probabilisﬁc
algor ithms

D
learnin
g your software

system software

objectives

+ learn what randomized algoriﬂm\s are
+ learn what ﬂre\, are useful for

+ learn about pseudo-randomness

R. M. Karp. An introduction to randomized

determinism oo oo e areres
VS randomness

a computer is deterministic by design, so an algorithm
executing on a computer is inherently deterministic

yet we can abstractiy define the notion of
probabilistic or randomized algori’rhm as follows:

a randomized algorithm is one that receives, in addition to its input
data, a stream of random bits used to make random choices

s0 even for the same input, different executions of a
randomized algorithm may give different outputs

deterministic algoriﬂ«m
vs randomized algorithm

- — — " == T — — B -
__ e —— - —— —— — — — == - — —
L]

- e ———— e — —_——— — T T ———— e ———— e e = -
— — e — e
— e — a e e e ——— — _

-m»

wh1 intfroduce randomness?

because randomized algorithms tend to be much
simpler than their deterministic counterpart

because randomized algorithms tend to be more
efficient than their deterministic counterpart*

“In execution time and memory space

but some randomized algorithms do not always*
provide a correct answer (only probabilistically)

*alqu — deferminisﬁcalh,

prmuples 10 construct
randomized algorithms

abundance of witnesses fmgerprmﬁng

random par titioning

P

random samPling

foiling the adversary

random orclering

Markov chains

R

abundance of witnesses

are these two polynomial of degree d =5 identical?

plx)=(x—T7)(x—3)(z—1)(x+2)(2x + 5)

g(z) =22° —132* — 21 2% + 127 2% + 121 = — 210

— _ . _ — —~ — — - — - — > — et S——— - p— B ST E—— — — = - — —— e e e e — —— ——— e e — e
— —_— - — —— = = __ e S ————— — = —

I

= —— = e - — —_—— — e e e e ———— — — —_

expanding p(x) may take up to O(d?) = O(25) time*

*provided integer multiplication takes a unit of time

a randomized algorithm can take O(d) = O(5) time

note & computing p() and q(x) for a given value i 7 takes O(d)

*t‘“f' @ p() =q() 15 true ¥ at least one of the following conditions is true

l. we have the following polynomial equality p(x) = q(x)
2. the value x is a root of polynomial p(x) — g(x), re., v p() —qg(x) =0

® since p(x) — g(x) is of degree d =5, it has no more than 5 roots

abundance of witnesses

alaorithm
g_ I ranclomw choose i from a very Iarge range of infeger RcCZ

4 compute r =p(x) — g(x)
* =0, then p(x) =q(x) is true with probability 1

d
R

% 15 our potential witness that p(x) # g(x)

after d +1 trial the error
d\" probability drops to 0
R

after » trials, the error

probability is (

this is a
Monte Carlo algorithm

Monte Carlo £ Las Vegas algorithms

a Monte Carlo algorithm computes in a deterministic time
but on|~| provides a correct answer probabilisﬁcallxl

a false-biased Monte Carlo algorithm s q true-biased Monte Carlo algorithm is
always correct when returning false always correct when returning true

_ e — e — =3 e —— fr— p— — - —_— - - -
— — — — e — e — —— - —— = — — — P —EE— e ——— e — — —_— . -
_— = _ —— _ —— P ————y — = = ——
— . —— — _ _ _ — = S — - — — P — — e R i e — — — - - o

a Las Vegas algori’rhm computes in some random
+ime but alwas,s* provides a correct answer

*alwa1s — deferminisﬁcalH

a Monte Carlo algori’rhm can be turned nto a Las Vegas
algorithm ¥ we have a way to verifxl that the output is correct

bob has x, a very
long string of bits

£ mgerprmhng
c+.10100111000100101110101001010010100101...

they want to check f x =y but
their channel has limited bandwidth

fmgerprmhng consist in computing much shorter strings of bits l::;esr:‘;g :{v:g

from x and y, so-called fingerprints, to then exchange them

a typical fingerprinting function is /,(s) = h(s) mod p , where h(s) is the
integer corresPonclmg to the s’mng of bits s and p is a prime number

algorithm hy(s) is called a (high performance) hash function

+ bob randomly chooses a prime number p less than M
@ bob sends p and /,(x) to alice
@ alice checks whether 7,(x) =/,(y) and sends the results 1o bob

foiling the adversary via random ordering

we cah see the execution of an algorithm
Qs QA Zero-sum ’rwo-person game

the pa1off 15 the execution time

long is good | | short 15 good
chooses chooses

the input the algorithm

a randomized algorifhm can be seen as a probabilisﬁc distribution over
deterministic algorithms, ie., as mixed strategy for the algorithm player

faced with a mixed strateqgy, the input player does not know
what the algorithm player will do with the input

this uncertainty makes it difficult for the input player to choose
an input that will slow down the execution time

foiling the adversary via random ordering

the performance of a binary search

tree depends on its structure, which in

turn depends on the order in which its
elements were inserted

we cannot assume insertion are made in random order, so we can
end up with a binar1 search tree with catastrophic performance

O 0 0 0 0 @ O

how can we get a binam search tree that
looks like one resulting from insertions in
random order whatever the execution?

random
orclering

‘ﬁ)ilihg the via
aclvermm

binary search tree 3 heap - treap

Q heap s Q binar1 tree where the vertices on any
path from the root to a leaf iIncrease in value

a treap 15 a binary tree where each vertex v has two values,
v.key and v.priority and which is a binary search tree with
respect to ey values and a heap with respect to priority values

foiling the adversary via random ordering

given n items with associated keys and priorities, there
exists a unique treap containing these rn items

this unique treap has the same structure as a binary
search tree where these n items would have been
inser ted in increasing order of priorities

algorithm for inserting key & & draw a random priority p
@ create new vertex v with v.key =k
the random priority acts as a and v.priority =p

randomized timestamp * insert v in the treap

at any given time, we have a binan, search
tree obtained bs, random insey tion

Markov chains

a Markov chain is a stochastic” process saﬁsﬂing the
Markov property, which states that the next state of the
process onl1 depends on its present state

*stochastic & probabilistic & non-deterministic

- = —— = S —_— — e e e T —————— e — —_— — — - — = —— = _—

0.9 0.075 0.025

transition matrix 015 0.8 0.05 -)
025 025 0.5 _ ot s
assume that at time ¢, state =2 then at
time ¢ + 3, we will have: " 0.9 0.075 0.0257°
z¢*3 =0 1 0][0.15 0.8 0.05
_025 0.25 0.5 | S::r?agl%i{aelit
"0.7745 0.17875 0.04675° state = 3
=[0 1 0]|0.3575 0.56825 0.07425
| 0.4675 0.37125 0.16125_

= 10.3575 0.56825 0.07425].

how to generate randomness
in a deterministic machine?

do computers have a real

true random number aenerator]
J source of random bits?

nuclear decasl radiation, thermal

.) auament computers with a intrinsicall
noise from a resistor;, etc... 9 P Y

non-deterministic phjsical source

— = — — __ —_ —= = S - — e ———————— e — —— —_——— = - = = — —~ N — S e —— ——— e ——— e ——————eg— = = —_—
— - e — — - —— —_ _ — —— ———— — —— = ——
— e — _ — = . —— = -_— _—— | e = —— e — — — —

pseuclo random number genera’ror

a parameterized set of function g={g.} such that each function g.:0,1)» - 0,1)
() takes a seed string of n bits and stretches to a longer string of length ((n)

not polynomial-time test can distinguish the output of
gn from a true random sequence of bits

pseuclo random number generafor

import random

random. seed (666)

f = random. random() »0.0<1<1.0
i = random.randint(2,9) » 9<1<9
import scala.util.Random
val rand = Random
random. setSeed(666)
val f = rand.nextFloat »0.0<f<1.0
val i = random.nextInt(9) » 0<1<9

import java.util.Random;

Random rand = new Random();
rand.setSeed(666);
float f = rand.nextFloat();

how to generate randomness
in a deterministic machine?

»0.0<{<1.0

int i = rand.nextInt(9);

import Foundation

let 1
let j

arc4drandom()
arcdrandom_uniform(9)

» 0<1<9

0<i<232_1
0<j<9

