
Network
Programming

Benoît Garbinato

Network Programming © Benoît Garbinato

Network programming is not distributed
programming (somewhat lower-level)

They both rely on:
computers as processing & storage resources
a network and a common protocol stack

But network programming lacks:
naming and location transparency
an integrated programming & operating model

(usually achieved thanks to a middleware)

Network programming

Network Programming © Benoît Garbinato

physical link

presentation

application

session

transport

network

data link data link

network

transport

session

presentation

application

applicationapplication

data link

network

logical peer-to-peer link

The OSI model (1)

Network Programming © Benoît Garbinato

Physical link physical medium, electrical/optical signal processing.

Data link grouping of bits into blocks, error detection/correction,
local address format, medium access layer.

Network global address format, routing of data packets (no flow control).

Transport end-to-end connection, flow control, retransmission, order.

Session failure detection & reconnection in case of crashes.

Presentation standard data representation (e.g., marshaling convention).

Application basic application-level functionality (http, ftp, smtp, etc.).

layer i - 1 headerlayer i headerlayer i + 1 header actual data

viewed by layer i+1 as data

viewed by layer i as data

Data encapsulation:

The OSI model (2)

Network Programming © Benoît Garbinato

In the middle of the cold war, early 1970s, the Department of
Defense (DOD) decides to build a set of tools for interconnecting
computer networks.

The responsibility of this task falls on the Advance Research
Project Agency (ARPA), which develops the ARPAnet protocol
suite. A key design issue of ARPAnet was to resist to the massive
destruction resulting from a nuclear attack.

��Fully distributed architecture (no single point of failure)

In the 1980s, the ARPAnet technology, also named TCP/IP (after
its two main building blocks), spreads into the academic
community (also very distributed), which had developed it.

The Internet: some history

Network Programming © Benoît Garbinato

TCP ��Transmission Control Protocol
IP � Internet Protocol

It Is cornerstone of the Internet
It is de facto standard
It is an often misunderstood technology
It is an old yet alive protocol suite

TCP/IP

Network Programming © Benoît Garbinato

Internet Protocol (IP)! �! Network Layer (OSI no 3)
Packet oriented
Routing with best-effort guarantee
Error detection
Datagram fragmentation

Transmission Control Protocol (TCP)! �� Transport Layer (OSI no 4)
Stream oriented
Reliability guarantee
FIFO order guarantee

The OSI model & TCP/IP

Network Programming © Benoît Garbinato

An IP address is used by the IP protocol (Network
Layer) to name hosts (computers) and routers.

An IP address consists of 32-bits (4 bytes) and
is usually written in dotted decimal format, e.g.,
130.223.171.8

Class First byte NetworksNetworksNetworks HostsHosts Address formatAddress formatAddress formatAddress format
A 1-126 27 - 2 = 126 224 - 2 = 16’777’214 net id host idhost idhost id

B 128-191 214 = 16’384 216 - 2 = 65’534 net idnet id host idhost id

C 192-223 221 = 2’097’152 28 - 2 = 254 net idnet idnet id host id

D 224-239 --- -- multicastmulticastmulticastmulticast

E 240-247 --- -- reservedreservedreservedreserved

Host addressing with IP (1)

Network Programming © Benoît Garbinato

Address 127.x.y.z is the loopback address (local)

Host addressing with IP (2)

Class Format
A
B
C
D
E

0NNNNNNN.HHHHHHHH.HHHHHHHH.HHHHHHHH
10NNNNNN.NNNNNNNN.HHHHHHHH.HHHHHHHH
110NNNNN.NNNNNNNN.NNNNNNNN.HHHHHHHH
1110MMMM.MMMMMMMM.MMMMMMMM.MMMMMMMM
1111RRRR.RRRRRRRR.RRRRRRRR.RRRRRRRR

 N network ID bits
 H host ID bits

M multicast address bit
R reserved bits

Network Programming © Benoît Garbinato

Addresses encoded on 128 bits
� 2128 ��3.4 � 1038 addresses are available

Towards IPv6

3.76 � 106 km
!�10 � distance

earth-moon

? km

10 km
!�1018 � distance

earth-sun

1 m 2.25 � 1026 km

1 m

Network Programming © Benoît Garbinato

Within a single host, applications are named
(addressed) using ports. At the operating system
level, this is known as port multiplexing.

Naming applications

IP
TCP or UDPoperating

system

network
hardware

IP addressport number IP addressport number IP addressport number

port port port

Network Programming © Benoît Garbinato

stream

TCP ��Transmission Control Protocol

datagrams

UDP ��User Datagram Protocol

TCP versus UDP (1)

...bla bla
bla bla

bla...

Network Programming © Benoît Garbinato

TCP versus UDP (2)

TCP and UDP exhibit dual features:

connection
oriented

reliable
channels

fifo
ordering

message
boundaries

TCP YES YES YES NO

UDP NO NO NO YES

Network Programming © Benoît Garbinato

Sockets are programming abstractions that
represent bidirectional communication
endpoints between two or more processes

There exists two types of sockets : TCP
sockets and UDP sockets

In Java, sockets are instances of various
classes found in the java.net package

The Socket abstraction

Network Programming © Benoît Garbinato

Because TCP is connection-oriented, we
have two classes for TCP sockets in Java:

This captures the asymmetry when
establishing a communication channel

public class Socket {
 ...
 public
 Socket(String host, int port) {...}
 public
 OutputStream getOutputStream() {...}
 public
 InputStream getInputStream() {...}
 public
 void close() {...}
 ...
}

public class ServerSocket {
 ...
 public
 ServerSocket(int port) {...}
 public
 Socket accept() {...}
 ...
}

Client Server

TCP Sockets

Network Programming © Benoît Garbinato

public class DictionaryServer {
 private static Dictionary dico= new Hashtable();
 public static void main(String[] args) {
 ServerSocket connectionServer= null; Socket clientSession= null;
 PrintWriter out= null; BufferedReader in= null;
 dico.put("inheritance", "héritage"); dico.put("distributed", "réparti"); // Etc...
 try {
 connectionServer = new ServerSocket(4444);
 clientSession = connectionServer.accept();
 out = new PrintWriter(clientSession.getOutputStream(), true);
 in = new BufferedReader(new InputStreamReader(clientSession.getInputStream()));
 String word, mot;

 while ((word = in.readLine()) != null) {
 mot= (String) dico.get(word);
 if (mot == null) mot= "sorry, no translation available for \"" + word + "\" !";
 out.println(mot);
 }
 out.close(); in.close(); connectionServer.close(); clientSession.close();
 } catch (IOException e) {
 System.out.println(e); System.exit(1);
 }
 }
}

TCP sockets: server side

Network Programming © Benoît Garbinato

public class DictionaryClient {
 public static void main(String[] args) {
 Socket mySession= null; PrintWriter out= null;
 BufferedReader in= null; BufferedReader stdIn= null;
 try {
 if (args.length < 1) { System.out.println("Hostname missing."); System.exit(1); }
 mySession = new Socket(args[0], 4444);
 out = new PrintWriter(mySession.getOutputStream(), true);
 in = new BufferedReader(new InputStreamReader(mySession.getInputStream()));
 stdIn = new BufferedReader(new InputStreamReader(System.in));
 String fromServer, fromUser;

 System.out.println("Go on, ask the dictionary server!");
 while (!(fromUser = stdIn.readLine()).equals("quit")) {
 out.println(fromUser);
 fromServer= in.readLine();
 System.out.println("-> " + fromServer);
 }
 out.close(); in.close(); stdIn.close(); mySession.close();
 } catch (UnknownHostException e) {
 System.err.println("Host Unknown: " + args[0]); System.exit(1);
 } catch (IOException e) {
 System.err.println("No connection to: " + args[0]); System.exit(1);
 }
 }
}

TCP sockets: client side

Network Programming © Benoît Garbinato

Streams offer a unified programming
abstraction for reading and writing data
Streams can encapsulate various types
of data sources, e.g., files, byte arrays
in memory, sockets, etc.
Streams can encapsulate other streams to
stack up processing of the data
In Java, streams are instances of various
classes found in the java.io package

Streams in Java (1)

Network Programming © Benoît Garbinato

...
Socket clientSession= connectionServer.accept();
BufferedReader in= new BufferedReader(new InputStreamReader(clientSession.getInputStream()));
...

Printer and writer classes are special
streams manipulating only characters

Standard operating systems-level input
and output streams are also accessed via
Java streams (System.in & System.out)

data source

byte stream

character stream

buffered character stream

Streams in Java (2)

Network Programming © Benoît Garbinato

Fact:! the network knows nothing about
objects, only about bytes

Problem:!how can we send a complete object
graph across the network?

Solution:! almost any Java object can be
automatically transformed into a
sequence of bytes and recreated
from that sequence

Objects through the wire (1)

1101000110101100111010011101001110001110100011110

Network Programming © Benoît Garbinato

The process of transforming an object graph
into a byte sequence is known as
serialization or marshaling
By implementing the java.io.Serializable
interface, an object becomes serializable
Two special stream classes allow for writing
and reading objects :
ObjectOutputStream out = new ObjectOutputStream(clientSession.getOutputStream());
out.writeObject(myCollection);

ObjectInputStream in= new ObjectInputStream(clientSession.getInputStream());
Collection yourCollection = (Collection) in.readObject();

Objects through the wire (2)

Network Programming © Benoît Garbinato

Because UDP is connectionless, we have
only one class for UDP sockets in Java:

However, the DatagramPacket is also a key
class when working with UDP sockets

public class DatagramSocket {
 ...
 public
 DatagramSocket() {...} // Let the system choose a port
 public
 DatagramSocket(int port) {...}
 public
 void send(DatagramPacket packet) {...}
 public
 void receive(DatagramPacket packet) {...}
 public
 void close() {...}
 ...
}

UDP Sockets

public class DatagramPacket {
 ...
 public
 DatagramPacket(...) {...}
 public
 byte[] getData() {...}
 public
 InetAddress getAddress() {...}
 ...
}

Network Programming © Benoît Garbinato

UDP sockets: server side
Life is wonderful. Without it we'd all be dead.

Daddy, why doesn't this magnet pick up this floppy disk?

Give me ambiguity or give me something else.

I.R.S.: We've got what it takes to take what you've got!

We are born naked, wet and hungry. Then things get worse.

Make it idiot proof and someone will make a better idiot.

He who laughs last thinks slowest!

Always remember you're unique, just like everyone else.

"More hay, Trigger?" "No thanks, Roy, I'm stuffed!"

A flashlight is a case for holding dead batteries.

Lottery: A tax on people who are bad at math.

Error, no keyboard - press F1 to continue.

There's too much blood in my caffeine system.

Artificial Intelligence usually beats real stupidity.

Hard work has a future payoff. Laziness pays off now.

"Very funny, Scotty. Now beam down my clothes."

Puritanism: The haunting fear that someone, somewhere may be happy.

...

public class QuoteServer {
 public static void main(String[] args) throws Exception {
 DatagramSocket socket = null;
 BufferedReader in = null;
 socket = new DatagramSocket(4445);
 in = new BufferedReader(new FileReader("one-liners.txt"));
 String quote = null;
 boolean moreQuotes= true;

 while (moreQuotes) {
 byte[] buf= new byte[256];
 DatagramPacket packet = new DatagramPacket(buf, buf.length);
 socket.receive(packet);
 quote = in.readLine();
 if (quote == null) { moreQuotes= false; buf= ("No more, bye!").getBytes();}
 else { buf = quote.getBytes(); }
 InetAddress address = packet.getAddress();
 int port = packet.getPort();
 packet = new DatagramPacket(buf, buf.length, address, port);
 socket.send(packet);
 }
 socket.close();
 }
}

Network Programming © Benoît Garbinato

UDP sockets: client side
public class QuoteClient {
 public static void main(String[] args) throws Exception {
 if (args.length != 1) { System.out.println("Missing hostname"); System.exit(1); }
 DatagramSocket socket = new DatagramSocket();
 InetAddress address = InetAddress.getByName(args[0]);
 BufferedReader stdIn = new BufferedReader(new InputStreamReader(System.in));
 System.out.println("Go on, ask for a quote by typing return!");
 while (!stdIn.readLine().equals("quit")) {
 byte[] buf = new byte[256];
 DatagramPacket packet = new DatagramPacket(buf, buf.length, address, 4445);
 socket.send(packet);
 packet = new DatagramPacket(buf, buf.length);
 socket.receive(packet);
 String received = new String(packet.getData());
 System.out.println("-> " + received);
 }
 socket.close();
 }
}

Network Programming © Benoît Garbinato

UDP Multicast
A multicast allows for one-to-many
communication in an anonymous way
A multicast address is an address between
224.0.0.0 and 239.255.255.255, and
defines a so-called multicast group
In Java, multicast is available thanks to a
the MulticastSocket class:

Methods joinGroup() and leaveGroup() allow a receiver to
respectively join and leave a multicast group
Method setTimeToLive() allows a sender to restrict the
number of hubs its sent messages are going through

Network Programming © Benoît Garbinato

UDP Multicast: sender
public class MulticastQuoteSender {
 public static void main(String[] args) throws Exception {
 MulticastSocket socket = null;
 BufferedReader in = null;
 socket = new MulticastSocket();
 socket.setTimeToLive(1);
 in = new BufferedReader(new FileReader("one-liners.txt"));
 String quote = null;
 boolean moreQuotes= true;

 while (moreQuotes) {
 Thread.currentThread().sleep(500);
 byte[] buf = new byte[256];
 quote = in.readLine();
 if (quote == null) { moreQuotes= false; buf= ("No more, bye!").getBytes();}
 else { buf = quote.getBytes(); }
 InetAddress group = InetAddress.getByName("230.0.0.1");
 DatagramPacket packet = new DatagramPacket(buf, buf.length, group, 4446);
 socket.send(packet);
 }
 socket.close();
 }
}

Network Programming © Benoît Garbinato

UDP Multicast: receiver
public class MulticastQuoteReceiver {
 public static void main(String[] args) throws Exception {
 try {
 MulticastSocket socket = new MulticastSocket(4446);
 InetAddress group = InetAddress.getByName("230.0.0.1");
 socket.joinGroup(group);
 while (true) {
 byte[] buf = new byte[256];
 DatagramPacket packet = new DatagramPacket(buf, buf.length);
 System.out.print("Waiting for the next quote: ");
 socket.receive(packet);
 String received = new String(packet.getData());
 System.out.println(received);
 if (received.indexOf("bye") != -1) break;
 }
 socket.leaveGroup(group);
 socket.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

