
SOFTWARE
ARCHITECTURES

Outline
■ Using Git

– Branches
– Pull, add, commit and push
– Cloning a repository (GitHub and GitLab)

■ Breaking the ice with NetBeans IDE
– Run a web application
– Working with Payara Server

■ The Best Practises of EJBs
– Stateless Session Bean
– Statefull Session Bean
– Singleton Session Bean

■ Data persistence
– Connecting, starting and creating a database

2

Using Git

3

branches

Remove useless files
Merge branch ‘developer1’
Rename files
Hotfix
Merge branch ‘master’
Tests are written
Code fix
Merge pull request
New cases are added
New test cases
…
…
…

master branch
other branches

A commit

4

pull [1]

git pull - Fetch from and integrate with another repository or a
local branch

pulling

Path to the Git Repository

Path to the Git Repository

[1] https://git-scm.com/docs/git-pull

5

https://git-scm.com/docs/git-pull

add [2], commit [3] and push [4]

git commit - Record changes to the repository
git push - Update remote refs along with associated objects

git add <file_name> [or git add .]
git commit –m <commit_message>
git push origin <branch_name>

pushing

Path to the Git Repository

Path to the Git Repository
Path to the Git Repository

Path to the Git Repository

[2] https://git-scm.com/docs/git-add
[3] https://git-scm.com/docs/git-commit
[4] https://git-scm.com/docs/git-push

6

https://git-scm.com/docs/git-add
https://git-scm.com/docs/git-commit
https://git-scm.com/docs/git-push

Other useful Git commands – status [5]

Path to the Git Repository

Path to the Git Repository

git status – Show the working tree status

[5] https://git-scm.com/docs/git-status

7

https://git-scm.com/docs/git-status

Other useful Git commands – reset [6]

Path to the Git Repository
Path to the Git Repository

git reset – Reset current HEAD* to the specified state

[6] https://git-scm.com/docs/git-reset

Path to the Git Repository

* HEAD is the current branch

8

https://git-scm.com/docs/git-reset

Cloning a repository

1. Go to https://gitlab.unil.ch/users/sign_in
2. Login using your UniL account details (username and

password)
3. Go to the given git repository URL. (i.e.

https://github.com/doplab/soar-tp)

9

https://gitlab.unil.ch/users/sign_in
https://github.com/doplab/soar-tp

Cloning a repository
Copy the https:// clone URL of the given repository.

Copy the URL

10

Cloning a repository

Create a new project on GitLab

Create a new project

11

Cloning a repository
Your project path and name

Click on «Any repo by URL»

Copy the URL here

«Create project»

12

Cloning a repository

Copy the URL

Path to the Git Repository
Path to the Git Repository

Use
git clone https://...
to clone the repository from your
GitLab account to your local
machine.

13

Breaking the ice with
NetBeans IDE

14

Run a Web Application

Unlike Java projects you’ve seen before, a Java web application
DOESN’T have a MainClass.

A Java Application

A Java Web Application

15

Run a Web Application
There are two ways to run a project;

Right-click on the project and RUN Click on Run tab and Run Project

16

Working with Payara Server

Web applications require a server to run. In exercise sessions, we
will use the Payara Server.

If you don’t have the Payara Server on NetBeans,

please refer to this document.
17

http://doplab.unil.ch/wp-content/uploads/2019/10/SOAR-Week5-Exercises-1.pdf

EJB
Enterprise JavaBeans

18

Stateless Session Bean [7]

1. When a client invokes the methods of a stateless bean, the bean’s instance variables
may contain a state specific to that client but only for the duration of the invocation.

2. Except during method invocation, all instances of a stateless bean are equivalent,
allowing the EJB container to assign an instance to any client.

[7] https://docs.oracle.com/javaee/6/tutorial/doc/gipjg.html

Client 1 Client 2 Client 1 Client 2

During method invocationInitial states

19

https://docs.oracle.com/javaee/6/tutorial/doc/gipjg.html

Stateless Session Bean [7]

@Stateless

public class CalculatorBean {

…

public double add(double n1, double n2) {…}

public double subtraction(double n1, double n2) {…}

public double multiplication(double n1, double n2) {…}

public double division(double n1, double n2) {…}

…

}

20

Stateful Session Bean [7]

1. In a stateful session bean, the instance variables represent the state of a unique
client/bean session.

2. A session bean is not shared; it can have only one client, in the same way that an
interactive session can have only one user.

Client 1 Client 2 Client 1 Client 2
Shopping cart #1

{}
Shopping cart #2

{}
Shopping cart #1
{ book1, book2}

Shopping cart #2
{book3, movie1,
movie2}

Initial states After few transactions

21

Stateful Session Bean [7]

@Stateful

public class CartBean {

String customerId;

String customerName;

List<String> contents;

…

public void addBook(String title) {…}

public void removeBook(String title) {…}

public List<String> getContents() {…}

…

}

22

Singleton Session Bean [7]

1. A singleton session bean is instantiated once per application and exists for the lifecycle
of the application.

2. Singleton session beans are designed for circumstances in which a single enterprise
bean instance is shared across and concurrently accessed by clients.

…
Developer #1 created the project.

Developer #2 put new data files.

Program #18 gave an exception.

Developer #2 created test classes.
…

Developer #6

Developer #5

Developer #4

Developer #3

Developer #2

Developer #1
23

Singleton Session Bean [7]

@Singleton

public class LogBean {

String logFileName;

…

public void addLog (String logMessage) {…}

public void removeLog(int logID) {…}

public String getLog(int logID) {…}

…

}

24

The Lifecycles of Enterprise Beans

addLog(), addLog(), getLog(), removeLog(), addLog(), … @Singleton

Client #5, add()

Client #3, multiply() Client #9, divide()

Client #5, add()
@Stateless

Client #76, addBook(), addBook(), removeBook(), addBook()

Client #43, addMovie(), removeBook(), addMovie()

Client #23, addMovie() @Stateful

25

