
abstract 
classes & 
types



learning 
objectives

learn how to define and use abstract classes 

learn how to define types without implementation 

learn about multiple inheritance of types

hardware

your software

algorithms

system software



a rectangular array of elements 
arranged in rows and columns

a mathematical example
representing matrices

examples

3×1 matrix 3×3 matrix1×3 matrix

matrices are used in many branches of 
physics, math, computer graphics, etc.

i designates the row 
j designates the column

A~x = ~b where
a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

linear equation
~b =


b1
b2

�
~x =


x1

x2

�
A =


a11 a12
a21 a22

�

m × n matrix

aij j changes

i 
ch

a
n

g
es

n columns

m
 r

ow
s



matrices
one with most of its 
elements equal to zero

sparse matrix

A and B must have the same number of rows and columns

one with most of its 
elements not equal to zero

dense matrix

one with equal number 
of rows and columns

square matrix
one with all off-diagonal 

elements equal to zero

diagonal matrix

addition

representing



multiplication
matricesrepresenting



public class ArrayMatrix  {
    final private int[][] matrix;
    final int numOfRows;
    final int numOfCols;

    public ArrayMatrix(int rows, int cols) {
        if (rows <= 0 || cols <= 0) {
            throw new IllegalArgumentException("A matrix must have a positive number of rows and columns");
        }
        this.numOfRows = rows;
        this.numOfCols = cols;
        matrix = new int[rows][cols];
    }
    public ArrayMatrix(int rows, int cols, int[][] data) {
        this(rows, cols);
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                this.set(i, j, data[i][j]);
            }
        }
    }
    public int getNumOfRows() { return numOfRows; }
    public int getNumOfCols() { return numOfCols; }
    public int get(int i, int j) { return matrix[i][j]; }
    public void set(int i, int col, int v) { matrix[i][col] = v; }
    public String toString() {
        StringBuilder description = new StringBuilder();
        description.append("\n").append(this.getClass().getSimpleName()).append("\n");
        for (int i = 0; i < numOfRows; i++) {
            description.append("| ");
            for (int j = 0; j < numOfCols; j++) {
                String entry = String.format("% 3d", this.get(i, j));
                description.append(entry).append(" ");
            }
            description.append("|\n");
        }
        return description.toString();
    }

   ⠇ 
}

ArrayMatrix m = new ArrayMatrix(3, 3);
System.out.println("m = " + m);

int[][] data = {
   {2, 4, 6}, 
   {3, 6, 9}
};

m = new ArrayMatrix(2, 3, data);
System.out.println("m = " + m);

m = 
ArrayMatrix
|   0     0     0   |
|   0     0     0   |
|   0     0     0   |

m = 
ArrayMatrix
|   2     4     6   |
|   3     6     9   |in the following, we assume that indices 

go from 0 to n–1 rather than 1 to n

matricesrepresenting



public class ArrayMatrix  {
    final private int[][] matrix;
    final int numOfRows;
    final int numOfCols;

    public ArrayMatrix(int rows, int cols) {
        if (rows <= 0 || cols <= 0) {
            throw new IllegalArgumentException("A matrix must have a positive number of rows and columns");
        }
        this.numOfRows = rows;
        this.numOfCols = cols;
        matrix = new int[rows][cols];
    }
    public ArrayMatrix(int rows, int cols, int[][] data) {
        this(rows, cols);
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                this.set(i, j, data[i][j]);
            }
        }
    }
    public int getNumOfRows() { return numOfRows; }
    public int getNumOfCols() { return numOfCols; }
    public int get(int i, int j) { return matrix[i][j]; }
    public void set(int i, int col, int v) { matrix[i][col] = v; }
    public String toString() {
        StringBuilder description = new StringBuilder();
        description.append("\n").append(this.getClass().getSimpleName()).append("\n");
        for (int i = 0; i < numOfRows; i++) {
            description.append("| ");
            for (int j = 0; j < numOfCols; j++) {
                String entry = String.format("% 3d", this.get(i, j));
                description.append(entry).append(" ");
            }
            description.append("|\n");
        }
        return description.toString();
    }

   ⠇ 
}

in the following, we assume that indices 
go from 0 to n–1 rather than 1 to n

int[][] data = {
   {2, 4, 6}, 
   {3, 6, 9}
};
ArrayMatrix m = new ArrayMatrix(2, 3, data);
System.out.println("m = " + m);

System.out.println("m(0,0) = " + m.get(0, 0));
m.set(0, 0, 7);
System.out.println("m(0,0) = " + m.get(0, 0));

System.out.println();
System.out.println("m = " + m);

m = 
ArrayMatrix
|   2     4     6   |
|   3     6     9   |

m(0,0) = 2
m(0,0) = 7

m = 
ArrayMatrix
|   7     4     6   |
|   3     6     9   |

matricesrepresenting



public class ArrayMatrix  {
    private int[][] matrix;
    final int numOfRows;
    final int numOfCols;

   ⠇ 
    public ArrayMatrix addTo(ArrayMatrix other) {
        if (this.numOfRows != other.numOfRows || this.numOfCols != other.numOfCols) {
            throw new IllegalArgumentException("Matrices must have the same number of rows and columns when added");
        }

        ArrayMatrix result = new ArrayMatrix(numOfRows, numOfCols);
        for (int i = 0; i < numOfRows; i++) {
            for (int j = 0; j < numOfCols; j++) {
                result.set(i, j, this.get(i, j) + other.get(i, j));
            }
        }

        return result;
    }

    public ArrayMatrix multiplyBy(ArrayMatrix other) {
        if (this.numOfCols != other.getNumOfRows()) {
            throw new IllegalArgumentException("Matrices must have compatible number of rows and columns when multiplied");
        }

        ArrayMatrix result = new ArrayMatrix(this.numOfRows, other.getNumOfCols());
        for (int i = 0; i < result.getNumOfRows(); i++) {
            for (int j = 0; j < result.getNumOfCols(); j++) {
                int entry = 0;
                for (int k = 0; k < this.numOfCols; k++) {
                    entry = entry + this.get(i, k) * other.get(k, j);
                    result.set(i, j, entry);
                }
            
        }
        return result;
    }
}

int[][] data1 = {
    { 1,   2, -4},
    {-1,  -3,  3}
};
int[][] data2 = {
    { 0,   5,  4},
    {-2,  -3,  6},
    { 1,   2,  3}
};

ArrayMatrix m1 = new ArrayMatrix(2, 3, data1);
ArrayMatrix m2 = new ArrayMatrix(3, 3, data2); 
ArrayMatrix m3 = m2.addTo(m2);
System.out.println("m3 = m2 + m2 = " + m3);

m3 = m1.multiplyBy(m2);
System.out.println("m3 = m1 * m2 = " + m3);

m3 = m2 + m2 = 
ArrayMatrix
|   0    10     8   |
|  -4    -6    12   |
|   2     4     6   |

m3 = m1 * m2 = 
ArrayMatrix
|  -8    -9     4   |
|   9    10   -13   |

representing matrices



public class MapMatrix {
    final Map<Index, Integer> matrix;
    final int numOfRows;
    final int numOfCols;

    public MapMatrix(int rows, int cols) {
        if (rows <= 0 || cols <= 0) {
            throw new IllegalArgumentException("A matrix must have a positive number of rows and columns");
        }
        this.numOfRows = rows;
        this.numOfCols = cols;
        matrix = new HashMap();
    }
  public MapMatrix(int rows, int cols, Map<Index, Integer> data) {
        this(rows, cols);
        for (Index index : data.keySet()) {
            if (index.i < rows && index.j < cols) {
                this.set(index.i, index.j, data.get(index));
            }
        }
    }
    public int getNumOfRows() { return numOfRows; }
    public int getNumOfCols() { return numOfCols; }
    public int get(int i, int j) {
        Index index = Index.from(i, j);
        return matrix.containsKey(index) ? matrix.get(index) : 0;
    }
    public void set(int i, int j, int v) { matrix.put(Index.from(i, j), v); }

    public String toString() {
        StringBuilder description = new StringBuilder();
       description.append("\n").append(this.getClass().getSimpleName()).append("\n");
        for (int i = 0; i < numOfRows; i++) {
            description.append("| ");
            for (int j = 0; j < numOfCols; j++) {
                String entry = String.format("% 3d", this.get(i, j));
                description.append(entry).append("   ");
            }
            description.append("|\n");
        }
        return description.toString();
    }

   ⠇ 
}

MapMatrix m = new MapMatrix(3, 3);
System.out.println("m = " + m);

Map<Index, Integer> data = new HashMap();
data.put(Index.from(2, 4), 66);
data.put(Index.from(0, 2), 44);

m = new MapMatrix(5, 5, data);
System.out.println("m = " + m);

m = 
MapMatrix
|   0     0     0   |
|   0     0     0   |
|   0     0     0   |

m = 
MapMatrix
|   0     0    44     0     0   |
|   0     0     0     0     0   |
|   0     0     0     0    66   |
|   0     0     0     0     0   |
|   0     0     0     0     0   |

sparse matrices



public class MapMatrix {
    final Map<Index, Integer> matrix;
    final int numOfRows;
    final int numOfCols;

    public MapMatrix(int rows, int cols) {
        if (rows <= 0 || cols <= 0) {
            throw new IllegalArgumentException("A matrix must have a positive number of rows and columns");
        }
        this.numOfRows = rows;
        this.numOfCols = cols;
        matrix = new HashMap();
    }
  public MapMatrix(int rows, int cols, Map<Index, Integer> data) {
        this(rows, cols);
        for (Index index : data.keySet()) {
            if (index.i < rows && index.j < cols) {
                this.set(index.i, index.j, data.get(index));
            }
        }
    }
    public int getNumOfRows() { return numOfRows; }
    public int getNumOfCols() { return numOfCols; }
    public int get(int i, int j) {
        Index index = Index.from(i, j);
        return matrix.containsKey(index) ? matrix.get(index) : 0;
    }
    public void set(int i, int j, int v) { matrix.put(Index.from(i, j), v); }

    public String toString() {
        StringBuilder description = new StringBuilder();
       description.append("\n").append(this.getClass().getSimpleName()).append("\n");
        for (int i = 0; i < numOfRows; i++) {
            description.append("| ");
            for (int j = 0; j < numOfCols; j++) {
                String entry = String.format("% 3d", this.get(i, j));
                description.append(entry).append("   ");
            }
            description.append("|\n");
        }
        return description.toString();
    }

   ⠇ 
}

MapMatrix m = new MapMatrix(3, 3);
System.out.println("m = " + m);

Map<Index, Integer> data = new HashMap();
data.put(Index.from(2, 4), 66);
data.put(Index.from(0, 2), 44);

m = new MapMatrix(5, 5, data);
System.out.println("m = " + m);

public class Index {
    public final int i;
    public final int j;
    public Index(int i, int j) {
        this.i = i;
        this.j = j;
    }
    public static Index from(int i, int j) {
        return new Index(i, j);
    }
    public int hashCode() {
        int hash = 7;
        hash = 83 * hash + this.i;
        hash = 83 * hash + this.j;
        return hash;
    }

   ⠇ 

   ⠇ 
    public boolean equals(Object obj) {
        if (this == obj) {
            return true;
        }
        if (obj == null) {
            return false;
        }
        if (getClass() != obj.getClass()) {
            return false;
        }
        final Index other = (Index) obj;
        if (this.i != other.i) {
            return false;
        }
        if (this.j != other.j) {
            return false;
        }
        return true;
    }
}

sparse matrices



public class MapMatrix {
    final Map<Index, Integer> matrix;
    final int numOfRows;
    final int numOfCols;

    public MapMatrix(int rows, int cols) {
        if (rows <= 0 || cols <= 0) {
            throw new IllegalArgumentException("A matrix must have a positive number of rows and columns");
        }
        this.numOfRows = rows;
        this.numOfCols = cols;
        matrix = new HashMap();
    }
  public MapMatrix(int rows, int cols, Map<Index, Integer> data) {
        this(rows, cols);
        for (Index index : data.keySet()) {
            if (index.i < rows && index.j < cols) {
                this.set(index.i, index.j, data.get(index));
            }
        }
    }
    public int getNumOfRows() { return numOfRows; }
    public int getNumOfCols() { return numOfCols; }
    public int get(int i, int j) {
        Index index = Index.from(i, j);
        return matrix.containsKey(index) ? matrix.get(index) : 0;
    }
    public void set(int i, int j, int v) { matrix.put(Index.from(i, j), v); }

    public String toString() {
        StringBuilder description = new StringBuilder();
       description.append("\n").append(this.getClass().getSimpleName()).append("\n");
        for (int i = 0; i < numOfRows; i++) {
            description.append("| ");
            for (int j = 0; j < numOfCols; j++) {
                String entry = String.format("% 3d", this.get(i, j));
                description.append(entry).append("   ");
            }
            description.append("|\n");
        }
        return description.toString();
    }

   ⠇ 
}

problem
public class ArrayMatrix  {
    private int[][] matrix;
    final int numOfRows;
    final int numOfCols;

    public ArrayMatrix(int rows, int cols) {
        if (rows <= 0 || cols <= 0) {
            throw new IllegalArgumentException("A matrix must have a positive number of rows and columns");
        }
        this.numOfRows = rows;
        this.numOfCols = cols;
        matrix = new int[rows][cols];
    }
    public ArrayMatrix(int rows, int cols, int[][] data) {
        this(rows, cols);
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                this.set(i, j, data[i][j]);
            }
        }
    }
    public int getNumOfRows() { return numOfRows; }
    public int getNumOfCols() { return numOfCols; }
    public int get(int i, int j) { return matrix[i][j]; }

    public void set(int i, int col, int v) { matrix[i][col] = v; }

    public String toString() {
        StringBuilder description = new StringBuilder();
        description.append("\n").append(this.getClass().getSimpleName()).append("\n");
        for (int i = 0; i < numOfRows; i++) {
            description.append("| ");
            for (int j = 0; j < numOfCols; j++) {
                String entry = String.format("% 3d", this.get(i, j));
                description.append(entry).append(" ");
            }
            description.append("|\n");
        }
        return description.toString();
    }

   ⠇ 
}

code duplication... again!... again!



can we blend array and map matrices?
problem

    public ArrayMatrix multiplyBy(ArrayMatrix other) {
        if (this.numOfCols != other.getNumOfRows()) {
            throw new IllegalArgumentException("Matrices must have compatible number of rows and columns when multiplied");
        }
        ArrayMatrix result = new ArrayMatrix(this.numOfRows, other.getNumOfCols());
        for (int i = 0; i < result.getNumOfRows(); i++) {
            for (int j = 0; j < result.getNumOfCols(); j++) {
                int entry = 0;
                for (int k = 0; k < this.numOfCols; k++) {
                    entry = entry + this.get(i, k) * other.get(k, j);
                    result.set(i, j, entry);
                }
            
        }
        return result;
    }

    public MapMatrix multiplyBy(MapMatrix other) {
        if (this.numOfCols != other.getNumOfRows()) {
            throw new IllegalArgumentException("Matrices must have compatible number of rows and columns when multiplied");
        }
        MapMatrix result = new MapMatrix(this.numOfRows, other.getNumOfCols());
        for (int i = 0; i < result.getNumOfRows(); i++) {
            for (int j = 0; j < result.getNumOfCols(); j++) {
                int entry = 0;
                for (int k = 0; k < this.numOfCols; k++) {
                    entry = entry + this.get(i, k) * other.get(k, j);
                    result.set(i, j, entry);
                }
            
        }
        return result;
    } incompatible types



class Matrix(private val rows: Int, private val cols: Int) { 
 if (rows <= 0) 
    throw new IllegalArgumentException("A matrix must have a positive number of rows") 
  if (cols <= 0) 
    throw new IllegalArgumentException("A matrix must have a positive number of columns") 
 
  private var matrix = Array.ofDim[Int](rows, cols) 
 
  def this(rows: Int, cols: Int, mtx: Array[Array[Int]]) { 
    this(rows,cols) 
    for (i <- 0 to rows - 1) 
      mtx(i).copyToArray(matrix(i))     
  }  
 
  def numOfRows: Int = this.rows 
  def numOfCols: Int = this.cols 
 
  def apply(i: Int, j: Int): Int = matrix(i)(j) 
  def update(i: Int, j: Int, v: Int) = matrix(i)(j) = v 
 
  def print: Unit = { 
    println(this.getClass.getSimpleName) 
    for (i <- 0 to this.numOfRows - 1) { 
      Console.print("|  ") 
      for (j <- 0 to this.numOfCols - 1) { 
        Console.print(s"${this(i,j)}  ") 
      }  
      println("|") 
    }  
  } 

 ⠇ 

representing matrices

var m = new Matrix(3,3) 
m.print() 

val mtx : Array[Array[Int]] = Array( Array(2, 4, 6) , Array(3, 6, 9)) 

m = new Matrix(2,3,mtx) 
m.print()

Matrix 
|  0  0  0  | 
|  0  0  0  | 
|  0  0  0  | 
Matrix 
|  2  4  6  | 
|  3  6  9  |

in the following, we assume that indices go 
from 0 to n–1 rather than 1 to n



representing matrices
class Matrix(private val rows: Int, private val cols: Int) { 
 if (rows <= 0) 
    throw new IllegalArgumentException("A matrix must have a positive number of rows") 
  if (cols <= 0) 
    throw new IllegalArgumentException("A matrix must have a positive number of columns") 
 
  private var matrix = Array.ofDim[Int](rows, cols) 
 
  def this(rows: Int, cols: Int, mtx: Array[Array[Int]]) { 
    this(rows,cols) 
    for (i <- 0 to rows - 1) 
      mtx(i).copyToArray(matrix(i))     
  }  
 
  def numOfRows: Int = this.rows 
  def numOfCols: Int = this.cols 
 
  def apply(i: Int, j: Int): Int = matrix(i)(j) 
  def update(i: Int, j: Int, v: Int) = matrix(i)(j) = v 
 
  def print: Unit = { 
    println(this.getClass.getSimpleName) 
    for (i <- 0 to this.numOfRows - 1) { 
      Console.print("|  ") 
      for (j <- 0 to this.numOfCols - 1) { 
        Console.print(s"${this(i,j)}  ") 
      }  
      println("|") 
    }  
  } 

 ⠇ 

Matrix 
|  2  4  6  | 
|  3  6  9  | 
m(0,0) = 2 
m(0,0) = 7 
Matrix 
|  7  4  6  | 
|  3  6  9  |

val mtx : Array[Array[Int]] = Array( Array(2, 4, 6) , Array(3, 6, 9)) 
m = new Matrix(2,3,mtx) 
m.print() 

println(s"m(0,0) = ${m(0,0)}"); m(0,0) = 7; println(s"m(0,0) = ${m(0,0)}") 
m.print()

 apply(…) ⇔	 get(…) 
 update(…) ⇔	 set(…)



class Matrix(private val rows: Int, private val cols: Int) { 
  ⠇ 
  def +(other: Matrix): Matrix = { 
    if (this.numOfRows != other.numOfRows || this.numOfCols != other.numOfCols) 
      throw new IllegalArgumentException("Matrices must have the same number of rows" + " and columns when added") 
 
    val result = new Matrix(this.numOfRows, this.numOfCols) 
 
    for (i <- 0 to this.numOfRows - 1; j <- 0 to this.numOfCols - 1) 
      result(i,j) = this (i, j) + other(i, j) 
    return result 
  }  
 
  def *(other: Matrix): Matrix = { 
    if (this.numOfCols != other.numOfRows) 
      throw new IllegalArgumentException("The number of columns in the first matrix must be" + 
                          "equal to the number of rows of the second matrix when multiplied") 
 
    val result = new Matrix(this.numOfRows, other.numOfCols) 
 
    for (i <- 0 to result.numOfRows - 1; j <- 0 to result.numOfCols - 1) { 
      var entry: Int = 0 
      for (k <- 0 to this.numOfCols - 1) 
        entry = entry + this (i, k) * other(k, j) 
      result(i,j) = entry 
    }  
    return result 
  } 
}

representing matrices



class SparseMatrix(private val rows: Int, private val cols: Int) { 
 if (rows <= 0) 
    throw new IllegalArgumentException("A matrix must have a positive number of rows") 
  if (cols <= 0) 
    throw new IllegalArgumentException("A matrix must have a positive number of columns") 
 
  private var matrix = scala.collection.mutable.Map[(Int,Int),Int]() 
 
  def this(rows: Int, cols: Int, mtx: Map[(Int,Int),Int]) {  
    this(rows,cols) 
    matrix = collection.mutable.Map(mtx.toSeq: _*) 
  }  
 
  def numOfRows: Int = this.rows 
  def numOfCols: Int = this.cols 
   
  def apply(i: Int, j: Int): Int = matrix.getOrElse((i,j),0) 
  def update(i: Int, j: Int, v: Int): Unit = this.matrix((i,j)) = v 
 
  def print: Unit = { 
    println(this.getClass.getSimpleName) 
    for (i <- 0 to this.numOfRows - 1) { 
      Console.print("|  ") 
      for (j <- 0 to this.numOfCols - 1) { 
        Console.print(s"${this(i,j)}  ") 
      }  
      println("|") 
    }  
  } 

 ⠇

}

val mtx = scala.collection.immutable.Map((6,6) -> 6, (3,3) -> 3) 
m = new SparseMatrix(10,10, mtx) 
m.print()

SparseMatrix 
|  0  0  0  0  0  0  0  0  0  0  | 
|  0  0  0  0  0  0  0  0  0  0  | 
|  0  0  0  0  0  0  0  0  0  0  | 
|  0  0  0  3  0  0  0  0  0  0  | 
|  0  0  0  0  0  0  0  0  0  0  | 
|  0  0  0  0  0  0  0  0  0  0  | 
|  0  0  0  0  0  0  6  0  0  0  | 
|  0  0  0  0  0  0  0  0  0  0  | 
|  0  0  0  0  0  0  0  0  0  0  | 
|  0  0  0  0  0  0  0  0  0  0  |

sparse matrices
var m = new SparseMatrix(3,3) 
m.print()

SparseMatrix 
|  0  0  0  | 
|  0  0  0  | 
|  0  0  0  |



code duplication... again!... again!

class Matrix(private val rows: Int, private val cols: Int) { 
 if (rows <= 0) 
    throw new IllegalArgumentException("A matrix must have a positive number of rows") 
  if (cols <= 0) 
    throw new IllegalArgumentException("A matrix must have a positive number of columns") 
 
  private var matrix = Array.ofDim[Int](rows, cols) 
 
  def this(rows: Int, cols: Int, mtx: Array[Array[Int]]) { 
    this(rows,cols) 
    for (i <- 0 to rows - 1) 
      mtx(i).copyToArray(matrix(i))     
  }  
 
  def numOfRows: Int = this.rows 
  def numOfCols: Int = this.cols 
 
  def apply(i: Int, j: Int): Int = matrix(i)(j) 
  def update(i: Int, j: Int, v: Int) = matrix(i)(j) = v 
 
  def print: Unit = { 
    println(this.getClass.getSimpleName) 
    for (i <- 0 to this.numOfRows - 1) { 
      Console.print("|  ") 
      for (j <- 0 to this.numOfCols - 1) { 
        Console.print(s"${this(i,j)}  ") 
      }  
      println("|") 
    }  
  } 
  ...

class SparseMatrix(private val rows: Int, private val cols: Int) { 
 if (rows <= 0) 
    throw new IllegalArgumentException("A matrix must have a positive number of rows") 
  if (cols <= 0) 
    throw new IllegalArgumentException("A matrix must have a positive number of columns") 
 
  private var matrix = scala.collection.mutable.Map[(Int,Int),Int]() 
 
  def this(rows: Int, cols: Int, mtx: Map[(Int,Int),Int]) { 
    this(rows,cols) 
    matrix = collection.mutable.Map(mtx.toSeq: _*) 
  }  
 
 
  def numOfRows: Int = this.rows 
  def numOfCols: Int = this.cols 
   
  def apply(i: Int, j: Int): Int = matrix.getOrElse((i,j),0) 
  def update(i: Int, j: Int, v: Int): Unit = this.matrix((i,j)) = v 
 
  def print: Unit = { 
    println(this.getClass.getSimpleName) 
    for (i <- 0 to this.numOfRows - 1) { 
      Console.print("|  ") 
      for (j <- 0 to this.numOfCols - 1) { 
        Console.print(s"${this(i,j)}  ") 
      }  
      println("|") 
    }  
  } 
  ...

problem



can we blend dense and sparse matrices?
problem

 def *(other: Matrix): Matrix = {  
    if (this.numOfCols != other.numOfRows) 
      throw new IllegalArgumentException("The number of columns in the first matrix must be" + 
                          "equal to the number of rows of the second matrix when multiplied") 
 
    val result = new Matrix(this.numOfRows, other.numOfCols) 
 
    for (i <- 0 to result.numOfRows - 1; j <- 0 to result.numOfCols - 1) { 
      var entry: Int = 0 
      for (k <- 0 to this.numOfCols - 1) 
        entry = entry + this (i, k) * other(k, j) 
      result(i,j) = entry 
    }  
    return result 
  }

 def *(other: SparseMatrix): SparseMatrix = {  
    if (this.numOfCols != other.numOfRows) 
      throw new IllegalArgumentException("The number of columns in the first matrix must be" + 
                          "equal to the number of rows of the second matrix when multiplied") 
 
    val result = new SparseMatrix(this.numOfRows, other.numOfCols) 
 
    for (i <- 0 to result.numOfRows - 1; j <- 0 to result.numOfCols - 1) { 
      var entry: Int = 0 
      for (k <- 0 to this.numOfCols - 1) 
        entry = entry + this (i, k) * other(k, j) 
      result(i,j) = entry 
    }  
    return result 
  } incompatible types



inheritance?solution



Matrix

get 
set 
toString 
addTo 
multiplyBy

?
DenseMatrix

matrix: array

get 
set

SparseMatrix
map: map

get 
set

yes, but...

the superclass delegates the internal 
representation to it s subclasses

so methods get and set have  
no default or shared implementation 

these methods are abstract in the superclass



solution

abstract class!



public abstract class AbstractMatrix  {
    final int numOfRows;
    final int numOfCols;

    public AbstractMatrix(int rows, int cols) {
        if (rows <= 0 || cols <= 0) {
            throw new IllegalArgumentException("A matrix must have a positive number of rows and columns");
        }
        this.numOfRows = rows;
        this.numOfCols = cols;
    }
    public abstract int get(int i, int j);
    public abstract void set(int i, int j, int v);

    public int getNumOfRows() { return numOfRows; }
    public int getNumOfCols() { return numOfCols; }

    final protected void init(int[][] data) {
        for (int i = 0; i < data.length; i++) {
            for (int j = 0; j < data[i].length; j++) {
                this.set(i, j, data[i][j]);
            }
        }

    }
    final protected void init(Map<Index, Integer> data) {
        for (Index index : data.keySet()) {
            if (index.i < numOfRows && index.j < numOfRows) {
                this.set(index.i, index.j, data.get(index));
            }
        }
    }
    public String toString() {
        StringBuilder description = new StringBuilder();

        description.append("\n").append(this.getClass().getSimpleName()).append("\n");
        for (int i = 0; i < numOfRows; i++) {
            description.append("| ");
            for (int j = 0; j < numOfCols; j++) {
                description.append(this.get(i, j)).append(" ");
            }
            description.append("|\n");
        }
        return description.toString();
    }
    ⠇

}

abstract 
class DenseMatrix

matrix: array

get 
set

SparseMatrix
matrix: map

get 
set

AbstractMatrix

get 
set 
toString 
addTo 
multiplyBy

    ⠇

    public AbstractMatrix addTo(AbstractMatrix other) {
        if (this.numOfRows != other.numOfRows || this.numOfCols != other.numOfCols) {
            throw new IllegalArgumentException("Matrices must have the same number of rows and columns when added");
        }

        DenseMatrix result = new DenseMatrix(numOfRows, numOfCols);
        for (int i = 0; i < numOfRows; i++) {
            for (int j = 0; j < numOfCols; j++) {

                result.set(i, j, this.get(i, j) + other.get(i, j));
            }
        }
        return result;
    }
    ⠇

}

why use DenseMatrix, not SparseMatrix?

could we come with a better scheme?



public class SparseMatrix extends AbstractMatrix {
    final Map<Index, Integer> matrix;

    public SparseMatrix(int rows, int cols) {
        super(rows, cols);
        matrix = new HashMap();
    }
    public SparseMatrix(int rows, int cols, int[][] data) {
        this(rows, cols);
        init(data);
    }
    public SparseMatrix(int rows, int cols, Map<Index, Integer> data) {
        this(rows, cols);
        init(data);
    }
    public int get(int i, int j) {
        Index index = Index.from(i, j);
        if (matrix.containsKey(index)) {
            return matrix.get(index);
        } else {
            return 0;
        }
    }
    public void set(int i, int j, int v) {
        matrix.put(Index.from(i, j), v);
    }
}

abstract 
class DenseMatrix

matrix: array

get 
set

SparseMatrix
matrix: map

get 
set

AbstractMatrix

get 
set 
toString 
addTo 
multiplyBy

public class DenseMatrix extends AbstractMatrix {
    private int[][] matrix;

    public DenseMatrix(int rows, int cols) {
        super(rows, cols);
        matrix = new int[rows][cols];
    }
    public DenseMatrix(int rows, int cols, int[][] data) {
        this(rows, cols);
        init(data);
    }
    public DenseMatrix(int rows, int cols, Map<Index, Integer> data) {
        this(rows, cols);
        init(data);
    }
    public int get(int i, int j) {
        return matrix[i][j];
    }
    public void set(int i, int j, int v) {
        matrix[i][j] = v;
    }
}



AbstractMatrix

get 
set 
toString 
addTo 
multiplyBy

public class DiagonalMatrix extends AbstractMatrix {
    private int[] diagonal;

    public DiagonalMatrix(int rows, int cols) {
        super(rows, cols);
        if (rows != cols) {
            throw new IllegalArgumentException("A diagonal matrix must have be square");
        }
        diagonal = new int[rows];
    }
    public DiagonalMatrix(int rows, int cols, int[] diagonal) {
        this(rows, cols);
        int limit = Math.min(rows, diagonal.length);
        for (int i = 0; i < limit; i++) {
            this.diagonal[i] = diagonal[i];
        }
    }
    public int get(int i, int j) {        
        return (i == j) ? diagonal[i] : 0;
    }
    public void set(int i, int j, int v) {
        if (i == j) {
             diagonal[i] = v;
        } else {
            throw new IllegalArgumentException("A diagonal matrix should only" + " have zeros outside its diagonal");
        }
    }
}

abstract 
class

DiagonalMatrix
diagonal: vector

get 
set

DenseMatrix
matrix: array

get 
set

SparseMatrix
matrix: map

get 
set



public class UnityMatrix extends AbstractMatrix {
   public UnityMatrix(int size) {
        super(size, size);
    }
    public int get(int i, int j) { return (i == j) ? 1 : 0; }
    public void set(int i, int j, int v) { throw new UnsupportedOperationException("Not supported: a unity matrix is constant!"); }

    public AbstractMatrix addTo(AbstractMatrix other) {
        AbstractMatrix result = other.clone();
        for (int i = 0; i < numOfRows; i++) {
            result.set(i, i, other.get(i, i) + 1);
        }
        return result;
    }
    public AbstractMatrix multiplyBy(AbstractMatrix other) {
        return other.clone();
    }
}

identity matrix

what if all methods 
could be abstract ?

=  In

A × In  =   In × A  =  A  

we have to add a clone 
method to all classes  

(clone = deep copy)



abstract 
class

abstract class AbstractMatrix { 
  def apply(i: Int, j: Int): Int 
  def update(i: Int, j: Int, v: Int) 
 
  def +(other: AbstractMatrix): AbstractMatrix = {  
    if (this.numOfRows != other.numOfRows || this.numOfCols != other.numOfCols) 
      throw new IllegalArgumentException("Matrices must have the same number of rows and columns when added") 
 
    val result = new DenseMatrix(this.numOfRows, this.numOfCols) 
    for (i <- 0 to this.numOfRows - 1; j <- 0 to this.numOfCols - 1) 
      result(i,j) = this (i, j) + other(i, j) 
    return result 
  }  
 
  def *(other: AbstractMatrix): AbstractMatrix = {  
    if (this.numOfCols != other.numOfRows) 
      throw new IllegalArgumentException("The number of columns in the first matrix must be equal" +  
                                             " to the number of rows of the second matrix when multiplied") 
 
    val result = new DenseMatrix(this.numOfRows, other.numOfCols) 
    for (i <- 0 to result.numOfRows - 1; j <- 0 to result.numOfCols - 1) { 
      var entry: Int = 0 
      for (k <- 0 to this.numOfCols - 1) 
        entry = entry + this (i, k) * other(k, j) 
      result(i,j) = entry 
    }  
    return result 
  } 

 ⠇  
}

DenseMatrix
matrix: array

apply 
update

SparseMatrix
matrix: map

apply 
update

AbstractMatrix

apply 
update 
print 
+ operator 
* operator

why use DenseMatrix, not SparseMatrix?

could we come with a better scheme?



class DiagonalMatrix(private val n: Int) extends AbstractMatrix { 
 
  private var diagonal : Array[Int] = Array.fill(n){ 0 } 
 
  def this(n: Int, diag: Array[Int]) { 
    this(n) 
    this.diagonal = diag 
  }  
 
  def apply(i: Int, j: Int): Int = if (i != j) 0 else diagonal(i) 
 
  def update(i: Int, j: Int, v: Int): Unit = { 
    if (i == j) 
      this.diagonal(i) = v 
    else (i != j && v != 0) 
      throw new IllegalArgumentException("A diagonal matrix should only" + " have zeros outside its diagonal") 
  }  
}

abstract 
class

DiagonalMatrix
diagonal: vector

apply 
update

DenseMatrix
matrix: array

apply 
update

SparseMatrix
matrix: map

apply 
update

AbstractMatrix

apply 
update 
print 
+ operator 
* operator



identity matrix

what if all methods 
could be abstract?

=  In

A × In  =   In × A  =  A  

class IdentityMatrix(private val n: Int) extends AbstractMatrix {  
  def apply(i: Int, j: Int): Int = if (i == j) 1 else 0 
  def update(i: Int, j: Int, v: Int): Unit = { 
    throw new IllegalArgumentException("Not supported: a unity matrix is constant!") 
  } 

  override def *(other: Matrix): Matrix = other.duplicate 

  override def +(other: Matrix): Matrix = { 
    val result = other.duplicate 
    for (i <- 0 to n - 1) 
      result(i,i) = result(i,i) + 1 
    return result 
  }  
}



solution

interfaces



public interface Matrix {

   public Matrix addTo(Matrix other);

    public Matrix multiplyBy(Matrix other);

    public int get(int i, int j);

    public void set(int i, int j, int v);

    public int getNumOfRows();

    public int getNumOfCols();   

    public Matrix clone();

    public static String toString(Matrix matrix) {
        StringBuilder description = new StringBuilder();
        description.append("\n").append(matrix.getClass().getSimpleName()).append("\n");
        for (int i = 0; i < matrix.getNumOfRows(); i++) {
            description.append("| ");
            for (int j = 0; j < matrix.getNumOfCols(); j++) {
                String entry = String.format("% 3d", matrix.get(i, j));
                description.append(entry).append(" ");
            }
            description.append("|\n");
        }
        return description.toString();
    }
}

interface
Matrix

get 
set 
toString 
addTo 
multiplyBy

DenseMatrix
matrix: array

get 
set

SparseMatrix
matrix: map

get 
set

AbstractMatrix

get 
set 
toString 
addTo 
multiplyBy

DiagonalMatrix
diagonal: vector

get 
set

UnityMatrix

get 
set 
toString 
addTo 
multiplyBy

abstract class AbstractMatrix implements Matrix { … }

class DenseMatrix extends AbstractMatrix { … }

class SparseMatrix extends AbstractMatrix { … }

class DiagonalMatrix extends AbstractMatrix { … }

class UnityMatrix implements Matrix { … }



public class SparseMatrix extends AbstractMatrix {
   private final Map<Index, Integer> matrix;
   ⠇
   public Matrix clone() {
        return new SparseMatrix(getNumOfRows(),getNumOfCols(), matrix);
    }
}

public class UnityMatrix extends AbstractMatrix {
    int size;
    public UnityMatrix(int size) {
        if (size <= 0) {
            throw new IllegalArgumentException("A matrix must have a positive number of rows and columns");
        }
        this.size = size;
    }
    public String toString()  { return Matrix.toString(this); }
    public int getNumOfRows() { return size; }
    public int getNumOfCols() { return size; }
    public Matrix clone()     { return this; }
}

interface
Matrix

get 
set 
toString 
addTo 
multiplyBy

DenseMatrix
matrix: array

get 
set

SparseMatrix
matrix: map

get 
set

AbstractMatrix

get 
set 
toString 
addTo 
multiplyBy

DiagonalMatrix
diagonal: vector

get 
set

UnityMatrix

get 
set 
toString 
addTo 
multiplyBy

public class DiagonalMatrix extends AbstractMatrix {
   private final int[] diagonal;
   ⠇

   public Matrix clone() {
        return new DiagonalMatrix(getNumOfRows(), diagonal);
    }
}

public abstract class AbstractMatrix implements Matrix {
    private final int numOfRows;
    private final int numOfCols;

    final protected void init(int[][] data) {
    final protected void init(Map<Index, Integer> data) { … }
    public Matrix addTo(Matrix other) { … }      
    public Matrix multiplyBy(Matrix other) { … }
        if (this.numOfCols != other.getNumOfRows()) {
    public int getNumOfRows() { return numOfRows; }
    public int getNumOfCols() { return numOfCols; }
    public abstract int get(int i, int j);
    public abstract void set(int i, int j, int v);
    public abstract Matrix clone();
    public String toString() {
        return Matrix.toString(this);
    }
}



in python, this notion has no equivalent 
due to the absence of static typing

in swift, the notion of 
protocols is similar to trait s

in scala, a trait allows you to define 
types without an implementation

a class can inherit from only one 
class but from multiple trait s / 

interfaces / protocol

a type is just a specification

it's time to...

an abstract class defines a type & 
provides a partial implementation for it

a subclass defines a subtype & provides an implementation for it

a class defines a type & provides an implementation for it

in java, an interface forces you to 
define types without an implementation




