
asynchronous

interactions

learn what asynchronous interactions are
learn about asynchronous methods in java
learn about tcp/udp socket s and web socket s
learn about message-oriented middleware and jms*

develop

deploy

operate

learning
objectives

develop

deploy

operate

*java messaging service

asynchronous interactions

what is an asynchronous interaction?
no blocking of the client
until the server is done

interaction

serverclient
workForMe(…)

actual
work

result
(optional)

synchronous

serverclient
workForMe(…)

actual
work

result

isResultReady()

isResultReady()

isResultReady()

polling

asynchronous interactions allow to achieve time decoupling

serverclient
workForMe(…)

actual
work

result
(optional)

asynchronous

no polling by the client when a
result is expected from the server

asynchronous

a session bean can implement
asynchronous methods they rely on the notion

of future object s

methodsasynchronous

actual
work

server

workForMe(…)

actual result

client asynchronous method support

actual result

workForMe(…)

future result

get()

asynchronous

these object s are
also called promises

the container returns
the control to the client
before the method is
actually invoked in

background

the client can try to get the
result but might be blocked

if it is not ready yet

@Remote
public interface PortfolioRemote {
 public Future<Double> computeValue();
}

methodsasynchronous

@Stateful
public class Portfolio implements PortfolioRemote {
 @Resource
 SessionContext context;

 ⠇

 @Asynchronous
 public Future<Double> computeValue() {
 double value = ...; // Processor-intensive computation
 return new AsyncResult<Double>(value);
 }
}

an asynchronous method must return
void or a Future<V> object

if it returns void, it
cannot declare exceptions

the client can use the Future<V> object to retrieve
the actual result or to cancel the invocation

se
rv

er
 s
id

e

@Remote
public interface PortfolioRemote {
 public Future<Double> computeValue();
}

methodsasynchronous

Future<Double> value = myPortfolio.computeValue();

⠇
System.out.println("Portfolio is worth $" + value.get());

Future<Double> value = myPortfolio.computeValue();
try {
 System.out.println("Portfolio is worth $" + value.get(5, TimeUnit.SECONDS));
} catch (TimeoutException ex) {
 value.cancel(true);
 System.err.println("Timeout: operation was cancelled");
}

@Asynchronous
public Future<Double> computeValue() {
 if (context.wasCancelCalled()) {
 System.err.println("Call to computeValue() was cancelled");
 return null;
 }
 double value = ...; // Processor-intensive computation
 return new AsyncResult<Double>(value);
}

cl
ie
nt

 s
id

e

se
rv

er
 s
id

e

some time passes by…

sockets
messagingasynchronous

physical link

data link

network

transport

session

presentation

application

data link

network

logical peer-to-peer link

application

presentation

session

transport

network

data link

distributed application

the osi* model
*open systems interconnection

t ransmission 
c ontrol  
p rotocol
i nternet
p rotocol

packet oriented
best-effort routing
error detection
datagram fragmentation

stream oriented
reliable channels
fifo ordering

using

fifo = first in first out

ip v4 address

an ip address is used by the ip protocol
to address computers and routers

an ip v4 address consist s of 32-bit s (4 bytes) and is often
written in dotted decimal format, e.g., 130.223.171.8

i nternet p rotocol

Class

A
B
C
D
E

First byte Networks Hosts Address format

 1→126 27 – 2 = 126 224 – 2 = 16’777’214 net id host id
128→191 214 = 16’384 216 – 2 = 65’534 net id host id
192→223 221 = 2’097’152 28 – 2 = 254 net id host id
224→239 multicast
240→247 reserved

sockets
messagingasynchronous

using

i nternet p rotocol

Format

0NNNNNNN.HHHHHHHH.HHHHHHHH.HHHHHHHH
10NNNNNN.NNNNNNNN.HHHHHHHH.HHHHHHHH
110NNNNN.NNNNNNNN.NNNNNNNN.HHHHHHHH
1110MMMM.MMMMMMMM.MMMMMMMM.MMMMMMMM
1111RRRR.RRRRRRRR.RRRRRRRR.RRRRRRRR

Class

A

B

C

D

E

 N network ID bits
 H host ID bits

M multicast address bit
R reserved bits

ip v4 address

sockets
messagingasynchronous

using

i nternet p rotocol
ip v4 addressv6 addresses encoded on 128 bit s

? km

10 km
!�1018 � distance

earth-sun

1 m 2.25 � 1026 km

1 m

⇒ 2128 ＞ 3.4 × 1038 available addresses

3.76 × 106 km

≃ 10 × earth-moon

sockets
messagingasynchronous

using

tcp or udp

application
process

network

addressing applications an ip address designates a machine

a port number designates an
application within a machine

machine

✉port number
ip address

ip

machine machine…machine

application
process

application
process

✉port number
ip address ✉port number

ip address

✉port number
ip address
✉port number
ip address

✉port number
ip address
✉port number
ip address

operating system
this is known as 
port multiplexing

✉port number
ip address

ip address

port number

u pdct p

sockets
messagingasynchronous

using

there exist s two types of sockets, namely 
tcp sockets and upd sockets

sockets are programming abstractions representing
bidirectional communication channels between processes

in java, sockets are instances of various
classes found in the java.net package

tcp u dp

sockets
messagingasynchronous

using

📬📬✉✉

stream
...bla bla...📞 📞bla

bla bla
bla

t
c
p

ransmission
ontrol
rotocol

u ser
datagram
protocol✉

datagrams

✉

connection
oriented

reliable
channels

fifo  
ordering

message
oriented

TCP YES YES YES NO

UDP NO NO NO YES
tcp and udp exhibit dual features

sockets
messagingasynchronous

using

tcp sockets
since tcp is connection-oriented, we have

two classes for tcp sockets in java

public class Socket {

 ⠇

 public Socket(String host, int port) {…}

 public OutputStream getOutputStream() {…}

 public InputStream getInputStream() {{…}

 public void close() {…}

 ⠇

}

public class ServerSocket {

 ⠇

 public ServerSocket(int port) {…}

 public Socket accept() {…}

 ⠇

}

client
server

this captures the asymmetry when
establishing a communication channel

📞sockets
messagingasynchronous

using

tcp
sockets

📞
public class DictionaryServer {
 private static Map dico = Map.of("inheritance", "héritage", "distributed", "réparti");

 public static void main(String[] args) {
 ServerSocket connectionServer = null;
 Socket clientSession = null;
 PrintWriter out = null;
 BufferedReader in = null;
 try {
 connectionServer = new ServerSocket(4444);
 clientSession = connectionServer.accept();
 out = new PrintWriter(clientSession.getOutputStream(), true);
 in = new BufferedReader(new InputStreamReader(clientSession.getInputStream()));
 String word, mot;

 while ((word = in.readLine()) != null) {
 mot = (String) dico.get(word);
 if (mot == null) {
 mot = "sorry, no translation available for \"" + word + "\" !";
 }
 out.println(mot);
 }
 out.close(); in.close(); connectionServer.close(); clientSession.close();
 } catch (IOException e) {
 System.out.println(e);
 System.exit(1);
 }
 }
}

server

sockets
messagingasynchronous

using

public class DictionaryClient {
 public static void main(String[] args) {
 Socket mySession = null;
 PrintWriter out = null;
 BufferedReader in = null;
 BufferedReader stdIn = null;
 try {
 if (args.length < 1) {
 System.out.println("Hostname missing.");
 System.exit(1);
 }
 mySession = new Socket(args[0], 4444);
 out = new PrintWriter(mySession.getOutputStream(), true);
 in = new BufferedReader(new InputStreamReader(mySession.getInputStream()));
 stdIn = new BufferedReader(new InputStreamReader(System.in));
 String fromServer, fromUser;

 System.out.println("Go on, ask the dictionary server!");
 while (!(fromUser = stdIn.readLine()).equals("quit")) {
 out.println(fromUser);
 fromServer = in.readLine();
 System.out.println("-> " + fromServer);
 }
 out.close(); in.close(); stdIn.close(); mySession.close();
 } catch (UnknownHostException e) {
 System.err.println("Host Unknown: " + args[0]);
 System.exit(1);
 } catch (IOException e) {
 System.err.println("No connection to: " + args[0]);
 System.exit(1);
 }
 }
}

📞tcp
sockets

client

sockets
messagingasynchronous

using

the concept of streamsstreams 📞
(unix and java)

streams offer a unified programming
abstraction for reading and writing data

streams can encapsulate various types of data sources,
e.g., files, byte arrays in memory, sockets, etc.

streams can encapsulate other streams
to stack up processing of the data

in java, streams are instances of various
classes found in the java.io package

sockets
messagingasynchronous

using

📞

printer and writer classes are
special streams manipulating

only characters

Socket clientSession= connectionServer.accept();
BufferedReader in= new BufferedReader(new InputStreamReader(clientSession.getInputStream()));

data source

byte stream

character stream

buffered character stream

standard operating systems-level input and output streams are
also accessed via java streams (System.in & System.out)

the concept of streamsstreams
(unix and java)

sockets
messagingasynchronous

using

📞the concept of streamsobject streams

this process is known as object serialization

ObjectOutputStream out = new ObjectOutputStream(sessionWithServer.getOutputStream());
out.writeObject(senderCollection);

ObjectInputStream in = new ObjectInputStream(sessionWithClient.getInputStream());
Collection receiverCollection = (Collection) in.readObject();

sender

1011011101011001010101010110010111001001101

receiver

the network knows nothing
about object s, only bytes

fact so how can we send an object
graph across the network?

problem

any java object can be encoded into a stream of
bytes and recreated from it by implementing  

the java.io.Serializable interface

solution

sockets
messagingasynchronous

using

📬udp sockets since udp is connectionless, we have
only one class for udp sockets in java

public class DatagramPacket {

 ⠇

 public DatagramPacket(…) {…}
 public byte[] getData() {…}
 public InetAddress getAddress() {…}

 ⠇

}

the DatagramPacket class is key
when working with udp sockets it captures the message-oriented

nature of udp sockets

public class DatagramSocket {

 ⠇

 public DatagramSocket() {…}
 public DatagramSocket(int port) {…}
 public void send(DatagramPacket packet) {…}
 public void receive(DatagramPacket packet) {…}
 public void close() {…}

 ⠇

}

sockets
messagingasynchronous

using

public class QuoteServer {
 public static void main(String[] args) throws Exception {
 DatagramSocket socket = null;
 BufferedReader in = null;
 socket = new DatagramSocket(4445);
 in = new BufferedReader(new FileReader("one-liners.txt"));
 String quote = null;
 boolean moreQuotes = true;

 while (moreQuotes) {
 byte[] buf = new byte[256];
 DatagramPacket packet = new DatagramPacket(buf, buf.length);
 socket.receive(packet);
 quote = in.readLine();
 if (quote == null) {
 moreQuotes = false;
 buf = ("No more, bye!").getBytes();
 } else { buf = quote.getBytes(); }
 InetAddress address = packet.getAddress();
 int port = packet.getPort();
 packet = new DatagramPacket(buf, buf.length, address, port);
 socket.send(packet);
 }
 socket.close();
 }
}

udp sockets

Life is wonderful. Without it we'd all be dead.
Daddy, why doesn't this magnet pick up this floppy disk?
Give me ambiguity or give me something else.
I.R.S.: We've got what it takes to take what you've got!
We are born naked, wet and hungry. Then things get worse.
Make it idiot proof and someone will make a better idiot.
He who laughs last thinks slowest!
Always remember you're unique, just like everyone else.
"More hay, Trigger?" "No thanks, Roy, I'm stuffed!"
A flashlight is a case for holding dead batteries.
Lottery: A tax on people who are bad at math.
Error, no keyboard - press F1 to continue.
There's too much blood in my caffeine system.
Artificial Intelligence usually beats real stupidity.
Hard work has a future payoff. Laziness pays off now.
"Very funny, Scotty. Now beam down my clothes."
Puritanism: The haunting fear that someone, somewhere may be happy.
Consciousness: that annoying time between naps.
Don't take life too seriously, you won't get out alive.
I don't suffer from insanity. I enjoy every minute of it.
Better to understand a little than to misunderstand a lot.

📬sockets
messagingasynchronous

using

udp sockets
public class QuoteClient {
 public static void main(String[] args) throws Exception {
 if (args.length != 1) { System.out.println("Missing hostname"); System.exit(1); }
 DatagramSocket socket = new DatagramSocket();
 InetAddress address = InetAddress.getByName(args[0]);
 BufferedReader stdIn = new BufferedReader(new InputStreamReader(System.in));
 System.out.println("Go on, ask for a quote by typing return!");
 while (!stdIn.readLine().equals("quit")) {
 byte[] buf = new byte[256];
 DatagramPacket packet = new DatagramPacket(buf, buf.length, address, 4445);
 socket.send(packet);
 packet = new DatagramPacket(buf, buf.length);
 socket.receive(packet);
 String received = new String(packet.getData()).trim();
 System.out.println("-> " + received);
 }
 socket.close();
 }
}

📬sockets
messagingasynchronous

using

📬📬✉✉
u ser
datagram
protocol✉✉

📡

📻📻
📻 📻

one-to-one communication
one-to-many communication

a multicast address lies in
range [224.0.0.0 , 239.255.255.255]
and defines a multicast group

in java, udp multicast is
accessed via MulticastSocket,
a subclass of DatagramSocket

udp multicast

sockets
messagingasynchronous

using

📡

udp multicast
public class MulticastQuoteSender {
 public static void main(String[] args) throws Exception {
 MulticastSocket socket = null;
 BufferedReader in = null;
 socket = new MulticastSocket();
 InetSocketAddress group = new InetSocketAddress(InetAddress.getByName("228.0.0.4"), 9000);
 NetworkInterface networkInterface = NetworkInterface.getByName("en0");
 socket.setTimeToLive(1);
 in = new BufferedReader(new FileReader("one-liners.txt"));
 String quote = null;
 boolean moreQuotes = true;

 while (moreQuotes) {
 Thread.currentThread().sleep(2000);
 byte[] buf = new byte[256];
 quote = in.readLine();
 if (quote == null) {
 moreQuotes = false;
 buf = ("No more, bye!").getBytes();
 } else {
 buf = quote.getBytes();
 }
 System.out.println("About to multicast: " + new String(buf));
 DatagramPacket packet = new DatagramPacket(buf, buf.length, group);
 socket.send(packet);
 }
 socket.close();
 }
}

maximum number of
routers a multicast

packet can go through
before being deleted

sockets
messagingasynchronous

using

📻

public class MulticastQuoteReceiver {

 public static void main(String[] args) throws Exception {
 try (MulticastSocket socket = new MulticastSocket(9000)) {
 InetSocketAddress group = new InetSocketAddress(InetAddress.getByName("228.0.0.4"), 9000);
 NetworkInterface netInterface = NetworkInterface.getByName("en0");
 socket.joinGroup(group, netInterface);
 while (true) {
 byte[] buf = new byte[256];
 DatagramPacket packet = new DatagramPacket(buf, buf.length);
 System.out.print("Waiting for the next quote: ");
 socket.receive(packet);
 String received = new String(packet.getData());
 System.out.println(received.trim());
 if (received.contains("bye")) {
 break;
 }
 }
 socket.leaveGroup(group, netInterface);
 socket.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

udp

tuning in

tuning out

sockets
messagingasynchronous

usingmulticast

📻

udp
creating a multicast route

deleting the multicast route

sockets
messagingasynchronous

usingmulticast

unlike http, which is a request-
response protocol, the web socket
protocol is message-oriented and

offers full-duplex channels

sockets
messagingasynchronous

using web
web sockets are similar to tcp
sockets but they offer streams

of messages, rather than
streams of bytes

most web browsers and servers support web sockets via two uri* schemes

*uniform resource identifier

ws://host:port/... for unencrypted streams wss://host:port/... for encrypted streams

the web socket protocol is based on tcp and totally independent from
http, except for the handshake phase, which done via an http request

interpreted by the server as an upgrade request

sockets
messagingasynchronous

using web

<!DOCTYPE html>
<html>
 <head>
 <title>Start Page</title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 </head>
 <body>
 <h1>Collaborative Whiteboard App</h1>

 <table>
 <tr>
 <td>
 <canvas id="myCanvas" width="150" height="150" style="border:1px solid #000000;"></canvas>
 </td>
 <td>
 <form name="inputForm">
 <table>
 <tr>
 <th>Color</th>
 <td><input type="radio" name="color" value="#FF0000" checked="true">Red</td>
 <td><input type="radio" name="color" value="#0000FF">Blue</td>
 <td><input type="radio" name="color" value="#FF9900">Orange</td>
 <td><input type="radio" name="color" value="#33CC33">Green</td>
 </tr>
 <tr>
 <th>Shape</th>
 <td><input type="radio" name="shape" value="square" checked="true">Square</td>
 <td><input type="radio" name="shape" value="circle">Circle</td>
 <td> </td>
 <td> </td>
 </table>
 </tr>
 </table>
 <script type="text/javascript" src=" "></script>
 <script type="text/javascript" src="whiteboard.js"></script>
 </body>
</html>

sockets
messagingasynchronous

using web

index.html

web client

client code

in javascript websocket.js

sockets
messagingasynchronous

using web
web client

var wsUri = "ws://" + document.location.host + document.location.pathname + "whiteboardendpoint";
console.log("wsURI: " + wsUri)
var websocket = new WebSocket(wsUri);

function sendText(json) {
 console.log("sending text: " + json);
 websocket.send(json);
}

websocket.onerror = function (evt) {
 onError(evt)
};

websocket.onmessage = function (evt) {
 onMessage(evt)
};

function onError(evt) {
 writeToScreen('ERROR: ' + evt.data);
}

function onMessage(evt) {
 console.log("received: " + evt.data);
 drawImageText(evt.data);
}

websocket.js

web socket

in javascript

function defineImage(evt) {
 var currentPos = getCurrentPos(evt);

 for (i = 0; i < document.inputForm.color.length; i++) {
 if (document.inputForm.color[i].checked) {
 var color = document.inputForm.color[i];
 break;
 }
 }

 for (i = 0; i < document.inputForm.shape.length; i++) {
 if (document.inputForm.shape[i].checked) {
 var shape = document.inputForm.shape[i];
 break;
 }
 }

 var json = JSON.stringify({
 "shape": shape.value,
 "color": color.value,
 "coords": {
 "x": currentPos.x,
 "y": currentPos.y
 }
 });
 drawImageText(json);
 sendText(json);
}

❷

sockets
messagingasynchronous

using webweb client

function drawImageText(image) {
 console.log("drawImageText");
 var json = JSON.parse(image);
 context.fillStyle = json.color;
 switch (json.shape) {
 case "circle":
 context.beginPath();
 context.arc(json.coords.x, json.coords.y, 5, 0, 2 * Math.PI, false);
 context.fill();
 break;
 case "square":
 default:
 context.fillRect(json.coords.x, json.coords.y, 10, 10);
 break;
 }
}

❸

var canvas = document.getElementById("myCanvas");
var context = canvas.getContext("2d");
canvas.addEventListener("click", defineImage, false);

function getCurrentPos(evt) {
 var rect = canvas.getBoundingClientRect();
 return {
 x: evt.clientX - rect.left,
 y: evt.clientY - rect.top
 };
}

❶

whiteboard.js

@ServerEndpoint(value = "/whiteboardendpoint", encoders = {FigureEncoder.class}, decoders = {FigureDecoder.class})
public class MyWhiteboard {

 private static Set<Session> peers = Collections.synchronizedSet(new HashSet<Session>());

 @OnMessage
 public void broadcastFigure(Figure figure, Session session) throws IOException, EncodeException {
 System.out.println("broadcastFigure: " + figure);
 for (Session peer : peers) {
 if (!peer.equals(session)) {
 peer.getBasicRemote().sendObject(figure);
 }
 }
 }

 @OnOpen
 public void onOpen(Session peer) {
 peers.add(peer);
 }

 @OnClose
 public void onClose(Session peer) {
 peers.remove(peer);
 }
}

public class Figure {
 private JsonObject json;

 public Figure(JsonObject json) {
 this.json = json;
 }
 public JsonObject getJson() {
 return json;
 }
 public void setJson(JsonObject json) {
 this.json = json;
 }

 @Override
 public String toString() {
 StringWriter writer = new StringWriter();
 Json.createWriter(writer).write(json);
 return writer.toString();
 }
}

sockets
messagingasynchronous

using webweb server

sockets
messagingasynchronous

using web
public class FigureDecoder implements Decoder.Text<Figure> {

 @Override
 public Figure decode(String s) throws DecodeException {
 JsonObject jsonObject = Json.createReader(new StringReader(s)).readObject();
 return new Figure(jsonObject);
 }

 @Override
 public boolean willDecode(String s) {
 try {
 Json.createReader(new StringReader(s)).readObject();
 return true;
 } catch (JsonException ex) {
 ex.printStackTrace();
 return false;
 }
 }

 @Override
 public void init(EndpointConfig config) {
 System.out.println("init");
 }

 @Override
 public void destroy() {
 System.out.println("destroy");
 }
}

public class FigureEncoder implements Encoder.Text<Figure> {

 @Override
 public String encode(Figure figure) throws EncodeException {
 return figure.getJson().toString();
 }

 @Override
 public void init(EndpointConfig config) {
 System.out.println("init");
 }

 @Override
 public void destroy() {
 System.out.println("destroy");
 }
}

web server

a message-oriented middleware is a software layer acting as a kind
of “middle man” between distributed clients (of the middleware)

time decoupling ⇒ asynchrony

space decoupling ⇒ anonymity

time decoupling

space decoupling

in addition to time decoupling,
message-oriented middleware
also achieve space decoupling

messagingasynchronous
using message-oriented middleware

clientclient client client

message-oriented middleware

messagingasynchronous
using message-oriented middleware

client

client client

client

message-oriented
middleware

persistent
storage

library

server
*

library library

library

* also called a message broker

the middleware is often
based on a centralized server

and a client library

messages can be exchanged
between clients written 

in any language†

† assuming a library exist s for that language

many software providers offer such middleware products, e.g., IBM, Oracle, Apache

messagingasynchronous
using message-oriented middleware

one-to-many communication
where producers publish

messages and all consumers that
have subscribed receive them

one-to-one communication
where producers send messages
and each message is consumed
by one and only one consumer

point-to-point model publish/subscribe model

client

library

client

library

producer consumermessage queue

client

library

client

library

publisher subscribermessage routing

client

library

messages are kept in a queue until consumed
this model can be used for load-balancing but then
the fifo* ordering of is no longer guaranteed

there exist s various message routing criteria
‣ topic-based routing
‣ content-based routing
‣ location-based routing
‣ …

* fifo order = first in first out

messagingasynchronous
using message-oriented middleware

the java messaging service (jms)
defines the standard asynchronous

messaging api* of the java ee platform
client

library

client

libraryjms api jms api

jms
message
broker

ejb container

 ejb ejb ejb ejb

application client container

application client

java ee serverclient side

jms message broker

jms api jms api

when using jms, we can
distinguish three key phases

1. development phase
2. deployment phase
3. execution phase

messagingasynchronous
using message-oriented middleware

the jms api is essentially an
interface-based specification

that is encapsulating  
existing implementations
from software providers

execution
deployment

messagingasynchronous
using message-oriented middleware

1. a producer creates and send messages via the jms api, specifying a destination
2. a jms-compliant middleware routes those messages to the specified destination
3. a consumer receives messages via the jms api specifying the same destination

execution

1. start the jms-compliant middleware broker
2. create the destination referenced by the producer and consumer code
3. package the library implementing the jms api on the producer and consumer code

deployment

create connection factory

create destination

messagingasynchronous
using message-oriented middleware

development
public class OrderProducer {

 @Resource(mappedName = "jms/DOPConnectionFactory")
 private static ConnectionFactory connectionFactory;

 @Resource(mappedName = "jms/DOPOrderQueue")
 private static Queue queue;

 public static void main(String[] args) throws IOException {
 JMSContext context = connectionFactory.createContext();
 JMSProducer producer = context.createProducer();
 boolean moreOrders = true;
 while (moreOrders) {
 String order = askForOrder(3);
 if (order != null) {
 System.out.println("Sending order to " + order);
 producer.send(queue, order);
 if (order.toLowerCase().contains("quit")) {
 moreOrders = false;
 }
 } else {
 moreOrders = false;
 }
 }
 System.out.println("Bye bye!");
 }

point-to-point model

destination = queue

⇒

messagingasynchronous
using message-oriented middleware

public class OrderConsumer implements MessageListener {

 @Resource(mappedName = "jms/DOPConnectionFactory")
 private static ConnectionFactory connectionFactory;

 @Resource(mappedName = "jms/DOPOrderQueue")
 private static Queue queue;

 private static boolean stopReceiving = false;

 public static void main(String[] args) throws InterruptedException {
 JMSContext context = connectionFactory.createContext();
 JMSConsumer consumer = context.createConsumer(queue);

 System.out.println("I am now ready to receive orders");
 MessageListener listener = new OrderConsumer();
 consumer.setMessageListener(listener);
 for (int i = 0; i < 60; i++) {
 Thread.sleep(1000);
 System.out.print(".");
 if (stopReceiving) {
 break;
 }
 }
 System.out.println("\nBye bye!");
 }

 ⠇

 ⠇
 @Override
 public void onMessage(Message message) {
 System.out.println();
 String order = "quit";
 try {
 order = ((TextMessage) message).getText();
 System.out.println("I received the order to " + order);
 } catch (JMSException ex) {
 System.err.println("Error when trying to receive message: "
 + ex.getMessage());
 }
 System.out.println("------");
 if (order.toLowerCase().contains("quit")) {
 stopReceiving = true;
 }
 }
}

development
point-to-point model

destination = queue
⇒

blocking versionnon-

messagingasynchronous
using message-oriented middleware

development
point-to-point model

destination = queue

⇒
public class OrderConsumer {

 @Resource(mappedName = "jms/DOPConnectionFactory")
 private static ConnectionFactory connectionFactory;

 @Resource(mappedName = "jms/DOPOrderQueue")
 private static Queue queue;

 public static void main(String[] args) throws InterruptedException {
 JMSContext context = connectionFactory.createContext();
 JMSConsumer consumer = context.createConsumer(queue);

 System.out.println("I am now ready to receive orders");

 while (true) {
 String order = consumer.receiveBody(String.class);
 System.out.println("The order is to " + order);
 if (order.toLowerCase().contains("quit")) {
 break;
 }
 }
 System.out.println("\nBye bye!");
 }
}

blocking version
blocking call

String order = consumer.receiveBody(String.class, 1000);

blocking call until timeout expires

messagingasynchronous
using

development

publish/subscribe model

destination = topic

⇒

message-oriented middleware
public class NewsPublisher {

 @Resource(mappedName = "jms/DOPConnectionFactory")
 private static ConnectionFactory connectionFactory;

 @Resource(mappedName = "jms/DOPNewsTopic")
 private static Topic topic;

 public static void main(String[] args) throws IOException, InterruptedException {
 JMSContext context = connectionFactory.createContext();
 JMSProducer producer = context.createProducer();
 int numberOfNews;

 do {
 numberOfNews = askForNumberOfNews(3);

 for (int i = 0; i < numberOfNews; i++) {
 String news = getNextNews();
 System.out.println("Sending news: " + news);
 producer.send(topic, news);
 Thread.sleep(2000);
 }
 } while (numberOfNews > 0);

 System.out.println("No more news to send. Bye bye!");
 producer.send(topic, "quit");
 }
}

messagingasynchronous
using message-oriented middleware

development
publish/subscribe model

destination = topic
⇒

public class NewsSubscriber implements MessageListener {

 @Resource(mappedName = "jms/DOPConnectionFactory")
 private static ConnectionFactory connectionFactory;

 @Resource(mappedName = "jms/DOPNewsTopic")
 private static Topic topic;

 private static boolean stopReceiving = false;

 public static void main(String[] args) throws InterruptedException {
 JMSContext context = connectionFactory.createContext();
 JMSConsumer consumer = context.createConsumer(topic);

 MessageListener listener = new NewsSubscriber();
 consumer.setMessageListener(listener);
 for (int i = 0; i < 60; i++) {
 Thread.sleep(1000);
 System.out.print(".");
 if (stopReceiving) {
 break;
 }
 }
 System.out.println("\nBye bye!");
 }

 ⠇

 ⠇
 @Override
 public void onMessage(Message message) {
 System.out.println();
 String news = "quit";
 try {
 news = ((TextMessage) message).getText();
 System.out.println("I received the following news: " + news);
 } catch (JMSException ex) {
 System.err.println("Error when trying to receive message: "  
 + ex.getMessage());
 }
 System.out.println("------");
 if (news.toLowerCase().contains("quit")) {
 stopReceiving = true;
 }
 }
}

blocking versionnon-

messagingasynchronous
using message-oriented middleware

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationLookup", propertyValue = "jms/DOPOrderQueue"),
 @ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue")
})
public class OrderConsumer implements MessageListener {

 @Override
 public void onMessage(Message message) {
 try {
 System.out.println(this + " received the order to " + ((TextMessage) message).getText());
 } catch (JMSException ex) {
 System.err.println("Error when trying to receive message: " + ex.getMessage());
 }
 System.out.println("------");
 }
}

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationLookup", propertyValue = "jms/DOPNewsTopic"),
 @ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Topic")
})
public class NewsSubscriber implements MessageListener {

 @Override
 public void onMessage(Message message) {
 System.out.println();
 try {
 String news = ((TextMessage) message).getText();
 System.out.println(this + " received the following news: " + news);
 } catch (JMSException ex) {
 System.err.println("Error when trying to receive message: " + ex.getMessage());
 }
 System.out.println("------");
 }
}

point-to-point

publish/subscribe

blocking versionnon-
by definition

development with message-driven enterprise beans

a jms message is composed of three parts:
a header holding required fields for the message broker, e.g., priority, time-to-live, etc.
a list of optional properties acting as meta-data for the message selection mechanism
a body containing the actual data of the message (what that is)

messagingasynchronous
using message-oriented middleware

header

properties

body

a jms message can be of various types, based on what data is in it s body
TextMessage message = context.createTextMessage("Hello world!");
ObjectMessage message = context.createObjectMessage(someSerializableObject);
MapMessage message = context.createMapMessage();
Message message = context.createMessage();

a consumer can select messages in term of their properties (meta-data)
String selector = "name LIKE 'Max' OR (age > 18 OR address LIKE 'Lausanne')";
consumer = context.createConsumer(topic, selector);

Message message = session.createMessage();
message.setStringProperty("name", "Bob");
message.setIntProperty("age", 30);
message.setStringProperty("address", "Lausanne");

producer side

consumer
side

compared to other asynchronous messaging solutions, a message-oriented
middleware offers flexible quality of service expressed in terms of:

message ordering, priorities & time-to-live
acknowledgement modes & transactions
durable subscribers
delivery modes

messagingasynchronous
using message-oriented middleware

parameterized quality of service

message orderingmessagemessage priorities time-to-live

messagingasynchronous
using message-oriented middleware

messages are received in the order* they were sent with respect to a given producer
no ordering is guaranteed across producers created from different contexts

* fifo order = first in first out

priorities allow programmers to have finer control over ordering of messages
priorities range from 0 (lowest) to 9 (highest), e.g., producer.setPriority(5);

the time-to-live specifies how long the broker should keep the message at most
the time-to-live is expressed in milliseconds, e.g., producer.setTimeToLive(20000);

prioritiesmessage

message ordering

time-to-livemessage

messagingasynchronous
using message-oriented middleware

a acknowledgment informs the broker that the client did received a message
AUTO_ACKNOWLEDGE messages are automatically acknowledged by the context 

context = connectionFactory.createContext(JMSContext.AUTO_ACKNOWLEDGE);
DUPS_OK_ACKNOWLEDGE messages are automatically acknowledged by the context but duplicate messages

are possible in case of failures (but more efficient than AUTO_ACKNOWLEDGE)

CLIENT_ACKNOWLEDGE client acknowledges messages it self, invoking acknowledge() on each message

SESSION_TRANSACTED messages are grouped in the context of local transactions that are committed by
explicitly calling context.commit() or rolled back by calling context.rollback()

as soon as messages are sent or received via a transacted session, the first
transaction starts and those messages will be grouped, until the client calls either
context.commit() or context.rollback()

after this call, the current transaction terminates and a new one is started

acknowledgment modes and transactions

messagingasynchronous
using message-oriented middleware

the termination of a transaction affects a producer and a consumer as follows:
on a producer, what happens to messages sent during that transaction? 

after context.commit(), all messages are effectively sent 
after context.rollback(), all messages are disposed

on a consumer, what happens to messages received during that transaction? 
after context.commit(), all messages are disposed  
after context.rollback(), all messages are recovered and might  
 be delivered again as part the newly 
 started transaction

acknowledgment modes and transactions

why "might be delivered again" and not "will be delivered again" ?

messagingasynchronous
using message-oriented middleware

in the publish/subscribe model, messages are only received by subscribers
that are connected at the time of the publication and lost for late comers

durable subscribers

a durable subscriber is one that needs to receive all messages published on a
topic, even those published when it was disconnected from the broker

to tell the broker what messages should be kept for a disconnected durable
subscriber, we must provide a unique name identifying that subscriber:
consumer = context.createDurableConsumer(topic, "fomo");

to delete the state maintained by the broker for a durable subscriber:
context.unsubscribe("fomo");

messagingasynchronous
using message-oriented middleware

delivery modes allow to balance transport reliability and throughput,
depending whether the occasional loss of messages is tolerable or not
in jms, there exist s two delivery modes:

NON_PERSISTENT most efficient but less reliable, since messages are guaranteed to be
delivered at most once, i.e., some might be lost due to network failures

 producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

PERSISTENT most reliable, since messages are guaranteed to be delivered once and only
once, which is usually achieved by persisting sent messages on stable storage

 producer.setDeliveryMode(DeliveryMode.PERSISTENT);

delivery modes

