abstract
classes &

‘Npes

' ear ni n g algorithms

your software

o bjec*ives system software

hardware

+ learn how 1o define and use abstract classes
+ learn how 1o define types without implementation

* learn about multiple inheritance of types

a mathematical example
representing matrices

ail ai2 e Ql1n

a rectangular array of elements

V')
f 6:0 a1 az2 A2n
arranged in vows and columns S ;

-3 Aml Am?2 Amn

examples 4 9 13 o m xn matrix

— 1 [3 7 2| |1 11 7 |

i designates the row

3 2 6 3 J designates the column
3X1 matrix 1X3 matrix 3X3 matrix

> ——— — —— — — — s - —_— — _— -
S—— — —_ = — —_— R n—TT —— —— e — e e ——— e e ——
—_ B — — - ————— e gp— — — — — ——————= _ — - — = ——— ——

— - e

—— = —— e ——— L —_— _———— | = e T ———— —_— —
= — — = — _

—_— —_—

matrices are used in many branches of
ph1sics, math, computer graphics, etc.

linear equation

S ——

a111 T a2 = bl

|
Sl
|

I a11 G@12| - by
— A¥ =b where A = T
a21%1 + G22T2 = by a21 A22] £ _bz_

represenﬁng matrices

sParse matrix

one with most of its
elements equal to zero

N

—_ =

e _ e =~ e —— —

= _____ - — = —_ — — —

square matrix

S

one with equal number
of rows and columns

M

- —— —— — — —

dense matrix

one with most of its
elements not equal to zero

S

—_ - —_— e = e T ———— — —_— — —_— —_— - — — - — = - -

dlagonal ma’rrlx

one with all oﬂ-diagonal
elements equal to zero

— d;; =0ifi #jVi,j€{1,2,...,n}
an | by bz -+ by | (a3 +b1 aip+bis - al +Hbin
- Qop bor by - Doy az1 +bo1 a2 +bp - ag, + by
I et
Amn _ bml bm2 T bmn i Q1 T+ bml Am2 + bm2 R A bmn _

addition
a1 Qg -
az1 a2
A+B-= .
1 3] 0 O '[1+0 340 LOml Om2 -
1 01 +|7 5| =11+7 045
1 2] 2 1 14+2 241

A and B must have the same number of rows and columns

ces

multiplication

represenﬁng matri

Aip, B Bz -+ By ((AB);; (AB);; --- (AB), m
Aom Ba1 B -+ By (AB),, (AB),, --- (AB),
: B=| . . | aB= | T o (AB)Z] — Aszk]

Anm -Bml Bm2 ce Bmp \ (AB)nl (AB)n2 “e (AB)np k:].

a b e a B ~ a b c a B v ac +bA\+cp aB+bu+co ay+bv+ecr

A=|p q r B=|X p v AB=1|p q r || X p v|=|patqgr+rp pBtaqutroc py+teutrr

U v w o o T u v w p O T ua + v +wp uf +vp+woe uy—+ o+ wr

a B 7« a b c aa+ Bp+yu ab+ Bg+yv ac+ Br+yw

BA=|)X u v p q v]|=|A+up+ru AN+ ug+vv AcH+ ur -+ rvw

p o T u v w pa+op+Tu pb+oq+TV pc+or+ Tw

public class ArrayMatrix

Lo e represenﬁng matrices

final int numOfCols;

public ArrayMatrix(int rows, int cols) {
if (rows <= 0 || cols <= 0) {
throw new IllegalArgumentException("'A matrix must have a positive number of rows and columns”);

}
this.numOfRows = rows; ArrayMatrix m = new ArrayMatrix(3, 3);
this.numOfCols = cols; System.out.println('"m = " + m);
matrix = new int[rows][cols];
} - _
public ArrayMatrix(int rows, int cols, int[][] data) { int[][] data = {
this(rows, cols); {2, 4, 6},
for (int 1 = 0; 1 < rows; 1i++) { {3, 6, 9}
for (int j = 0; j < cols; j++) { }s
this.set (1, j, data[i][]]);
} m = new ArrayMatrix(2, 3, data);
y ; System.out.println("m = " + m);
public int getNumOfRows() { return numOfRows; }
public int getNumOfCols() { return numOfCols; }
public int get(int 1, int j) { return matrix[i][]]; }
public void set(int i, int col, int v) { matrix[i][col] = v; }
public String toString() {
StringBuilder description = new StringBuilder(); m =
description.append("\n").append(this.getClass().getSimpleName()).append("'\n"); ,
for (int i = 0; i1 < numOfRows; 1i++) { ArrayMatrix
description.append("| "); 0 0 0
for (int j = 0; j < numOfCols; j++) { 0 0 0
String entry = String.format("% 3d", this.get(i, 3J)); 0 0 0
description.append(entry).append(’ ");
} m =
description.append("|\n"); ArrayMatrix

; - - - e
return description.tostring(); i the following, we assume that indices | 2 ! ¢

|3 6
go from 0 to n-1 rather than 1 to n

public class ArrayMatrix

final private int[][] matrix;

final int numOfRows;
final int numOfCols;

public ArrayMatrix(int rows,

int cols) {

if (rows <= 0 || cols <= 0) {
throw new IllegalArgumentException("'A matrix must have a positive number of rows and columns”);

}

represenﬁng matrices

this.numOfRows = rows; int[][] data = {
this.numOfCols = cols; {2, 4, 6},
matrix = new int[rows][cols]; {3, 6, 9}
} }i
public ArrayMatrix(int rows, int cols, int[][] data) { ArrayMatrix m = new ArrayMatrix(2, 3, data);
this(rows, cols); System.out.println('m = + m);
for (int 1 = 0; 1 < rows; 1++) {
for (int j = 0; j < cols; j++) { System.out.println('m(0,0) = " + m.get(0, 0));
this.set(i, j, data[i]l[j]); m.set(0, 0, 7);
} System.out.println("'m(0,0) = " + m.get(0, 0));
}
} System.out.println();
public int getNumOfRows() { return numOfRows; } System.out.println("m = + m);
public int getNumOfCols() { return numOfCols; }
public int get(int 1, int j) { return matrix[i][]]; }
public void set(int i, int col, int v) { matrix[i][col] = v; }
public String toString() {
StringBuilder description = new StringBuilder(); m =
description.append("'\n").append(this.getClass().getSimpleName()).append("\n"); ArrayMatrix
for (int i = 0; i < numOfRows; i++) { | 2 4
description.append("| "); | 3 6
for (int j = 0; J < numOfCols; j++) {
String entry = String.format("% 3d", this.get(i, 3J));
description.append(entry).append(” "); m(0,0) = 2
} m(0,0) =7
description.append("|\n");
})] . .. m =
| retamn description-tostring): - jn the following, we assume that indices avayiacris
7 4
go from 0 to n—1 rather than 1 to n S

D D
public class ArrayMatrix ({ | _ | |
i WQPYEIENTING MATY 1ICES
final int numOfRows; .
final int numOfCols;
public ArrayMatrix addTo(ArrayMatrix other) {

if (this.numOfRows != other.numOfRows || this.numOfCols != other.numOfCols) {
throw new IllegalArgumentException('Matrices must have the same number of rows and columns when added");

}
int[][] datal = {
ArrayMatrix result = new ArrayMatrix(numOfRows, numOfCols); { 1, 2, -4},
for (int i = 0; i < numOfRows; i++) { {-1, -3, 3}
for (int j = 0; jJ < numOfCols; jJ++) { }i
result.set(i, j, this.get(i, j) + other.get(i, j)); 1int[]1[] dataz = {
} {0, 5, 4}, ArrayMatrix ml = new ArrayMatrix(2, 3, datal);
} 1-2, -3, 6}, ArrayMatrix m2 = new ArrayMatrix(3, 3, data2);
{1, 2, 3} ArrayMatrix m3 = m2.addTo(m2);
return result; }i System.out.println('m3 = m2 + m2 = " + m3);

—

}
m3 = ml.multiplyBy(m2);

public ArrayMatrix multiplyBy(ArrayMatrix other) { System.out.println(m3 = ml * m2 = T m3);
1f (this.numOfCols != other.getNumOfRows()) {

throw new IllegalArgumentException('Matrices must have compatible number of rows and columns when multiplied”);

}

ArrayMatrix result = new ArrayMatrix(this.numOfRows, other.getNumOfCols());
for (int 1 = 0; 1 < result.getNumOfRows(); i++) {

. . . . m3 = m2 + m2 =
for (int jJ = 0; J < result.getNumOfCols(); J++) {

. " ArrayMatrix
int entry = 0;
for (int k = 0; k < this.numOfCols; k++) { 0 10 8
entry = entry + this.get(i, k) * other.get(k, j); -4 -6 12
result.set(i, j, entry); 2 4 6
}
) m m3 = ml * m2 =
AB);; = A By [S
) 17 1k kg - - |
} | 9 10 -13 |

D

public class MapMatrix { N . v

final Map<Index, Integer> matrix;

final int numOfRows; e
final int numOfCols;

public MapMatrix(int rows, 1int cols) {
if (rows <= 0 || cols <= 0) {
throw new IllegalArgumentException('A matrix must have a positive number of rows and columns');

ihis.numOfRows = rows;
this.numOfCols = cols; , .
matrix = new HashMap(); MapMatrix m = new MapMatrix(3, 3);
} System.out.println("m = " + m);
public MapMatrix(int rows, 1int cols, Map<Index, Integer> data) {
this(rows, cols); Map<Index, Integer> data = new HashMap();
for (Index index : data.keySet()) { data.put (Index.from(2, 4), 66);

if (index.l1 < rows && 1index.] < cols) {

this.set(index.i, index.j, data.get(index)); data.put(Index.from(0, 2), 44);

} .
} m = new MapMatrix(5, 5, data);

} System.out.println("m = + m);

public int getNumOfRows() { return numOfRows; }
public int getNumOfCols() { return numOfCols; }
public int get(int i, int j) {

Index index = Index.from(i, J);
return matrix.containsKey(index) ? matrix.get(index) : 0;
}
public void set(int i, int j, int v) { matrix.put(Index.from(i, Jj), Vv); } m =
public String toString() { MapMatrix
StringBuilder description = new StringBuilder|(); 0 0 0
description.append("\n").append(this.getClass().getSimpleName()).append("\n"); 0 0 0
for (int i = 0; i < numOfRows; i++) { 0 0 0
description.append("| ");
for (int j = 0; J < numOfCols; j++) {
String entry = String.format("% 3d", this.get(i, J)); m =
description.append(entry) .append(" ") MapMatrix
}
description.append("|\n"); 0 0 44 0 0
} 0 0 0 0 0
return description.toString(); 0 0 0 0 66
}
0 0 0 0 0
0 0 0 0 0

D

public class MapMatrix { N . v

final Map<Index, Integer> matrix;

final int numOfRows; e
final int numOfCols;

public MapMatrix(int rows, 1int cols) {

if (rows <= 0 || cols <= 0) { MapMatrix m = new MapMatrix(3, 3);
throw new IllegalArgumentException('"A matrix must have a positive number ¢ gystem.out.println('m = " + m);

}
this.numOfRows = rows; Map<Index, Integer> data = new HashMap();
this.numOfCols = cols; .
matrix = new HashMap(); data.put(Index.from(2, 4), 66);

} data.put(Index.from(0, 2), 44);

public MapMatrix(int rows, 1int cols, Map<Index, Integer> data) {

this(rows, gols); m = new MapMatrix(5, 5, data);

if (index.i < rows && index.] < cols) {
this.set(index.i, index.]j, data.get(index));

}

public boolean equals(Object obj) {
if (this == obj) {

public class Index {
return true;

public final int 1i;

public final int 7J; } ,
public Index(int i, int j) { 1f (obj == null) {

this.i = i- return false;

this.j] = 7; } .
} 1f (getClass() != obj.getClass()) {
public static Index from(int i, int j) { return false;

return new Index(i, J); }_ .
} final Index other = (Index) obj;

if (this.i != other.i) {

public int hashCode() {
int hash = 7;
hash = 83 * hash + this.i; } o |
hash = 83 * hash + this.j; 1f (this.j != other.j) {
return hash; return false;

} }

return true;

return false;

problem

public class MapMatrix ({ public class ArrayMatrix

final Map<Index,
final int numOfRows;
final int numOfCols;

Integer> matrix;

public MapMatrix(int rows, int cols) {
if (rows <= 0 || cols <= 0) {

throw new IllegalArgumentException("A matrix must have a positive number of

this.numOfRows
this.numOfCols = cols;

matrix new HashMap();

public MapMatrix(int rows, int cols, Map<Index, Integer> data) {
this(rows, cols);
for (Index index data.keySet()) {

if (index.l1 < rows && index.j] < cols) {

this.set(index.i, index.]j, data.get(index));

public int getNumOfRows() { return numOfRows;
public int getNumOfCols() { return numOfCols;
public int get(int 1i,

Index index

int j) {
Index.from(1i,
return matrix.containsKey(index) ? matrix.get(index)
public void set(int i, int j, int v) { matrix.put(Index.from(i, Jj), V);
public String toString() {
StringBuilder description
description.append(”“\n").append(this.getClass().getSimpleName()).append(" '\n");
1 < numOfRows;
description.append(" |
for (int j
String entry

new StringBuilder();

for (int i i++) {

j < numOfCols; j++) {
String. format("
description.append(entry) .append("

3d", this.get (i,

description.append("|\n");

return description.toString();

Cco

{

private int[][] matrix;
final int numOfRows;
final int numOfCols;

int cols) {

public ArrayMatrix(int rows,
if (rows <= 0 || cols <= 0) {
throw new IllegalArgumentException("A matrix must have a positive number of rows and «

}

this.numOfRows = rows;
this.numOfCols = cols;
matrix = new int[rows][cols];

int cols, int[][] data) {

j < cols; j++) {

j, data[i]1[]]);

}
public ArrayMatrix(int rows,
this(rows, cols);
for (int i = 0; 1 < rows; it++) {
for (int j = 0;
this.set (1,
}
}
}
public int getNumOfRows() { return numOfRows;

public int getNumOfCols() { return numOfCols;
public int get(int i, int j) { return matrix[i][]];

public void set(int 1i,

int col, int v) { matrix[i][col]

public String toString() {
StringBuilder description
description.append("\n").append(this.getClass().getSimpleName()).append("'\n");
for (int i = 0; i < numOfRows;
description.append(" |

for (int j = 0;

new StringBuilder();
i++) {

j < numOfCols; j++) {

String.format("% 3d", this.get(1i,

String entry
description.append(entry) .append("

}

description.append("|\n");

}

return description.toString();

de duplication... again!

problem

can we blend array and map matrices?

public ArrayMatrix multiplyBy(ArrayMatrix other) {
if (this.numOfCols != other.getNumOfRows()) {

throw new IllegalArgumentException('Matrices must have compatible number of rows and columns when multiplied");

}
ArrayMatrix result = new ArrayMatrix(this.numOfRows, other.getNumOfCols());
for (int 1 = 0; 1 < result.getNumOfRows(); 1i++) {
for (int j = 0; J < result.getNumOfCols(); j++) {
int entry = 0;
for (int k = 0; k < this.numOfCols; k++) {
entry = entry + this.get(i, k) * other.get(k, j);
result.set(i, j, entry);

}
} public MapMatrix multiplyBy(MapMatrix other) {
return result; if (this.numOfCols != other.getNumOfRows()) {
} throw new IllegalArgumentException('Matrices must have compatible number of rows and columns when multiplied");

}

MapMatrix result = new MapMatrix(this.numOfRows, other.getNumOfCols());
for (int 1 = 0; 1 < result.getNumOfRows(); i++) {
for (int j = 0; j < result.getNumOfCols(); j++) {
int entry = 0;
for (int k = 0; k < this.numOfCols; k++) {
entry = entry + this.get(i, k) * other.get(k, j);
result.set(i, J, entry);

}

return result;

} incomPaﬁble h,pes

represenhng matrices

class Matrix(private val rows: Int, private val cols: Int) {
if (rows <= 0)
throw new IllegalArgumentException("A matrix must have a positive number of rows")
if (cols <= 0)
throw new IllegalArgumentException("A matrix must have a positive number of columns")

private var matrix = Array.ofDim[Int] (rows, cols)

def this(rows: Int, cols: Int, mtx: Arrayl[Array[Int]]) { var m = new Matrix(3,3)
this(rows,cols) m.print()

for (1 <- @ to rows - 1)
mtx(i).copyToArray(matrix(i)) val mtx : Array[Array[Int]] = Array(Array(2, 4, 6) , Array(3, 6, 9))

} m = new Matrix(2,3,mtx)
m.print()
def numOfRows: Int = this.rows
def numOfCols: Int = this.cols
def apply(i: Int, j: Int): Int = matrix(i)(j) :
def update(i: Int, j: Int, v: Int) = matrix(i)(j) = v Matng@ 0
def print: Unit = { 9 0 0
println(this.getClass.getSimpleName) O 0 0
for (i <- @ to this.numOfRows — 1) { :
Console.print("| ") Matrix
for (j < @ to this.num0fCols — 1) { | 2 4 6 |
Console.print(s"${this(i,j)} ") | 3 6 9 |

} — S

printin("|")

in the following, we assume that indices go
from 0 t0 n—1 rather than 1 to n

represenhng matrices

class Matrix(private val rows:

if (rows <= 0)

Int, private val cols:

Int) {

throw new IllegalArgumentException("A matrix must have a positive number of rows")

if (cols <= 0)

throw new IllegalArgumentException("A matrix must have a positive number of columns'')

private var matrix

Array.ofDim[Int] (rows, cols)

def this(rows: Int, cols: Int,

this(rows,cols)

for (i <- @ to rows - 1)
mtx(1i).copyToArray(matrix(i))

}

def numOfRows: Int
def numOfCols: Int

def apply(i: Int, j:

def update(i: Int, j:

def print: Unit =

println(this.getClass.getSimpleName

{

this.rows
this.cols

Int): Int
Int, v:

mtx: Array[Array[Int]]) {

= matrix(1i)(j)

Int)

for (i <- @ to this.numOfRows - 1)

Console.print ("

II)

matrix(1i)(j) =

)
{

for (j <- @ to this.numOfCols - 1) {

Console.print(s"${this(i,j)}

}
printin("|")

II)

val mtx :

m.print()

println(s'"m

m.print()

Array[Array[Int]l] = Array(Array(2, 4, 6) , Array(3, 6, 9))
m = new Matrix(2,3,mtx)

(0,

0)

= ${n(0,0)}");

m(0,0)

apply(..)
update(..)

<
<

get(..)
set(..)

R ———

= 7; println(s"m(0,0)

Matrix

2 4
3 6

m(o,0)
m(o,0)
Matrix

7 4
3 6

R —

NN OO

O O

= ${m(0,0)}")

represenﬁng matrices

class Matrix(private val rows: Int, private val cols: Int) {

def +(other: Matrix): Matrix = {
if (this.numOfRows != other.numOfRows || this.numOfCols != other.numOfCols)
throw new IllegalArgumentException("Matrices must have the same number of rows" + " and columns when added")

val result = new Matrix(this.numOfRows, this.numOfCols)

for (i <- @ to this.numOfRows - 1; j <— @ to this.numOfCols - 1)
result(i,j) = this (i, j) + other(i, j)
return result

}

def *x(other: Matrix): Matrix = {
if (this.numOfCols != other.numOfRows)
throw new IllegalArgumentException("The number of columns in the first matrix must be" +
"equal to the number of rows of the second matrix when multiplied")

val result = new Matrix(this.numOfRows, other.numOfCols)

for (i <- @ to result.numOfRows - 1; j <— @ to result.numOfCols - 1) {
var entry: Int = 0

for (k <= @ to this.numOfCols - 1)
entry = entry + this (i, k) * other(k, j)
result(i,j) = entry

¥
return result ™m

} (AB);; =) AuBy;
k=1

sparse matrices

class SparseMatrix(private val rows: Int, private val cols: Int) A

if (rows <= 0) var m = new SparseMatrix(3,3)

throw new IllegalArgumentException("A matrix must have a positive number of rows") m.print()
if (cols <= 0)
throw new IllegalArgumentException("A matrix must have a positive number of columns")
private var matrix = scala.collection.mutable.Map[(Int,Int),Int]() ?pagsegatgix|
def this(rows: Int, cols: Int, mtx: Map[(Int,Int),Int]) { 8 8 8
this(rows,cols)
matrix = collection.mutable.Map(mtx.toSeq: _x) — —
s
def numOfRows: Int = this.rows
det numOfCols: Int = this.cols val mtx = scala.collection.immutable.Map((6,6) —> 6, (3,3) —> 3)
_ _ _ o m = new SparseMatrix(10,10, mtx)
def apply(1i: Int, j: Int): Int = matrix.getOrElse((1,3),0) m.print()
def update(i: Int, j: Int, v: Int): Unit = this.matrix((1,j)) = v
def print: Unit = {
println(this.getClass.getSimpleName) SparseMatrix
for (i <- @ to this.numOfRows - 1) { O 06 0 06 0 0 0 0 0 O
Console.print ("] ") © 0 0 0 0 0 0 0 0 0
for (j <- @ to this.numOfCols — 1) { o 0 0 0 06 0 0 0 0 0@
Console.print(s"${this(i,j)} ") 8 8 8 8 8 8 8 8 8 8
s
! non O 06 0 0 0 0 0 O 0 0
printin(*[™) © 0 06 0 0 0 6 0 0 O
O 06 0 0 0 0 0 0 0 0
O 06 0 0 0 0 0 O 0 0
O 06 0 0 0 0 0 O 0 0

oblem

class SparseMatrix(private val rows: Int, private val cols: Int) {

PY

class Matrix(private val rows: Int, private val cols: In

if (rows <= 0) if (rows <= 0)
throw new IllegalArgumentException("A matrix must have a positive numb throw new IllegalArgumentException("A matrix must have a positive number of rows")
if (cols <= 0) if (cols <= 0)
throw new IllegalArgumentException("A matrix must have a positive numb throw new IllegalArgumentException("A matrix must have a positive number of columns")
private var matrix = Array.ofDim[Int](rows, cols) private var matrix = scala.collection.mutable.Map[(Int,Int),Int]()
def this(rows: Int, cols: Int, mtx: Arrayl[Array[Int]l]) { def this(rows: Int, cols: Int, mtx: Map[(Int,Int),Int]) {
this(rows,cols) this(rows,cols)
for (i <- @ to rows - 1) matrix = collection.mutable.Map(mtx.toSeq: _x*)
mtx(i).copyToArray(matrix(i)) }
+
def numOfRows: Int = this.rows def numOfRows: Int = this.rows
def numOfCols: Int = this.cols def numOfCols: Int = this.cols
def apply(i: Int, j: Int): Int = matrix(i)(j) def apply(i: Int, j: Int): Int = matrix.getOrElse((i,j),0)
def update(i: Int, j: Int, v: Int) = matrix(i)(j) = v def update(i: Int, j: Int, v: Int): Unit = this.matrix((i,j)) = v
def print: Unit = { def print: Unit = {
println(this.getClass.getSimpleName) println(this.getClass.getSimpleName)
for (i <- @ to this.numOfRows - 1) { for (i <- @ to this.numOfRows - 1) {
Console.print("| ") Console.print("| ")
for (j <- @ to this.numOfCols - 1) { for (j <- @ to this.numOfCols - 1) {
Console.print(s"${this(i,j)} ") Console.print(s"${this(i,j)} ")
s Iy
printin("|") println("|")
5 5
s s

code duplication... againt

problem

can we blend dense and sparse matrices?

def *x(other: Matrix): Matrix = {
if (this.numOfCols !'= other.numOfRows)

throw new IllegalArgumentException("The number of columns in the first matrix must be" +
"equal to the number of rows of the second matrix when multiplied")

val result = new Matrix(this.numOfRows, other.numOfCols)

for (1 <- @ to result.numOfRows - 1; j <- @ to result.numOfCols - 1) {
var entry: Int = 0

for (k <= @ to this.numOfCols - 1)
entry = entry + this (i, k) * other(k, j)
result(i,j) = entry
I3
return result def x(other: SparseMatrix): SparseMatrix = {
1 if (this.numOfCols '= other.numOfRows)

throw new IllegalArgumentException("The number of columns in the first matrix must be" +
"equal to the number of rows of the second matrix when multiplied")

val result = new SparseMatrix(this.numOfRows, other.numOfCols)

for (i <- @ to result.numOfRows - 1; j <- 0 to result.numOfCols - 1) {
var entry: Int = 0

for (k <= @ to this.numOfCols - 1)
entry = entry + this (i, k) * other(k, j)
result(i,j) = entry

}

return result

} incomPa’rible ’qpes

set P

yes, but... TR

toString

addTo :
multiplyBy SparseMatrix

matrix: array map: map

get get
set set

the superclass delega’res the internal
represen’mﬁon t0o 1ts subclasses

s0 methods get and set have
no default or shared implementation

these methods are abstract in the superclass

public abstract class AbstractMatrix ({
final int numOfRows;
final int numOfCols;

AbstractMatrix

abstract

public AbstractMatrix(int rows, int cols) {
if (rows <= 0 || cols <= 0) {

throw new IllegalArgumentException('A mat:
} .
this.numOfRows = rows; tgztrlng
this.numOfCols = cols; . a T? .
} DenseMatrix multiplyBy SparseMatrix
public abstract int get(int i, int j); . .
public abstract void set(int i, int j, int v); matrix: array matrix: map
public int getNumOfRows() { return numOfRows; } get get
public int getNumOfCols() { return numOfCols; } set set
final protected void init(int[][] data) {
for (int i = 0; 1 < data.length; i++) { :
for (int j = 0; j < data[i].length; j++) { public AbstractMatrix addTo(AbstractMatrix other) {
this.set(1, J, data[i1][J]); if (this.numOfRows != other.numOfRows || this.numOfCols != other.numOfCols) {
} throw new IllegalArgumentException('Matrices must have the same number of rows a

} }
}

final protected void init (Map<Index, Integer> data) {
for (Index index data.keySet()) {
if (index.i < numOfRows && index.]j < numOfRows) {
this.set(index.1i, index.j, data.get(index));
} result.set(i, j, this.get(i, j) + other.get(i, j));
} }
; }
public String toString() { return result s
StringBuilder description = new StringBuilder(); ’

DenseMatrix result = new DenseMatrix(numOfRows, numOfCols);
for (int 1 = 0; i1 < numOfRows; i++) {
for (int j = 0; j < numOfCols; J++) {

description.append('\n").append(this.getClass().getSimpl
for (int 1 = 0; 1 < numOfRows; i++) {
description.append("| ");
for (int j = 0; jJ < numOfCols; j++) {
description.append(this.get(i, J)).append("' ");

why use DenseMatrix, not SparseMatrix?

}

description.append (" |\n");

}

return description.toString();

: could we come with a better scheme?

abstract

public class SparseMatrix extends AbstractMatrix ({ C|ass

final Map<Index, Integer> matrix;

public SparseMatrix(int rows, int cols) {
super (rows, cols);
matrix = new HashMap();

}

public SparseMatrix(int rows, int cols, int[][] data) {
this(rows, cols);
init(data);

}

public SparseMatrix(int rows, int cols, Map<Index, Integer> data) {
this(rows, cols);
init(data);
}
public int get(int i, int J) {
Index index = Index.from(i, j);
if (matrix.containsKey(index)) {
return matrix.get(index);
} else {
return 0;

}
}

public void set(int i, int j, int v) {
matrix.put(Index.from(i, Jj), V);

}

AbstractMatrix

toString
addTo

matrix: array

get
set

public class DenseMatrix extends AbstractMatrix {
private int[][] matrix;

public DenseMatrix(int rows, int cols) {
super (rows, cols);
matrix = new int[rows][cols];

}

SparseMatrix

matrix: map

get
set

public DenseMatrix(int rows, int cols, int[][] data) {

this(rows, cols);
init(data);
}
public DenseMatrix(int rows, int cols, Map<Index,
this(rows, cols);
init(data);
}
public int get(int i, int j) {
return matrix[i][J];

}

public void set(int i, int j, int v) {
matrix[i][]J] = Vv;

}

Integer> data) {

AbstractMatrix

abstract

toString
addTo :
multiplyBy SparseMatrix

matrix: array matrix: map
public class DiagonalMatrix extends AbstractMatrix { get get
private int[] diagonal; set set
public DiagonalMatrix(int rows, 1nt cols) { DiagonalMatrix:
super (rows, cols);
if (rows != cols) { diagonal: vector
throw new IllegalArgumentException('A diagonal matrix must have be square"); get
H . set
diagonal = new i1nt[rows];

}

public DiagonalMatrix(int rows, int cols, int[] diagonal) {
this(rows, cols);
int limit = Math.min(rows, diagonal.length);
for (int i = 0; i < limit; i++) {

this.diagonal[1i] = diagonal[i];
}
}
public int get(int i, int j) {
return (i == Jj) ? diagonal[i] : O;
}

public void set(int i, int j, int v) {
if (1 == J) {
diagonal[i] = v;
} else {
throw new IllegalArgumentException("'A diagonal matrix should only" +

have zeros outside its diagonal");

}

iden’ri‘h, matrix

A X1, =

what it all methods
could be abstract?

0 --- 0

— - - — —_ = —

public class UnityMatrix extends AbstractMatrix {
public UnityMatrix(int size) {
super(size, size);

— — - Pu— — — - . e ————— —_———— = — = — = = - S e EE— T — e — e —

}
public int get(int i, int j) { return (i1 == 3) 2 1 : 0; }
public void set(int i, int j, int v) { throw new UnsupportedOperationException('Not supported: a unity matrix is constant!"); }
public AbstractMatrix addTo(AbstractMatrix other) {
AbstractMatrix result = other.clone();
for (int i = 0; 1 < numOfRows; i++) { s iy

result.set(1i, 1, other.get(i, 1) + 1);

}

return result;

}
public AbstractMatrix multlplyBy(AbstractMatrlx other)

return other.clone();

- m“ﬂaﬁ-‘— AT ol AR SO S Vel

we have to add a clone

method to all classes
(clone - deep com)

RN AT SO IR, A : RN A~

RIS

{

- TOPSINAAAL IR I

AbstractMatrix

abstract

print
+ operator :
* operator SparseMatrix

matrix: arra matrix: ma
abstract class AbstractMatrix { y P
| | | | 1y
def apply(i: Int, j: Int): Int apply app
def update(i: Int, j: Int, v: Int) update update

def +(other: AbstractMatrix): AbstractMatrix = {
if (this.numOfRows != other.numOfRows || this.numOfCols != other.numOfCols)
throw new IllegalArgumentException("Matrices must have the same number of rows and columns when added")

val result = new DenseMatrix(this.numOfRows, this.numOfCols)

for (i <- @ to this.numOfRows - 1; j <- @ to this.numOfCols - 1)
result(i,j) = this (i, j) + other(i, j)

return result

}

def x(other: AbstractMatrix): AbstractMatrix = {
if (this.numOfCols != other.numOfRows)

throw new IllegalArgumentException("The number of columns in the first matrix must be equal" +
" to the number of rows of the second matrix when multiplied")

val result = new DenseMatrix(this.numOfRows, other.numOfCols)

for (i <-= @ to result.numOfRows - 1; j <- @ to result.numOfCols - 1) {
var entry: Int = 0

for (k <= @ to this.numOfCols - 1)
entry = entry + this (i, k) * other(k, j)

| result(i,j) = entry wlﬂ use DenseMatrix, not SparseMatrix?

return result —

could we come with a better scheme?

AbstractMatrix

abstract

print
+ operator :
* operator SparseMatrix

matrix: array matrix: map
apply apply
update update

DiagonalMatrix

diagonal: vector

class DiagonalMatrix(private val n: Int) extends AbstractMatrix A{ apply
update

private var diagonal : Array[Int] = Array.fill(n){ 0 }

def this(n: Int, diag: Array[Int]) {
this(n)
this.diagonal = diag

I3
def apply(i: Int, j: Int): Int = if (i '= j) @ else diagonal(i)

def update(i: Int, j: Int, v: Int): Unit = {
if (i == j)
this.diagonal(i) = v

else (i !'=j & v '= 0)
throw new IllegalArgumentException("A diagonal matrix should only" + " have zeros outside its diagonal")

what it all methods
could be abstract?

identity matrix 0 1 ¢

0 0 1

AXIl, = I XA =A

class IdentityMatrix(private val n: Int) extends AbstractMatrix A{
def apply(i: Int, j: Int): Int = if (i == j) 1 else 0
def update(i: Int, j: Int, v: Int): Unit = {
throw new IllegalArgumentException("Not supported: a unity matrix is constant!")
}

override def *x(other: Matrix): Matrix

other.duplicate

override def +(other: Matrix): Matrix = {
val result = other.duplicate
for (i <- @ ton - 1)
result(i,i) = result(i,i) + 1
return result

}
}

public interface Matrix {

public Matrix addTo(Matrix other);
public Matrix multiplyBy(Matrix other);

public int get(int i, int Jj);

: l' |!
public void set(int i, int j, int v);

. public int getNumOfRows () ;

public Matrix clone();

public static String toString(Matrix matrix) {

. . StringBuilder description = new StringBuilder();
description.append("\n").append(matrix.getClass().getSimpleName()).append("\n");
for (int 1 = 0; 1 < matrix.getNumOfRows(); 1i++) {
get description.append("| ");
set for (int j = 0; J < matrix.getNumOfCols(); J++) {
4& toString String entry = String.format("% 3d", matrix.get(i, J));
addTo description.append(entry).append(’ ");

description.append("|\n");

}
return description.toString();
: }
toString }
addTo abstract class AbstractMatrix implements Matrix { .. }
multiplyBy —
A class DenseMatrix extends AbstractMatrix { .. }
DenseMatrix SparseMatrix DiagonalMatrix class SparseMatrix extends AbstractMatrix { .. }
matrix: array matrix: map diagonal: vector —
get get get class DiagonalMatrix extends AbstractMatrix { .. }

class UnityMatrix implements Matrix { .. }

public class UnityMatrix extends AbstractMatrix {
int size;
public UnityMatrix(int size) {
if (size <= 0) {
throw new IllegalArgumentException("'A matrix must have a positive number of rows and columns'");

inter{ac

}
this.size = size;

}

public String toString() { return Matrix.toString(this); }

. public int getNumOfRows() { return size; }
Matrix public int getNumOfCols() { return size; } public abstract class AbstractMatrix implements Matrix {
public Matrix clone() { return this; } private final int numOfRows;
} private final int numOfCols;

final protected void init(int[][] data) {

UnityMatrix final protected void init(Map<Index, Integer> data) { .. }
public Matrix addTo(Matrix other) { .. }

public Matrix multiplyBy(Matrix other) { .. }
if (this.numOfCols != other.getNumOfRows()) {
get public int getNumOfRows() { return numOfRows; }
set _ public int getNumOfCols() { return numOfCols; }
toString public abstract int get(int i, int j);
} addTo public abstract void set(int i, int j, int v);
multiplyBy public abstract Matrix clone();

public String toString() {
return Matrix.toString(this);

public class SparseMatrix extends AbstractMatrix {

private final Map<Index, Integer> matrix; }

: }
toString public Matrix clone() {
addTo return new SparseMatrix(getNumOfRows (),getNumOfCols(), matrix);
multiplyBy }

SparseMatrix

matrix: array matrix: map diagonal: vector _ _

public Matrix clone() {
get get get return new DiagonalMatrix(getNumOfRows(), diagonal);
set set set }

Di WMatri public class DiagonalMatrix extends AbstractMatrix {
lagonalflatrix private final int[] diagonal;

it's time fo...

a class defines a fx,pe £ provides an implementation for it

a subclass defines a subtype £ provides an implementation for it

a type is just a specification

L —

an abstract class defines a type &
provides a partial implementation for it

in java, an interface forces you to
define types without an implementation

in scala, a trait allows you to define
in switt, the notion of types without an implementation
protocols s similar to trarts |

a class can inherit from only one

in python, this notion has no equivalent class but from multiple traits /
due to the absence of static typing interfaces / protocol

