurrentPos(evt);

for (1 = 0; 1 < document.inputForm.color.length;
1f (document.inputForm.color[i].checked) {
var color = document.inputForm.color[i];
break;

}

for (1 = 0; 1 < document.inputForm.shape.length;
if (document.inputForm.shape[i].checked) {
var shape = document.inputForm.shape[i];
break;

}
var json = JSON.stringify({
"shape"”: shape.value,
"color": color.value,
"coords': {
'x"s: currentPos.ZXx,
currentPos.y

y'e
}

})i

drawImageText (json);
sendText (json);

}

asqnchronous messa

function drawImageText (image) {

g\ng

var canvas = document.getElementById('myCanvas"); 0
var context = canvas.getContext("'2d");
canvas.addEventListener('click"”, definelmage,

using web sockets
2,

false);

i++) {

function getCurrentPos(evt) {
var rect = canvas.getBoundingClientRect();
return {
Xx: evt.clientX - rect.left,
y: evt.clientY - rect.top

}i

i++) { }

3,

console.log("drawImageText");
var jJson = JSON.parse(image);
context.fillStyle = json.color;
switch (Jjson.shape) {
case 'circle’:
context.beginPath();
context.arc(json.coords.x,
context.f£111();
break;
case '"square':
default:
context.fillRect (json.coords.x,
break;

json.coords.y, 5, 0, 2 * Math.PI, false);

json.coords.y, 10, 10);

whiteboard. js

9\ng

@ServerEndpoint(value = "/whiteboardendpoint", encoders = {FigureEncoder.class}, decoders = {FigureDecoder.class})
public class MyWhiteboard {

asynchronous messa
using web sockets

web server

L

private static Set<Session> peers = Collections.synchronizedSet(new HashSet<Session>());
@OnMessage
public void broadcastFigure(Figure figure, Session session) throws IOException, EncodeException {
System.out.println("broadcastFigure: " + figure);
for (Session peer : peers) {
1f (!peer.equals(session)) { blic class Figure {
: : : . publi igu
} peer.getBasicRemote () .sendObject(figure); private JsonObject json:
} public Figure(JsonObject json) {
} this.json = json;
}

public JsonObject getdson() {

@OnOpen
public void onOpen(Session peer) { return Jjson;
peers.add(peer); } _ . _ .
} public void setdson(JsonObject json) {
this.json = json;
@OnClose $
public void onClose(Session peer) { @override
peers.remove(peer); public String toString() {
} StringWriter writer = new StringWriter();
} Json.createWriter(writer).write(json);
return writer.toString();
}

asynchronous messa
using web sockets

public class FigureDecoder implements Decoder.Text<Figure> {

9\ng

web server

@Override
public Figure decode(String s) throws DecodeException {
JsonObject jsonObject = Json.createReader(new StringReader(s)).readObject();

return new Figure(jsonObject);

}
@Override
public boolean willDecode(String s) { , , . :
try { public class FigureEncoder implements Encoder.Text<Figure> {
Json.createReader(new StringReader(s)).readObject(); ,
return true; @OveFrlde , . . :
} catch (JsonException ex) { public String encode(Figure figure) throws EncodeException {
ex.printStackTrace(): return figure.getJdson().toString();
return false; }
} I @Override
public void init (EndpointConfig config) {
Qoverride System.out.println("init");
public void init (EndpointConfig config) { }
System.out.println("init"); ,
) @Override
public void destroy() {
Qoverride System.out.println("destroy");

public void destroy() { }

System.out.println('destroy");
}

as1nchronous messaqging
using message-oriented middleware

in addition to time decoupling, time decoupling = asynchrony
message-oriented middleware

also achieve space decoupling space decoupling =3 anon1mif1

chent chent chent chent

message-orien‘red middleware

a message-oriented middleware is a software layer acting as a kind
of “middle man” between distributed clients (o the middieware)

as1nchronous messaqging

using message-orien’recl middleware

chent

chent

4 message-oriented e—
middleware
servey -

____ 4 library '

5 ﬁbrar1 ffv”

. g Y‘Sisfe N N * also called a message broker
N Storage _J/ . .
messages can be exchanged N/ the middleware is often

bdween C"le"m W"‘:He" based on a centralized server
in any lahguage and a client library

7 assuming a library exists for that langquage

many software providers offer such middleware products, e.g., \BM, Oracle, Rpache

as1nchronous

using message-orien’recl middleware

point-to-point model

e —

e

one-fo-one communication
where producers send messages
and each message is consumed
by one and only one consumer

~ library T's\f

consumey

producer message queue

+ messages are kept in a queue until consumed

+ this model can be used for load-balancing but then
the £ifo* ordering of is no longer guaranteed

*£ifo order = first in first out |,

messaging

publish/subscribe model

one-‘h)-man\, communication
where producers publish

| messages and all consumers that

have subscribed receive them

| « there exists various message routing criteria

» topic-based routing
» content-based routing
» location-based routing

chent

} eee

chent

library

publisher message routing subscriber

as1nchronous messaqging
using message-oriented middleware

the java messaging service (yms) o m
) f - message
defines the standard asynchronous = ~ broker
messaging api* of the java ee platform LN ¢="p
clhent side java ee server
application chient container e)b container

e)b

apphcation chent

Jyms api

Jyms api

{

\] g

N o=
e L i -

jms message broker

as1nchronous messaqging
using message-oriented middleware

the yms api is essentially an
interface-based specification
that is encapsulating
existing implementations
from software providers

when using jyms, we can
distinguish three key phases

l. development phase
2. cleplc)s,menf phase
3. execution phase

as1nchronous messaqging
using message-oriented middleware

execution

l. a producer creates and send messages via the jms ap, sPeci&,ing a destination
2. a yms-compliant middleware routes those messaqges to the 5peciﬁed destination
3. @ consumer receives messages via the yms ap sPeci&,ing the same destination

- — = S —————S — — — — _ — — e~ ———— e o — —

! I

{ create connection factory r

{ create destination L {

deployment
l. start the yms-compliant middleware broker
2. create the destination referenced by the producer and consumer code

3. package the Iibram implementing the yms api on the producer and consumer code

as1nchronous messaqging
using message-oriented middleware

public class OrderProducer {

| @Resource (mappedName = "jms/DOPConnectionFactory’)
developmen| private static ConnectionFactory connectionFactory;

@Resource (mappedName = "jms/DOPOrderQueue’)
private static Queue queue;

public static void main(String[] args) throws IOException {

p()\hf-‘h)-‘)mrﬂ’ MOC‘QI JMSContext context = connectionFactory.createContext();
JMSProducer producer = context.createProducer();
u boolean moreOrders = true;
while (moreOrders) {

String order = askForOrder(3);

destination = queue if (order != null) {

System.out.println("Sending order to
E— — producer.send (queue, order);
if (order.toLowerCase().contains('quit”)) {
moreOrders = false;

+ order);

}
} else {

moreOrders = false;

}

}
System.out.println("Bye bye!");

as1nchronous messaqging
using message-oriented middleware

public class OrderConsumer implements MessagelListener (deve|opmen“.

@Resource (mappedName = "jms/DOPConnectionFactory’)

private static ConnectionFactory connectionFactory; e -
point-to-point model

@Resource (mappedName = "jms/DOPOrderQueue’)

]

private static Queue queue;

private static boolean stopReceiving = false;

public static void main(String[] args) throws InterruptedException { C‘QS“'lna‘h()n — C\ueue

JMSContext context = connectionFactory.createContext();
JMSConsumer consumer = context.createConsumer (queue);

L — T

@Override
System.out.println("'I am now ready to receive orders"); public void onMessage(Message message) {
MessagelListener listener = new OrderConsumer(); System.out.println();
consumer.setMessagelListener(listener); String order = "quit';
for (int 1 = 0; 1 < 60; 1i++) { try {
Thread.sleep(1000); order = ((TextMessage) message) .getText();
System.out.print("."); System.out.println("'I received the order to " + order);
if (stopReceiving) { } catch (JMSException ex) {
break; System.err.println("Error when trying to receive message:
} + ex.getMessage());
} }
System.out.println("\nBye bye!"); System.out.println("-—————- ")
} if (order.tolLowerCase().contains('quit")) {

stopReceiving = true;

}

Nnon- blocking version }

as1nchronous messaqging
using message-oriented middleware

public class OrderConsumer {

@Resource (mappedName = "jms/DOPConnectionFactory’)
private static ConnectionFactory connectionFactory; deve'opmen«r
@Resource (mappedName = "Jms/DOPOrderQueue’)

private static Queue queue; P()ih“’-‘f()-‘)()ih‘r M()de|

public static void main(String[] args) throws InterruptedException {

JMSContext context = connectionFactory.createContext(); !'
JMSConsumer consumer = context.createConsumer (queue);
System.out.println("'I am now ready to receive orders"); deS‘hna‘hOH = queue

while (true) {
String order = consumer.receiveBody(String.class);
System.out.println("'The order is to " + order);

if (order.toLowerCase().contains("quit")) { b'OCking verSion

break;
}

} blocking call } { blocking call until timeout expires

System.out.println("\nBye bye!"); V

String order = consumer.receiveBody(String.class, 1000);

as1nchronous messaqging
using message-oriented middleware

public class NewsPublisher {

@Resource (mappedName = "jms/DOPConnectionFactory")
private static ConnectionFactory connectionFactory;

develop“ en |’ @Resource (mappedName = "jms/DOPNewsTopic')

private static Topic topic;

public static void main(String[] args) throws IOException, InterruptedException {
JMSContext context = connectionFactory.createContext();

PubliShISlleCY’ibe MOde| JMSProducer producer = context.createProducer();

int numberOfNews;

| o

numberOfNews = askForNumberOfNews(3);
e e - \’
deS‘hha‘hOh - {OP‘C for (int 1 = 0; i < numberOfNews; i++) {
. — String news = getNextNews();

System.out.println(Sending news: + news);
producer.send(topic, news);

Thread.sleep(2000);
}

} while (numberOfNews > 0);

System.out.println("No more news to send. Bye byel'");
producer.send(topic, "quit’);

as1nchronous messaqging
using message-oriented middleware

public class NewsSubscriber implements MessageListener { dQVQ'OPmen“.

@Resource (mappedName = "jms/DOPConnectionFactory’)
private static ConnectionFactory connectionFactory;

@Resource (mappedName = "jms/DOPNewsTopic') PubliSh,subscribe model

private static Topic topic;
private static boolean stopReceiving = false; u
public static void main(String[] args) throws InterruptedException {

JMSContext context = connectionFactory.createContext(); deS“’ina“'i()n — ‘r()PiC

JMSConsumer consumer = context.createConsumer (topic);

e — —

MessageListener listener = new NewsSubscriber();
consumer.setMessagelListener(listener);
for (int 1 = 0; 1 < 60; i++) {
Thread.sleep(1000);
System.out.print(".");
1f (stopReceiving) {

@Override
public void onMessage (Message message) {
System.out.println();

String news = "quit';
break; try {
} news = ((TextMessage) message) .getText();

}
System.out.println("\nBye bye!");

System.out.println("I received the following news:
} catch (JMSException ex) {

+ news);

} System.err.println("Error when tryving to receive message: "
. + ex.getMessage());

}

System.out.println("----—- ")

if (news.toLowerCase().contains('quit”)) {

stopReceiving = true;

Nnon- blocking version ,

as1nchronous messaqging

using message-oriented middleware
development with message-driven enterprise beans

@MessageDriven(activationConfig = {

@QActivationConfigProperty(propertyName = "'destinationLookup’, propertyValue = "jms/DOPOrderQueue’),
@QActivationConfigProperty(propertyName = "destinationType’, propertyValue = "javax.jms.Oueue') —— — _ _
b | | point-to-point

public class OrderConsumer 1mplements MessageLlistener {
@Override
public void onMessage (Message message) { _ _
try { | o | ” publish/subscribe
System.out.println(this + recelved the order to + ((TextMessage) message).getText());
} catch (JMSException ex) {
System.err.println('Error when trying to receive message: " + ex.getMessage());
}
System.out.println('——-———- ")
} @MessageDriven (activationConfig = {
} @ActivationConfigProperty(propertyName = ‘destinationLookup’, propertyValue = "jms/DOPNewsTopic'),
@QActivationConfigProperty(propertyName = "destinationType’, propertyValue = "javax.jms.Topic')

})

public class NewsSubscriber implements MessageListener {

@Override
public void onMessage(Message message) {

non- blOCking version ery | System.out.println();

String news = ((TextMessage) message).getText();
System.out.println(this + " received the following news: " + news);
b def’n'.r‘on } catch (JMSException ex) {
‘i ‘ ‘ ‘ System.err.println('Error when trying to receive message: " + ex.getMessage());
}
System.out.println("--—-—- ")

as1nchronous messaqging
using message-oriented middleware

Q yms message is composed of three parts:

+ a header holding required fields for the message broker, e.q., priority, time-to-live, etc.
+ a list of optional properties acting as meta-data for the message selection mechanism
e Q bod~, containing the actual data of the message (what that is)

i header |

| properties |

Q yms message can be of various types, based on what data is in its bod1

& TextMessage message = context.createTextMessage('Hello world!");
ObjectMessage message = context.createObjectMessage(someSerializableObject);

MapMessage message = context.createMapMessage();

* ¢ O

Message message = context.createMessage();

a consumer can select messages in term o4 their proper ties (meta-data)

consumey
sidle

consumer = context.createConsumer(topic, selector);
Message message = sesslion.createMessage();

i=>{:8tring selector = "name LIKE 'Max’' OR (age > 18 OR address LIKE 'Lausanne’')’;

- message.setStringProperty('name"”, "Bob");
Producer sicdle i: message.setIntProperty("age"”, 30);

message.setStringProperty("address"”, "Lausanne');

as~,nchronoux messaqging
using message-oriented middleware

parameterized quality of service

compared to other asynchronous messaging solutions, a message-oriented
middleware offers flexible quality of service expressed in terms of:

+ message ordering, priorities & time-to-live
+ acknowledgement modes & transactions

+ durable subscribers

+ delivery modes

as1nchronoux messaqging
using message-oriented middleware

message ordering

+ messages are received in the order” ﬂaq were sent with respect to a given producer
* no ordering is guaranteed across producers created from different contexts

*£ifo order = £first in first out

message priorities
+ priorities allow programmers to have finer control over ordering of messages
+ priorities range from 0 (lowest) to 9 (highest), e.q., producer.setPriority(5);

message time-to-hve

+ the time-to-live sPeciﬁes how long the broker should keep the message at most
+ the time-to-live 15 expressed in milliseconds, e.q., producer.setTimeToLive (20000) ;

as1nchronous messaqging

using message-orien’red middleware

acknowledgmen‘t modes and transactions

e Q acknowledgmenf informs the broker that the client did received a message

AUTO ACKNOWLEDGE

DUPS OK ACKNOWLEDGE

CLIENT ACKNOWLEDGE

SESSION TRANSACTED

messages are automatically acknowledged by the context
context = connectionFactory.createContext (JMSContext.AUTO ACKNOWLEDGE) ;

messages are automatically acknowledged by the context but duplicate messages
are possible in case of failures (but more efficient than auTo_aACKNOWLEDGE)

client acknowledges messages itself, invoking acknowledge () on each message

messages are grouped in the context of local transactions that are committed b~|
explicitly calling context.commit () or rolled back by calling context.rollback()

as SOON as messages are sent or received via a transacted session, the first
transaction starts and those messages will be groupecl, until the clhient calls either
context.commit () OY context.rollback()

after this call, the current transaction terminates and a new one is started

as1nchronous messaqging
using message-oriented middleware

acknowledgmen‘r modes and transactions

+ the termination of a transaction affects a producer and a consumer as follows:

on a producer, what happens to messages sent during that transaction?
after context.commit (), all messages are effectively sent
after context.rollback(), all messages are disposed

on a consumey, What happens to messages received during that transaction?
after context.commit (), all messages are disposed
after context.rollback(), all messages are recovered and might
be delivered again as part the newly
started transaction

wh1 "might be delivered again” and not "will be delivered again™ ?

as1nchronous messaqging
using message-oriented middleware

durable subscribers

+ n the publishlsubscribe model, messages are onl1 received bx, subscribers
that are connected at the time of the publication and lost for late comers

+ a durable subscriber i1s one that needs to receive all messages published on a
topic, even those published when it was disconnected from the broker

+ to tell the broker what messages should be kept for a disconnected durable
subscriber, we must provide a unique name identifying that subscriber:

consumer = context.createDurableConsumer (topic, "fomo");

o 10 delete the state maintained b1 the broker for a durable subscriber:
context.unsubscribe (" fomo");

as1nchronous messaqging
using message-oriented middleware

deliver\, modes

XS delivem modes allow to balance transpor+t reliabiliﬂ and fhroughput
depending whether the occasional loss of messages is tolerable or not

* In jms, there exists two clelivem modes:

NON PERSISTENT most efficient but less reliable, since messages are guaranteed to be
delivered at most once, i.e., some might be lost due to network failures

producer.setDeliveryMode (DeliveryMode.NON PERSISTENT) ;

PERSISTENT most reliable, since messages are guaranfeed Yo be delivered once and onl1
once, which is usuall1 achieved bs, persisﬁng sent messages on stable s*l’orage

producer.setDeliveryMode (DeliveryMode .PERSISTENT) ;

