
Software architecture

Week 9 - JSP/JSF

Requirements
1. Netbeans 11
2. Java Development Kit 8
3. Payara Server

Sample project
To introduce the principle of JSP and JSF, we will create a simple web project using
these technologies. We will create our project using Netbeans and we will deploy it
on a Payara server.

The goal of this exercise session is to make an overview of JSP and JSF
technologies. We will explore Servlets, JSP and JSF.

Using JSF, we will create a simple page containing a form. We will use this form to
register employees. Each employee should have a first name, last name and a
position.

To create our project using Netbeans, we will follow the steps below:

1. Open Netbeans
2. Create a New Project (File > New Project > Java with Maven > Web

Application)
3. Let's call it "SoAr_week9", click on Finish. Your project is ready!
4. Separate our source code into packages. In order to have a better

understanding of our code, we will separate each part of our code into
packages. For this project, we will use two different packages:

o Beans (com.mycompany.beans)
o Servlets (com.mycompany.servlets)

JavaServer Page

JavaServer Pages (JSP) is a collection of technologies that helps software
developers create dynamically generated web pages based on HTML, XML, SOAP,
or other document types. In this section, we will make an overview of Servlets, data
transmission (using POST and GET) and JavaServer Pages.

1. Create the views (JSP): For this section on JSP, we will create two JSP files
(A form containing two inputs and a confirmation page).

We can see that the IDE automatically generate an index file. We will use it as
a landing page. It should contains a link to the form. To create new pages, we
have to right-click on our project > New > JSP. We will create two pages
called openAccount and accountDetails openAccount will contain the following
form:

 <form method="post" action="insert">
 Last Name <input type="text" name="lastname" value="Simpson">

 First Name <input type="text" name="firstname" value="Marge">

 <input type="submit" name="action" value="Create a new Account">
 </form>

2. Create a servlet: Right click on the servlet's package
(com.mycompany.servlets) > New > Servlet. In the dialog box, give a name to
your servlet (insert), click on Next. On the next page, check the box Add
information to deployment descriptor

Looking at the generated code for the new insert servlet, you can see that the IDE's
servlet template employs a processRequest method which is called by both doGet
and doPost methods. (You may need to expand the code fold by clicking the plus
icon in the editor's left margin to view these methods.) Because this application
differentiates between doGet and doPost, we will add code directly to these methods
and remove the processRequest method altogether.
In the doPost method, we will get the parameters of the form. To do it, we have to
invoke the method .getParameter("parameter name") of request. Then we will provide
these parameters to accountDetails.jsp by using a RequestDispatcher.
Our code should look like this:

@Override
 protected void doPost(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {

 RequestDispatcher rd =
request.getRequestDispatcher("/accountDetails.jsp");
 String firstname = request.getParameter("firstname");
 String lastname = request.getParameter("lastname");

 request.setAttribute("firstname", firstname);
 request.setAttribute("lastname", lastname);

 rd.forward(request, response);
 }
The method rd.forward(request, response) will redirect us to accountDetails.jsp with
the defined attributes (firstname and lastname).

1. Get the attributes: In accountDetails.jsp, we will show a simple message
containing in the attributes mentionned above. To get these attributes, we can
use request.getParameter("_Attribute name_") or an EL ${param.firstname}.

Our JSP file should look like this:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Confirmation message</title>
 </head>
 <body>
 <h1>Welcome ${param.firstname} ${param.lastname}</h1>
 </body>
</html>

JavaServer Faces

JavaServer Faces (JSF) is a user interface (UI) framework for Java web applications.
It is designed to significantly ease the burden of writing and maintaining applications
that run on a Java application server and render their UIs back to a target client.
JSF is based on the Model-View-Controller (MVC) Pattern.

To build our project using JSF, we have to follow the steps below:

1. In our project, we have to create a bean containing the properties of our
employees (First name, last name, position). To create a new bean, we have
to right click on the bean package(com.mycompany.beans) and click on New
> Other > JavaServer Faces > JSF CDI Bean. We will call it EmployeeBean

2. Once the bean is created, we have to add the annotations @Named(value =
"employeeBean") from javax.inject.Named and @RequestScoped from javax.enterp
rise.context.RequestScoped, then we have to add the attributes
of Employee and generate the Getters and Setters. Each employee should
have the following attributes:
private String firstName, lastname, position;
To generate the getters and setters using Netbeans, you can Right-click on
each attributes and click on Insert code > Getter and Setter > Select the
attributes > Click on Generate Named(value = "employeeBean"): allows you to
specify to the server that this bean is now a CDI managed bean.

A managed bean is a POJO (Plain Old Java Object) that can be used to store data,
and is managed by the container (e.g., the Payara server) using the CDI (Context
and Dependency Injection) framework.
CDI is preferred over plain JSF backing beans because CDI allows for Java EE wide
dependency injection. In a future release of JSF the @Managedbean will be removed

from the JSF package. CDI is more powerful than the JSF managed bean because
you are not limited to JSF only. You can inject every bean managed by CDI.
A POJO is essentially a Java class that contains a public, no argument constructor
and conforms to the JavaBeans naming conventions for its properties.
Note: In JSF 2.3, managed bean annotations are deprecated; CDI is now the
preferred approach.

6. Creating the view: For this project, we will create two Facelets (Facelets are
just XHTML pages with JSF
tags): createEmployee and welcomeEmployee. createEmployee will contains
the form to create a new employee. welcomeEmployee will show us the
attributes defined in our bean.

Netbeans makes it easy for us to create facelets by allowing us to use pre-
designed templates.

To create a new Facelet based on a defined template, we have to Right click
on Web Pages> New > Other > JavaServer Faces > Facelets Template Name
your template and select a Layout style, then click on Finish. Create the two
facelets: createEmployee and welcomeEmployee

i. The facelet createEmployee will contain a simple form with three inputs
(firstname, lastname, position). The file should look like this:

 <?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <h:outputStylesheet name="/resources/css/default.css"/>
 <h:outputStylesheet name="/resources/css/cssLayout.css"/>
 <title>Creating a new Employee</title>
 </h:head>

 <h:body>

 <div id="top" class="top">
 <ui:insert name="top"><h2>Creating a new Employee</h2></ui:insert>
 </div>

 <div id="content" class="center_content">
 <h:form>
 <h:outputLabel for="firstName">First name: </h:outputLabel>
 <h:inputText id="firstName" size="20"
value="#{employeeBean.firstName}"/>

 <h:outputLabel for="lastName">Last name: </h:outputLabel>
 <h:inputText id="lastName" size="20"
value="#{employeeBean.lastName}"/>

 <h:outputLabel for="Position">Position: </h:outputLabel>
 <h:inputText id="position" size="20"
value="#{employeeBean.position}"/>

 <h:commandButton id="submit" value="Submit"
action="welcomeEmployee" />

 </h:form>
 </div>

 </h:body>

</html>
The JSF runtime searches for a file named welcomeEmployee. It assumes the file
extension is the same as the extension used by file from which the request originated
(createEmployee.xhtml) and looks for the welcomeEmployee file in the same directory as
the originating file (i.e., the webroot).

2. The Facelet welcomeEmployee will show the overwritten attributes
of EmployeeBean. We can simply call these attributes using EL
expressions #{employeeBean.(Atribute)}. Our welcomeEmployee's file should look
like this:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <h:outputStylesheet name="resources/css/default.css"/>
 <h:outputStylesheet name="resources/css/cssLayout.css"/>
 <title>Welcome Employee</title>
 </h:head>

 <h:body>
 <!-- Header -->
 <div id="top" class="top">
 <ui:insert name="top"><h1>Welcome #{employeeBean.firstName},
#{employeeBean.lastName}</h1></ui:insert>
 </div>
 <!-- Content -->
 <div id="content" class="center_content">
 <ui:insert name="content">Position of the new Employee
#{employeeBean.position}</ui:insert>
 </div>

 </h:body>

</html>
Expression Language (EL) are simple expressions to dynamically access data from
JavaBeans components. EL provides a way to use simple expressions to perform the
following tasks:

• Dynamically read application data stored in JavaBeans components, various
data structures, and implicit objects

• Dynamically write data, such as user input into forms, to JavaBeans
components

• Invoke arbitrary static and public methods
• Dynamically perform arithmetic, boolean, and string operations.
• Dynamically construct collection objects and perform operations on collections

7. Run the project: Right click on createEmployee.xhtml > Run File

Common errors:

1. Unable to find resource ./css/default.css: To fix it, remove "./" on your
resources path. The new h tag should look like this: <h:outputStylesheet
name="resources/css/default.css"/>

2. ... Target Unreachable, identifier 'bean' resolved to null: When evaluating
the EL expression, JSF finds no setter method for the bean name with the
identifier mentioned in the error message. Indeed, the rule for a JavaBean
requires that the method be correctly named, and since we have changed its
name, JSF considers that there is no setter method. It therefore logically
warns us that an exception javax.el.el.PropertyNotWritableException is
thrown, and that the name property is considered to be read-only.

3. unable to find matching navigation case with from-view-id '/mypage.xhtml'
for action 'connexion' with outcome 'connexion': The JSF controller - the
FacesServlet - is unable to find a Facelet named mypage.xhtml, and JSF
automatically displays the error, directly within your page! To fix it, you have to
make sure that mypage.xhtml is available in the appropriate path.

Difference between JSP and JSF
JSP technology is part of the Java technology family. JSP pages are compiled into
servlets and may call JavaBeans components (beans) or Enterprise JavaBeans
components (enterprise beans) to perform processing on the server. As such, JSP
technology is a key component in a highly scalable architecture for web-based
applications.
http://www.oracle.com/technetwork/java/faq-137059.html

JavaServer Faces technology is a framework for building user interfaces for web
applications. JavaServer Faces technology includes:

• A set of APIs for: representing UI components and managing their state,
handling events and input validation, defining page navigation, and supporting
internationalization and accessibility.

• A JavaServer Pages (JSP) custom tag library for expressing a JavaServer
Faces interface within a JSP page.

https://jcp.org/en/introduction/faq

Resources

Official documentation of JSF tags

Exercises
1. Create a simple landing page using JSF. The page must contain a header, a

content div and a footer
2. Add views containing forms: the purpose of our project is to create a new bank

account.
3. Persist the newly created Bank Account in a H2 database (JPA - Week 7)
4. Handle transactions between Bank accounts (deposit and transfer).

Oracle VM VirtualBox
Download Oracle VM VirtualBox

1. Go to the following link: https://www.virtualbox.org/wiki/Downloads

2. Download Oracle VM VirtualBox (choose your OS):

How to use Oracle VM VirtualBox

Once you installed the application, all you need to do is to Import the OVA file
(download the file here).

1. Click on Import

2. Select the OVA file

3. Don’t change anything and click on Import

Important Information About the VM

Username: soar Password: 1234

How to set RAM of the virtual machine

1. Click on Settings

2. Click on Systems

3. Set the RAM (Base Memory) as you wish. But make sure

• you have at least 4GB of RAM (Base Memory is at least 4096)
• the selector is always in green part
• the value must be at least 2048, which is also the default, and should be

represented as 2 to the power X (you can set it to 2048, 4096, 8192, and so
on).

