
Software architecture

Week 10 - Asynchronous methods,
Web sockets and JMS

Requirements

1. Netbeans 11

2. Java Development Kit 8

3. Payara Server

Asynchronous methods - Future
Exercise

1. Create a new Java application.

2. Create a class called FactorialFuture. Add followings:
2.1. A private instance variable called executor and initialize it
with Executors.newSingleThreadExecutor()
2.2. A public method called calculateFactorial, which takes a parameter
called number (is type of Integer). The method returns a value which is a type
of Future<Integer>.
2.3. The body of the method should be as follows:

return executor.submit(() -> {
 Thread.sleep(1000);
 int fact = 1;
 for (int i = 1; i <= number; i++) {
 fact *= i;
 }
 return fact;
});

3. In the main method, create a FactorialFuture object. Declare at least
2 Future<Integer> variables and initialize them by
calling calculateFactorial method of FactorialFuture class.

4. Implement the following simple algorithm.

f1,f2 <- Future<Integer>
while f1 and f2 are not done
 if f1.isDone then print "F1 is done"
 else print "F1 is not done"
 if f2.isDone then print "F2 is done"
 else print "F2 is not done"
 Thread.sleep(300) // add this line as it is

result1 <- f1.get
result2 <- f2.get
print result1 and result2
System.exit(0) // add this line as it is

5. Import statements should be as follows: 5.1. In class FactorialFuture

• java.util.concurrent.ExecutorService

• java.util.concurrent.Executors

• java.util.concurrent.Future 5.2. In the MainClass

• java.util.concurrent.ExecutionException

• java.util.concurrent.Future

6. Don't forget to add catch/throw statements when it's needed.

7. RUN your code!

Sockets

In this exercise, we will create two applications that communicate with each other via
sockets. One of them will act as a server and the other as a client. The server will
contain a list of words and their translation (EN / FR). The client will send a request to
the server with a word to translate. The server will check if the word exists in the
dictionary, if it exists, it should return the translated word, otherwise it should return a
custom message.

Server

The instructions to run the server will be made in the main method of our java
application.

To create our project using Netbeans, we will follow the steps below:

1. Open Netbeans

2. Create a New Project (File > New Project > Java with Maven > Java
Application)

3. Let's call it "DictionaryServer", click on Finish. Your project is ready!
4. Create a new Java class (Server)
5. Add a main method to the newly created class. Your file should look like this:

package com.mycompany.server;

public class Server {
 public static void main(String[] args) {

 }

}

In the main method, create a Hashmap containing all the words you want to
translate:

HashMap<String, String> dico = new HashMap<String, String>();
dico.put("inheritance", "héritage");
dico.put("distributed", "réparti");

Now, let's set up our server! The first thing to do is to declare a serverSocket and to
define a port:

ServerSocket connectionServer = new ServerSocket(4444);

A server socket waits for requests to come in over the network. It performs some
operation based on that request, and then possibly returns a result to the requester.
When defining a port number, we should avoid using the well-known ports (Port
Number 0 to 1023). More details on well known
ports: http://www.meridianoutpost.com/resources/articles/well-known-tcpip-ports.php

When the connection server is declared and assigned with a port number, the server
just waits, listening to the socket for a client to make a connection request. In order to
accept a connection, we need to define a new client socket and bound it to the same
port that the Server Socket:

clientSession = connectionServer.accept();

At this point, the new Socket object puts the server in direct connection with the
client. The next step is to prepare the server to accept input from the client and to
send back an output. To do this, we will use a PrintWriter to send the message
and BufferedReader to read the incoming messages.
out = new PrintWriter(clientSession.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(clientSession.getInputStream()));

Now we can do the operations and close the connections.

String word, mot;

 while ((word = in.readLine()) != null) {
 mot = (String) dico.get(word);

 if (mot == null) {
 mot = "sorry, no translation available for \"" + word + "\"
!";
 }
 out.println(mot);
 }
 out.close();
 in.close();
 connectionServer.close();
 clientSession.close();

Client

For the client, we will create a new project by following the same steps as when
creating the server. In the main method, we will follow the steps required to connect
and to make requests to the server.

The first step is to create a new Socket with the information of the server (IP and port
number):
Socket mySession = new Socket("127.0.0.1", 4444);

http://www.meridianoutpost.com/resources/articles/well-known-tcpip-ports.php

This constructor only creates a new socket when the server has accepted the
connection, otherwise, we will get a connection refused exception. That's the reason
why, it's recommended to handle the exceptions by surrounding your code
with try..catch() instructions. More details
here: https://docs.oracle.com/javase/tutorial/essential/exceptions/catch.html
Once the connection is established between the client and the server, we can start
the communication by setting up the input and output streams:

out = new PrintWriter(mySession.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(mySession.getInputStream()));

The input stream of the client is connected to the output stream of the server, just like
the input stream of the server is connected to the output stream of the client.

Now we can make our operations. As a reminder, we have to send an input to the
server and wait for a result. This input will be a word (String), the server checks if the
word exists in its dictionary and returns the translation. We can use the code below to
request an input from the user, send it to the server and listen to its response:
stdIn = new BufferedReader(new InputStreamReader(System.in));
String fromServer, fromUser;

System.out.println("Go on, ask the dictionary server!");
while (!(fromUser = stdIn.readLine()).equals("quit")) {
 out.println(fromUser);
 fromServer = in.readLine();
 System.out.println("-> " + fromServer);
 }

Don't forget to close the opened connections!

out.close();
in.close();
stdIn.close();
mySession.close();

Additional resources

1. Datagram Socket using UDP: https://github.com/doplab/soar-
tp/tree/master/week10/UDP_socket

2. UDP Multicast: https://github.com/doplab/soar-
tp/tree/master/week10/UDP_Multicast

https://docs.oracle.com/javase/tutorial/essential/exceptions/catch.html
https://github.com/doplab/soar-tp/tree/master/week10/UDP_socket
https://github.com/doplab/soar-tp/tree/master/week10/UDP_socket
https://github.com/doplab/soar-tp/tree/master/week10/UDP_Multicast
https://github.com/doplab/soar-tp/tree/master/week10/UDP_Multicast

	Software architecture
	Week 10 - Asynchronous methods, Web sockets and JMS
	Requirements
	Asynchronous methods - Future Exercise
	Sockets
	Server
	Client

	Additional resources

