
probabilis t ic
algorithms

learning
objectives

learn what randomized algorithms are

learn what they are useful for

learn about pseudo-randomness

hardware

your software

algorithms

system software

a computer is deterministic by design, so an algorithm
executing on a computer is inherently deterministic

determinism 
vs randomness

yet we can abstractly define the notion of
probabilistic or randomized algorithm as follows:

 a randomized algorithm is one that receives, in addition to its input
data, a stream of random bits used to make random choices

so even for the same input, different executions of a
randomized algorithm may give different outputs

R. M. Karp. An introduction to randomized
algorithms. Discrete Applied Mathematics,

34(1-3):165–201, November 1991.

deterministic algorithm
vs randomized algorithm
deterministic

algorithm
input output

randomized

algorithm
outputinput

...01010110101101101...

why introduce randomness?
because randomized algorithms tend to be much
simpler than their deterministic counterpart

because randomized algorithms tend to be more
efficient than their deterministic counterpart *

*in execution time and memory space

but some randomized algorithms do not always *
provide a correct answer (only probabilistically)

*always ⇔ deterministically

abundance of witnesses

principles to construct
randomized algorithms

foiling the adversary

fingerprinting

random partitioning

Markov chains

random sampling

random ordering

CHAPTER 1. RANDOMIZED ALGORITHMS 3

Because this is a toy example, we assume that the dealer is not cheating.
The author is not responsible for the results of applying the analysis below
to real-world games where this assumption does not hold.

A deterministic algorithm tries the cards in some fixed order. A clever
dealer will place the Queen in the last place we look: so the worst-case payo�
is a loss of a dollar.

In the average case, if we assume that all three positions are equally likely
to hold the target card, then we turn over one card a third of the time, two
cards a third of the time, and all three cards a third of the time; this gives
an expected payo� of

1
3 (1 + 2 + 3) ≠ 2 = 0.

But this requires making assumptions about the distribution of the cards,
and we are no longer doing worst-case analysis.

The trick to randomized algorithms is that we can can obtain the same
expected payo� even in the worst case by supplying the randomness ourselves.
If we turn over cards in a random order, then the same analysis for the
average case tells us we get the same expected payo� of 0—but unlike the
average case, we get this expected performance no matter where the dealer
places the cards.

1.2 Verifying polynomial identities
A less trivial example is described in [MU05, §1.1]. Here we are given two
products of polynomials and we want to determine if they compute the same
function. For example, we might have

p(x) = (x ≠ 7)(x ≠ 3)(x ≠ 1)(x + 2)(2 x + 5)
q(x) = 2 x5 ≠ 13 x4 ≠ 21 x3 + 127 x2 + 121 x ≠ 210

These expressions both represent degree-5 polynomials, and it is not
obvious without multiplying out the factors of p whether they are equal or
not. Multiplying out all the factors of p may take as much as O(d2) time if we
assume integer multiplication takes unit time and do it the straightforward
way.4 We can do better than this using randomization.

The trick is that evaluating p(x) and q(x) takes only O(d) integer opera-
tions, and we will find p(x) = q(x) only if either (a) p(x) and q(x) are really
the same polynomial, or (b) x is a root of p(x) ≠ q(x). Since p(x) ≠ q(x)

4It can be faster if we do something sneaky like use fast Fourier transforms [SS71].

CHAPTER 1. RANDOMIZED ALGORITHMS 3

Because this is a toy example, we assume that the dealer is not cheating.
The author is not responsible for the results of applying the analysis below
to real-world games where this assumption does not hold.

A deterministic algorithm tries the cards in some fixed order. A clever
dealer will place the Queen in the last place we look: so the worst-case payo�
is a loss of a dollar.

In the average case, if we assume that all three positions are equally likely
to hold the target card, then we turn over one card a third of the time, two
cards a third of the time, and all three cards a third of the time; this gives
an expected payo� of

1
3 (1 + 2 + 3) ≠ 2 = 0.

But this requires making assumptions about the distribution of the cards,
and we are no longer doing worst-case analysis.

The trick to randomized algorithms is that we can can obtain the same
expected payo� even in the worst case by supplying the randomness ourselves.
If we turn over cards in a random order, then the same analysis for the
average case tells us we get the same expected payo� of 0—but unlike the
average case, we get this expected performance no matter where the dealer
places the cards.

1.2 Verifying polynomial identities
A less trivial example is described in [MU05, §1.1]. Here we are given two
products of polynomials and we want to determine if they compute the same
function. For example, we might have

p(x) = (x ≠ 7)(x ≠ 3)(x ≠ 1)(x + 2)(2 x + 5)
q(x) = 2 x5 ≠ 13 x4 ≠ 21 x3 + 127 x2 + 121 x ≠ 210

These expressions both represent degree-5 polynomials, and it is not
obvious without multiplying out the factors of p whether they are equal or
not. Multiplying out all the factors of p may take as much as O(d2) time if we
assume integer multiplication takes unit time and do it the straightforward
way.4 We can do better than this using randomization.

The trick is that evaluating p(x) and q(x) takes only O(d) integer opera-
tions, and we will find p(x) = q(x) only if either (a) p(x) and q(x) are really
the same polynomial, or (b) x is a root of p(x) ≠ q(x). Since p(x) ≠ q(x)

4It can be faster if we do something sneaky like use fast Fourier transforms [SS71].

expanding p(x) may take up to O(d2) = O(25) time
*

*provided integer multiplication takes a unit of time

are these two polynomial of degree d = 5 identical?
abundance of witnesses

computing p(ẋ) and q(ẋ) for a given value ẋ ∈ ℤ takes O(d)

p(ẋ) = q(ẋ) is true if at least one of the following conditions is true
1. we have the following polynomial equality p(x) = q(x)
2. the value ẋ is a root of polynomial p(x) – q(x), i.e., if p(ẋ) – q(ẋ) = 0

since p(x) – q(x) is of degree d = 5, it has no more than 5 roots

a randomized algorithm can take O(d) = O(5) time

note
that:

this is a 
Monte Carlo algorithmMonte Carlo

randomly choose ẋ from a very large range of integer R ⊂ ℤ
compute r = p(ẋ) – q(ẋ)

if r = 0, then p(x) = q(x) is true with probability 1� d

|R|

algorithm

after n trials, the error

probability is asdaf
✓

d

|R|

◆n
after d + 1 trial, the error

probability drops to 0

ẋ is our potential witness that p(x) ≠ q(x)

abundance of witnesses

Monte Carlo & Las Vegas algorithmsMonte Carlo

a Las Vegas algorithm computes in some random
time but always * provides a correct answer

*always ⇔ deterministically

a Monte Carlo algorithm can be turned into a Las Vegas
algorithm if we have a way to verify that the output is correct

a Monte Carlo algorithm computes in a deterministic time
but only provides a correct answer probabilistically

a true-biased Monte Carlo algorithm is
always correct when returning true

a false-biased Monte Carlo algorithm is
always correct when returning false

fingerprinting consist in computing much shorter strings of bits
from x and y, so-called fingerprints, to then exchange them

fingerprinting

alice has y, a very
long string of bits

they want to check if x = y but
their channel has limited bandwidth

...10100111000100101110101001010010100101...

bob has x, a very
long string of bits

a typical fingerprinting function is hp(s) = h(s) mod p , where h(s) is the
integer corresponding to the string of bits s and p is a prime number

bob randomly chooses a prime number p less than M
bob sends p and hp(x) to alice
alice checks whether hp(x) = hp(y) and sends the results to bob

algorithm hp(s) is called a (high performance) hash function

we can see the execution of an algorithm
as a zero-sum two-person game

the payoff is the execution time

a randomized algorithm can be seen as a probabilistic distribution over
deterministic algorithms, i.e., as mixed strategy for the algorithm player

chooses 
the algorithm

chooses
the input

faced with a mixed strategy, the input player does not know
what the algorithm player will do with the input

this uncertainty makes it difficult for the input player to choose
an input that will slow down the execution time

short is goodlong is good

via random orderingfoiling the adversary

we cannot assume insertion are made in random order, so we can
end up with a binary search tree with catastrophic performance

the performance of a binary search
tree depends on its structure, which in
turn depends on the order in which its

elements were inserted

how can we get a binary search tree that
looks like one resulting from insertions in
random order whatever the execution?

2 9

15

8 24

19 56

5619 2415982

via random orderingfoiling the adversary

B

A

C

D

G

H

F

E

binary search tree

B1

A4

C8

D5

G2

H3

F6

E7

treap+ =

1

4

8

5

2

3

6

7

heap

a heap is a binary tree where the vertices on any
path from the root to a leaf increase in value

a treap is a binary tree where each vertex v has two values,
v.key and v.priority and which is a binary search tree with

respect to key values and a heap with respect to priority values

via random
ordering

foiling the
adversary

given n items with associated keys and priorities, there
exists a unique treap containing these n items

this unique treap has the same structure as a binary
search tree where these n items would have been

inserted in increasing order of priorities

draw a random priority p
create new vertex v with v.key = k 
and v.priority = p
insert v in the treap

algorithm for inserting key k

the random priority acts as a
randomized timestamp

at any given time, we have a binary search 
tree obtained by random insertion

via random orderingfoiling the adversary

Markov chains
a Markov chain is a stochastic

* process satisfying the
Markov property, which states that the next state of the

process only depends on its present state
*stochastic ⇔ probabilistic ⇔ non-deterministic

bull
market
state = 1

bear
market
state = 2

stagnant
market
state = 3

transition matrix

assume that at time t , state = 2 then at
time t + 3 , we will have:

t + 3

pseudo random number generator

a parameterized set of function g = { gn } such that each function gn : ⟨0,1⟩n → ⟨0,1⟩
t(n) takes a seed string of n bits and stretches to a longer string of length t(n)

pseudo random number generator

not polynomial-time test can distinguish the output of
gn from a true random sequence of bits

how to generate randomness 
in a deterministic machine?

do computers have a real
source of random bit s?

augment computers with a intrinsically
non-deterministic physical source

true random number generator

nuclear decay radiation, thermal
noise from a resistor, etc...

import random

random.seed(666)
f = random.random()
i = random.randint(2,9)

0.0 ≤ f < 1.0
2 ≤ i ≤ 9

import scala.util.Random

val rand = Random
random.setSeed(666)
val f = rand.nextFloat
val i = random.nextInt(9)

0.0 ≤ f < 1.0
0 ≤ i < 9

import Foundation

let i = arc4random()
let j = arc4random_uniform(9) 0 ≤ j < 9

0 ≤ i ≤ 232 – 1

how to generate randomness 
in a deterministic machine?

pseudo random number generator

import java.util.Random;

Random rand = new Random();
rand.setSeed(666);
float f = rand.nextFloat();
int i = rand.nextInt(9);

0.0 ≤ f < 1.0
0 ≤ i < 9

