
Start Developing iOS Apps Today

Contents

Introduction 6

Setup 7
Get the Tools 8
Review a Few Objective-C Concepts 9

Objects Are Building Blocks for Apps 9
Classes Are Blueprints for Objects 9
Objects Communicate Through Messages 9
Protocols Define Messaging Contracts 10

Tutorial: Basics 11
Create a New Project 13
Get Familiar with Xcode 18
Run iOS Simulator 19
Review the Source Code 23

The main.m File and the UIApplicationMain Function 25
The App Delegate Source Files 26

Open Your Storyboard 27
Build the Basic Interface 28
Preview Your Interface 34
Adopt Auto Layout 37
Recap 42

Structuring an App 43

Defining the Concept 44

Designing a User Interface 45
The View Hierarchy 45
Types of Views 46
Use Storyboards to Lay Out Views 47
Use Inspectors to Configure Views 50
Use Auto Layout to Position Views 51

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

2

Defining the Interaction 54
View Controllers 55
Actions 56
Outlets 56
Controls 56
Navigation Controllers 57
Use Storyboards to Define Navigation 58

Tutorial: Storyboards 60
Create a Second Scene 62
Display Static Content in a Table View 66
Add a Segue to Navigate Forward 71
Create Custom View Controllers 85
Create an Unwind Segue to Navigate Back 94
Recap 101

Implementing an App 102

Incorporating the Data 103
Designing Your Model 103
Implementing Your Model 104
Incorporating Real Data 104

Using Design Patterns 105
MVC 105
Target-Action 106
Delegation 107

Working with Foundation 108
Value Objects 108

Strings 109
Numbers 110

Collection Objects 111
Arrays 111
Sets 115
Dictionaries 115
Representing nil with NSNull 117

Writing a Custom Class 119
Declaring and Implementing a Class 120

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

3

Contents

Interface 120
Implementation 120

Properties Store an Object’s Data 121
Methods Define an Object’s Behavior 122

Method Parameters 123
Implementing Methods 124

Tutorial: Add Data 126
Create a Data Class 128
Load the Data 130
Display the Data 133
Toggle Item Completion State 137
Add New Items 140
Recap 149

Next Steps 150

iOS Technologies 151
User Interface 151
Games 152
Data 152
Media 153

Finding Information 154
Use Contextual Help Articles for Xcode Guidance 154
Use Guides for General and Conceptual Overviews 156
Use API Reference for Class Information 158
Use Quick Help for Contextual Source Code Information 162
Use Sample Code to See Real-World Usage 164

Where to Go from Here 165
Taking the ToDoList App to the Next Level 166

Document Revision History 167

Objective-C 5

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

4

Contents

Objective-CSwift

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

5

 ● Setup (page 7)

 ● Tutorial: Basics (page 11)

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

6

Introduction

Start Developing iOS Apps Today is the perfect starting point for creating apps that run on iPad, iPhone, and
iPod touch. View this guide’s four short modules as a gentle introduction to building your first app—including
the tools you need and the major concepts and best practices that will ease your path.

The first three modules end with a tutorial, where you’ll implement what you’ve learned. At the end of the last
tutorial, you’ll have created a simple to-do list app.

After you build your first app and before you start your next endeavor, read the fourth module. It explores the
technologies and frameworks you might want to adopt.

Even though it takes you through every step of building a simple app, to benefit most from this guide, it helps
to be acquainted with computer programming in general and with object-oriented programming in particular.

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

7

Setup

Get the Tools
Before you start developing great apps, set up a development environment to work in and make sure you
have the right tools.

To develop iOS apps, you need:

 ● A Mac computer running OS X 10.9.4 or later

 ● Xcode (latest version)

 ● iOS SDK

Xcode is Apple’s integrated development environment (IDE). Xcode includes a source editor, a graphical user
interface editor, and many other features. The iOS SDK extends Xcode to include the tools, compilers, and
frameworks you need specifically for iOS development.

Download the latest version of Xcode on your Mac for free from the App Store. The iOS SDK is included with
Xcode.

To download the latest version of Xcode

1. Open the App Store app on your Mac (by default it’s in the Dock).

2. In the search field in the top-right corner, type Xcode and press the Return key.

3. Click Free .

Xcode is downloaded into your /Applications directory.

Setup
Get the Tools

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

8

Review a Few Objective-C Concepts
As you write code in the tutorials, you’ll be working with the Objective-C programming language. Objective-C
is built on top of the C programming language and provides object-oriented capabilities and a dynamic runtime.
You get all of the familiar elements, such as primitive types (int, float, and so on), structures, functions,
pointers, and control flow constructs (while, if...else, and for statements). You also have access to the
standard C library routines, such as those declared in stdlib.h and stdio.h.

Objects Are Building Blocks for Apps
When you build an iOS app, most of your time is spent working with objects.

Objects package data with related behavior. An app is a large ecosystem of interconnected objects that
communicate with each other to perform specific tasks, such as displaying a visual interface, responding to
user input, and storing information. You use many different types of objects to build your app, ranging from
interface elements, such as buttons and labels, to data objects, such as strings and arrays.

Classes Are Blueprints for Objects
A class describes the behavior and properties common to any particular type of object.

In the same way that multiple buildings constructed from the same blueprint are identical in structure, every
instance of a class shares the same properties and behavior as all other instances of that class. You can write
your own classes or use framework classes that have been defined for you.

You make an object by creating an instance of a particular class. You do this by allocating the object and
initializing it with acceptable default values. When you allocate an object, you set aside enough memory for
the object and set all instance variables to zero. Initialization sets an object’s initial state—that is, its instance
variables and properties—to reasonable values and then returns the object. The purpose of initialization is to
return a usable object. You need to both allocate and initialize an object to be able to use it.

A fundamental concept in Objective-C programming is class inheritance, the idea that a class inherits behaviors
from a parent class. When one class inherits from another, the child—or subclass—inherits all the behavior
and properties defined by the parent. The subclass can define its own additional behavior and properties or
override the behavior of the parent. Thus you can extend the behaviors of a class without duplicating its existing
behavior.

Objects Communicate Through Messages
Objects interact by sending each other messages at runtime. In Objective-C terms, one object sends amessage
to another object by calling a method on that object.

Setup
Review a Few Objective-C Concepts

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

9

Although there are several ways to send messages between objects in Objective-C, by far the most common
is the basic syntax that uses square brackets. If you have an object somePerson of class XYZPerson, you can
send it the sayHello message like this:

[somePerson sayHello];

The reference on the left, somePerson, is the receiver of the message. The message on the right, sayHello,
is the name of the method to call on that receiver. In other words, when the above line of code is executed,
somePerson will be sent the sayHello message.

Protocols Define Messaging Contracts
A protocol defines a set of behaviors that are expected of an object in a given situation. A protocol comes in
the form of a programmatic interface, one that any class may implement. Using protocols, two classes distantly
related by inheritance can communicate with each other to accomplish a certain goal, such as parsing XML
code or copying an object.

Any class that can provide useful behavior to other classes can declare a programmatic interface for vending
that behavior anonymously. Any other class can choose to adopt the protocol and implement one or more of
the protocol’s methods, making use of the behavior.

Setup
Review a Few Objective-C Concepts

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

10

This tutorial takes you through the process of creating a simple user interface and adding the custom behavior
that transforms the interface into a working app. The finished app will run on iPhone and iPad.

This tutorial teaches you how to:

 ● Use Xcode to create and manage a project

 ● Identify the key pieces of an Xcode project

 ● Run your app in iOS Simulator

 ● Create a basic user interface in a storyboard

 ● Preview your user interface

 ● Adopt Auto Layout to add flexibility to your user interface

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

11

Tutorial: Basics

After you complete all the steps in this tutorial, you’ll have an app that looks something like this:

Tutorial: Basics

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

12

These tutorials use Xcode 6.1.1 and iOS SDK 8.1, so if you’re following along using other software versions, you
might notice some differences.

Create a New Project
Xcode includes several built-in app templates for developing common types of iOS apps, such as games, apps
with tab-based navigation, and table-view-based apps. Most of these templates have preconfigured interface
and source code files. For this tutorial, you’ll start with the most basic template: Single View Application.

Working with the Single View Application template helps you understand the basic structure of an iOS app
and how content gets onscreen. After you learn how everything works, you can use one of the other templates
for your own app.

To create a new project

1. Open Xcode from the /Applications directory.

Tutorial: Basics
Create a New Project

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

13

The Xcode welcome window appears.

If a project window appears instead of the welcome window, don’t worry—you probably created or opened
a project in Xcode previously. Just use the menu item in the next step to create the project.

2. In the welcome window, click “Create a new Xcode project” (or choose File > New > Project).

Tutorial: Basics
Create a New Project

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

14

Xcode opens a new window and displays a dialog in which you choose a template.

3. In the iOS section at the left of the dialog, select Application.

4. In the main area of the dialog, click Single View Application and then click Next.

Tutorial: Basics
Create a New Project

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

15

5. In the dialog that appears, name your app and choose additional options for your project.

Use the following values:

 ● Product Name: ToDoList

Xcode uses the product name you entered to name your project and the app.

 ● Organization Name: The name of your organization or your own name. You can leave this blank.

 ● Organization Identifier: Your organization identifier, if you have one. If you don’t, use com.example.

 ● Bundle Identifier: This value is automatically generated based on your product name and organization
identifier.

 ● Language: Objective-C

 ● Devices: Universal

A Universal app is one that runs on both iPhone and iPad.

Tutorial: Basics
Create a New Project

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

16

 ● Use Core Data: Leave unselected.

6. Click Next.

7. In the dialog that appears, choose a location to save your project and click Create.

Xcode opens your new project in a window (called the workspace window):

You might notice a warning message that says “No signing identity found.” This warning means you haven’t
set up Xcode for iOS development yet, but you can complete the tutorial without doing it. At the end of this
document, there’s a link to a guide that helps you set up Xcode to continue iOS development.

Tutorial: Basics
Create a New Project

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

17

Get Familiar with Xcode
Xcode includes everything you need to create an app. It not only organizes the files that go into creating an
app, it provides editors for code and interface elements, allows you to build and run your app, and includes a
powerful integrated debugger.

Take a few moments to familiarize yourself with the Xcode workspace. You’ll use the controls identified in the
window below throughout this tutorial. Click different buttons to get a feel for how they work. If you want
more information on part of the interface, read the help articles for it—to find them, Control-click an area of
Xcode and choose the article from the shortcut menu that appears.

Tutorial: Basics
Get Familiar with Xcode

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

18

Run iOS Simulator
Because you based your project on an Xcode template, the basic app environment is automatically set up for
you. Even though you haven’t written any code, you can build and run the Single View Application template
without any additional configuration.

To build and run your app, use the iOS Simulator app that’s included in Xcode. As its name implies, iOS
Simulator gives you an idea of how your app would look and behave if it were running on an iOS device.

iOS Simulator can model a number of different types of hardware—iPad, iPhone with different screen sizes,
and so on—so you can simulate your app on every device you’re developing for. In this tutorial, use the iPhone
6 option.

To run your app in iOS Simulator

1. Make sure iPhone 6 is selected in the Scheme pop-up menu in the Xcode toolbar.

Go ahead and look through the menu to see what other hardware options are available in iOS Simulator.

2. Click the Run button, located in the top-left corner of the Xcode toolbar.

Alternatively, choose Product > Run (or press Command-R).

Tutorial: Basics
Run iOS Simulator

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

19

If you’re running an app for the first time, Xcode asks whether you’d like to enable developer mode on
your Mac. Developer mode allows Xcode access to certain debugging features without requiring you to
enter your password each time. Decide whether you’d like to enable developer mode and follow the
prompts. If you choose not to enable it, you may be asked for your password later on. The tutorial assumes
developer mode is enabled.

3. Watch the Xcode toolbar as the build process completes.

Xcode displays messages about the build process in the activity viewer, which is in the middle of the toolbar.

After Xcode finishes building your project, iOS Simulator starts automatically. It may take a few moments to
start up the first time.

Tutorial: Basics
Run iOS Simulator

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

20

iOS Simulator opens in iPhone mode, just as you specified. On the simulated iPhone screen, iOS Simulator
launches your app. Before the app finishes launching, you’ll see a launch screen with your app’s name, ToDoList.

Tutorial: Basics
Run iOS Simulator

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

21

Then, you should see something like this:

Tutorial: Basics
Run iOS Simulator

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

22

Right now, the Single View Application template doesn’t do much—it just displays a white screen. Other
templates have more complex behavior. It’s important to understand a template’s uses before you extend it
to make your own app. Running your app in iOS Simulator with no modifications is a good way to start
developing that understanding.

Quit iOS Simulator by choosing iOS Simulator > Quit iOS Simulator (or pressing Command-Q).

Review the Source Code
The Single View Application template comes with a few source code files that set up the app environment.
Most of the work is done by the UIApplicationMain function, which is automatically called in your project’s
main.m source file. The UIApplicationMain function creates an application object that sets up the
infrastructure for your app to work with the iOS system. This includes creating a run loop that delivers input
events to your app.

You won’t be dealing with the main.m source file directly, but it’s interesting to understand how it works.

To look at the main.m source file

1. Make sure the project navigator is open in the navigator area.

Tutorial: Basics
Review the Source Code

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

23

The project navigator displays all the files in your project. If the project navigator isn’t open, click the
leftmost button in the navigator selector bar. (Alternatively, display it by choosing View > Navigators >
Show Project Navigator.)

2. Open the Supporting Files folder in the project navigator by clicking the disclosure triangle next to it.

3. Select main.m.

Tutorial: Basics
Review the Source Code

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

24

Xcode opens the source file in the main editor area of the window.

Alternatively, double-click the main.m file to open it in a separate window.

The main.m File and the UIApplicationMain Function
The main function in main.m calls the UIApplicationMain function within an autorelease pool.

@autoreleasepool {

return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));

}

Tutorial: Basics
Review the Source Code

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

25

The @autoreleasepool statement supports memory management for your app. Automatic Reference
Counting (ARC) makes memory management straightforward by getting the compiler to keep track of who
owns an object; @autoreleasepool is part of the memory management infrastructure.

The call to UIApplicationMain creates two important initial components of your app:

 ● An instance of the UIApplication class, called the application object.

The application object manages the app event loop and coordinates other high-level app behaviors. The
UIApplication class, defined in the UIKit framework, doesn’t require you to write any additional code
to get it to do its job.

 ● An instance of the AppDelegate class, called the app delegate.

Xcode created this class for you as part of setting up the Single View Application template. The app delegate
creates the window where your app’s content is drawn and provides a place to respond to state transitions
within the app. The app delegate is where you write your custom app-level code. Like all classes, the
AppDelegate class is defined in two source code files in your app: in the interface file, AppDelegate.h,
and in the implementation file, AppDelegate.m.

As your app starts up, the application object calls predefined methods on the app delegate to give your custom
code a chance to do its job—that’s when the interesting behavior for an app is executed.

The App Delegate Source Files
To understand the role of the app delegate in more depth, view your app delegate source files, AppDelegate.h
(the interface file) and AppDelegate.m (the implementation file). To view the app delegate interface file,
select AppDelegate.h in the project navigator. The app delegate interface contains a single property: window.
With this property the app delegate keeps track of the window in which all of your app content is drawn.

Next, view the app delegate implementation file by selecting AppDelegate.m in the project navigator. The
app delegate implementation contains “skeletons” of important methods. These predefined methods allow
the application object to talk to the app delegate. During a significant runtime event—for example, app launch,
low-memory warnings, and app termination—the application object calls the corresponding method in the
app delegate, giving it an opportunity to respond appropriately. You don’t need to do anything special to
make sure these methods get called at the correct time—the application object handles that part of the job
for you.

Each of these automatically implemented methods has a default behavior. If you leave the skeleton
implementation empty or delete it from your AppDelegate.m file, you get the default behavior whenever
that method is called. Use these skeletons to put additional custom code that you want to be executed when
the methods are called. In this tutorial, you won’t be using any custom app delegate code, so you don’t have
to make any changes to the AppDelegate.m file.

Tutorial: Basics
Review the Source Code

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

26

Open Your Storyboard
You’re ready to start working on a storyboard for your app. A storyboard is a visual representation of the app’s
user interface, showing screens of content and the transitions between them. You use storyboards to lay out
the flow—or story—that drives your app.

To open your storyboard

 ● In the project navigator, select Main.storyboard.

Xcode opens the storyboard in Interface Builder—its visual interface editor—in the editor area. The
background of the storyboard is the canvas. You use the canvas to add and arrange user interface elements.

Your storyboard should look similar to this:

Tutorial: Basics
Open Your Storyboard

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

27

At this point, the storyboard in your app contains one scene, which represents a screen of content in your app.
The arrow that points to the left side of the scene on the canvas is the storyboard entry point, which means
that this scene is loaded first when the app starts. Right now, the scene that you see on the canvas contains a
single view that’s managed by a view controller. You’ll learn more about the roles of views and view controllers
after this tutorial.

When you ran your app in the iPhone 6 iOS Simulator, the view in this scene is what you saw on the device
screen. But when you look at the scene on the canvas, you’ll notice that it doesn’t have the exact dimensions
of the iPhone 6 screen. This is because the scene on the canvas is a generalized representation of your interface
that can apply to any device in any orientation. You use this representation to create an adaptive interface,
which is an interface that automatically adjusts so that it looks good in the context of the current device and
orientation. You’ll learn how to make your interface adaptive in a little while.

Build the Basic Interface
It’s time to build the basic interface for the scene that lets you add a new item to the to-do list.

Xcode provides a library of objects that you can add to a storyboard file. Some of these are user interface
elements that belong in a view, such as buttons and text fields. Others, such as view controllers and gesture
recognizers, define the behavior of your app but don’t appear onscreen.

To be able to add an item to the to-do list, you need a text field, the interface element that lets a user input a
single line of text.

To add a text field to your scene

1. Open the Object library.

Tutorial: Basics
Build the Basic Interface

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

28

The Object library appears at the bottom of the utility area. If you don’t see the Object library, click its
button, which is the third button from the left in the library selector bar. (Alternatively, display it by choosing
View > Utilities > Show Object Library.)

A list appears showing each object’s name, description, and visual representation.

2. In the Object library, type text field in the filter field to find the Text Field object quickly.

Tutorial: Basics
Build the Basic Interface

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

29

3. Drag a Text Field object from the Object library to your scene.

If you need to, you can zoom in using Editor > Canvas > Zoom.

4. Drag the text field so that it’s centered vertically and aligned with the left margin in the scene.

Tutorial: Basics
Build the Basic Interface

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

30

Stop dragging the text field when you see something like this:

The blue layout guides help you place the text field. Layout guides are visible only when you drag or resize
objects next to them; they disappear when you let go of the text field.

5. If necessary, click the text field to reveal the resize handles.

Tutorial: Basics
Build the Basic Interface

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

31

You resize a UI element by dragging its resize handles, which are small white squares that appear on the
element’s borders. You reveal an element’s resize handles by selecting it. In this case, the text field should
already be selected because you just stopped dragging it. If your text field looks like the one below, you’re
ready to resize it; if it doesn’t, select it on the canvas.

6. Resize the left and right edges of the text field until you see three vertical layout guides appear.

Tutorial: Basics
Build the Basic Interface

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

32

Stop resizing the text field when you see something like this:

Although you have the text field in your scene, there’s no instruction to the user about what to enter in the
field. Use the text field’s placeholder text to prompt the user to enter the name of a new to-do item.

To configure the text field’s placeholder text

1.
With the text field selected, open the Attributes inspector in the utility area.

Tutorial: Basics
Build the Basic Interface

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

33

The Attributes inspector appears when you select the fourth button from the left in the inspector selector
bar. It lets you edit the properties of an object in your storyboard.

2. In the Attributes inspector, find the field labeled Placeholder and type New to-do item.

3. Press Return to display the new placeholder text in the text field.

Preview Your Interface
Preview your app periodically to check that everything is looking the way you expect. You can preview your
app interface using the assistant editor, which displays a secondary editor side-by-side with your main one.

Tutorial: Basics
Preview Your Interface

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

34

To preview your interface

1. Click the Assistant button in the Xcode toolbar to open the assistant editor.

2. In the editor selector bar, switch the assistant editor from Automatic to Preview.

Tutorial: Basics
Preview Your Interface

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

35

3. If you want more space to work, collapse the project navigator and utility area by clicking the Navigator
and Utilities buttons in the Xcode toolbar.

Your Xcode window should look something like this:

Tutorial: Basics
Preview Your Interface

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

36

As you see, the text field doesn’t look quite right. It extends past the edge of the screen. The interface you
specified in your storyboard looks correct, so why is this happening in the iPhone preview?

As you learned earlier, you’re actually building an adaptive interface that scales for different sizes of iPhone
and iPad. The scene you see by default in your storyboard shows a generalized version of your interface. Here,
you’ll need to specify how the interface should adjust for specific devices. For example, when the interface
shrinks down to an iPhone size, the text field should shrink. When the interface grows to an iPad size, the text
field should grow. You can specify these kinds of interface rules easily using Auto Layout.

Adopt Auto Layout
Auto Layout is a powerful layout engine that helps you design adaptive layouts with ease. You describe your
intent for the positioning of elements in a scene and then let the layout engine determine how best to implement
that intent. You describe your intent using constraints—rules that explain where one element should be located
relative to another, what size it should be, or which of two elements should shrink first when something reduces
the space available for each of them.

The text field in this interface should appear a fixed amount of space from the top of the device screen and
stretch to the horizontal margins, regardless of device.

To position the text field using Auto Layout

1. In your storyboard, select the text field.

2. On the canvas, click the Auto Layout Align icon.

Tutorial: Basics
Adopt Auto Layout

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

37

3. Select the checkboxes next to Horizontal Center in Container and Vertical Center in Container.

4. Click the Add 2 Constraints button.

5. On the canvas, click the Auto Layout Pin icon.

Tutorial: Basics
Adopt Auto Layout

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

38

6. Above “Spacing to nearest neighbor,” select the two horizontal red constraints by clicking on them.

These constraints indicate spacing to the nearest leading and trailing neighbors. Because the “Constrain
to margins” checkbox is selected, the text field in this case is constrained to the margins of the view.

7. Click the Add 2 Constraints button.

Tutorial: Basics
Adopt Auto Layout

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

39

The app interface preview updates to reflect the new constraints:

If you don’t get the behavior you expect, use the Xcode Auto Layout debugging features to help you. With
the text field selected, click the Resolve Auto Layout Issues icon and choose Reset to Suggested Constraints
to have Xcode update your interface with a valid set of constraints. Or click the Resolve Auto Layout Issues
icon and choose Clear Constraints to remove all constraints on the text field, and then try following the steps
above again.

Checkpoint: Run your app in iOS Simulator to make sure that the scene you created looks the way you expect
it to. You should be able to click inside the text field and enter text using the keyboard (if you’d like, toggle
the software keyboard by pressing Command-K). If you rotate the device (Command-Left Arrow or

Tutorial: Basics
Adopt Auto Layout

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

40

Command-Right Arrow) or run the app on a different device, the text field grows or shrinks to the appropriate
size depending on the device’s orientation and screen size. Note that on some devices, the text field might be
obscured by the keyboard in landscape orientation.

Tutorial: Basics
Adopt Auto Layout

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

41

Although this scene doesn’t do much yet, the basic user interface is there and functional. Considering layout
from the start ensures that you have a solid foundation to build upon.

Recap
You’re now well on your way to creating a basic interface with storyboards. In the remaining tutorials, you’ll
learn more about adding interaction to your interface and writing code to create custom behavior. The chapters
between the tutorials guide you through the concepts that you’ll put into practice while working on your app.

Tutorial: Basics
Recap

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

42

 ● Defining the Concept (page 44)

 ● Designing a User Interface (page 45)

 ● Defining the Interaction (page 54)

 ● Tutorial: Storyboards (page 60)

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

43

Structuring an App

Every great app starts with a concept. You don’t need a completely polished and finished concept to start
developing your app. You do need an idea of where you’re going and what you need to do to get there.

Ask yourself these questions as your define your concept:

Who is your audience? Your app content and experience will differ depending on whether you’re writing a
children’s game, a to-do list app, or simply a test app for your own learning.

What is the purpose of your app? An app needs a clearly defined purpose. Part of defining the purpose is
understanding what one thing will motivate users to use your app.

What problem is your app trying to solve? A great app solves a single, well-defined problem instead of
attempting solutions to multiple distinct problems. For example, the Settings app allows users to adjust all of
the settings on their device. It provides a single interface for users to accomplish a related set of tasks. If your
app is trying to solve unrelated problems, consider writing multiple apps.

What content will your app incorporate? Consider what type of content your app will present to users and
how they’ll interact with it. Design the user interface to complement the type of content that’s presented in
the app.

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

44

Defining the Concept

A user needs to interact with an app interface in the simplest way possible. Design the interface with the user
in mind, and make it efficient, clear, and straightforward.

Storyboards let you design and implement your interface in a graphical environment. You see exactly what
you're building while you’re building it, get immediate feedback about what’s working and what’s not, and
make instantly visible changes to your interface.

When you build an interface in a storyboard, as you did in Tutorial: Basics (page 11), you're working with views.
Views display content to the user. They are the building blocks for constructing your user interface and
presenting your content in a clear, elegant, and useful way. As you develop more complex apps, you'll create
interfaces with more scenes and more views.

.

The View Hierarchy
Views not only display themselves onscreen and react to user input, they can serve as containers for other
views. As a result, views in an app are arranged in a hierarchical structure called the view hierarchy. The view
hierarchy defines the layout of views relative to other views. Within that hierarchy, views enclosed within a
view are called subviews, and the parent view that encloses a view is referred to as its superview. Even though
a view can have multiple subviews, it can have only one superview.

At the top of the view hierarchy is the window object. Represented by an instance of the UIWindow class, a
window object is the basic container into which you add your view objects for display onscreen. By itself, a
window doesn’t display any content. To display content, you add a content view object (with its hierarchy of
subviews) to the window.

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

45

Designing a User Interface

For a content view and its subviews to be visible to the user, the content view must be inserted into a window’s
view hierarchy. When you use a storyboard, this placement is configured automatically for you. When an app
launches, the application object loads the storyboard, creates instances of the relevant view controller classes,
unarchives the content view hierarchies for each view controller, and then adds the content view of the initial
view controller into the window. You’ll learn about managing view controllers in the next chapter; for now,
you’ll focus on creating a hierarchy within a single view controller in your storyboard.

Types of Views
When you design your app, it’s important to know what kind of view to use for what purpose. For example,
the kind of view you use to gather input text from a user, such as a text field, is different from what you might
use to display static text, such as a label. Apps that use UIKit views for drawing are easy to create because you
can assemble a basic interface quickly. A UIKit view object is an instance of the UIView class or one of its
subclasses. The UIKit framework provides many types of views to help present and organize data.

Although each view has its own specific function, UIKit views can be grouped into these general categories.

Examples of viewsPurposeView category

Image view, labelDisplay a particular type of content, such as an
image or text.

Content

Collection view, table viewDisplay collections or groups of views.

Collections

Button, slider, switchPerform actions or display information.

Controls

Toolbar, navigation bar, tab barNavigate, or perform actions.

Bars

Search bar, text viewReceive user input text.

Input

Designing a User Interface
Types of Views

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

46

Examples of viewsPurposeView category

View, scroll viewServe as containers for other views.

Containers

Action sheet, alert viewInterrupt the regular flow of the app to allow a
user to perform an action.

Modal

You can assemble views graphically using Interface Builder. Interface Builder provides a library of the standard
views, controls, and other objects that you need to build your interface. After dragging these objects from the
library, you drop them onto the canvas and arrange them in any way you want. Next, use inspectors to configure
those objects before saving them in a storyboard. You see the results immediately, without the need to write
code, build, and run your app.

The UIKit framework provides standard views for presenting many types of content, but you can also define
your own custom views by subclassing UIView (or its descendants). A custom view is a subclass of UIView in
which you handle all of the drawing and event-handling tasks yourself. You won’t be using custom views in
these tutorials, but you can learn more about implementing a custom view in Defining a Custom View.

Use Storyboards to Lay Out Views
You use a storyboard to lay out your hierarchy of views in a graphical environment. Storyboards provide a
direct, visual way to work with views and build your interface.

As you saw in Tutorial: Basics (page 11), storyboards are composed of scenes, and each scene has an associated
view hierarchy. You drag a view out of the object library and place it in a storyboard scene to add it automatically
to that scene’s view hierarchy. The view’s location within that hierarchy is determined by where you place it.
After you add a view to your scene, you can resize, manipulate, configure, and move it on the canvas.

Designing a User Interface
Use Storyboards to Lay Out Views

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

47

The canvas also shows an outline view of the objects in your interface. The outline view—which appears on
the left side of the canvas—lets you see a hierarchical representation of the objects in your storyboard.

The view hierarchy that you create graphically in a storyboard scene is effectively a set of archived Objective-C
objects. At runtime, these objects are unarchived. The result is a hierarchy of instances of the relevant classes
configured with the properties you’ve set visually using the various inspectors in the utility area.

As you learned in Tutorial: Basics (page 11), the default interface configuration you work with in a storyboard
applies to any version of your interface. When you need to adjust your interface for specific device sizes or
orientations, you make the changes to specific size classes. A size class is a high-level way to describe the
horizontal or vertical space that’s available in a display environment, such as iPhone in portrait or iPad in
landscape. There are two types of size classes: regular and compact. A display environment is characterized

Designing a User Interface
Use Storyboards to Lay Out Views

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

48

by a pair of size classes, one that describes the horizontal space and one that describes the vertical space. You
can view and edit your interface for different combinations of regular and compact size classes using the size
class control on the canvas:

You won’t be working with specific size classes in this tutorial, but if you’re curious about size classes, learn
more about them in Size Classes Design Help.

Designing a User Interface
Use Storyboards to Lay Out Views

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

49

Use Inspectors to Configure Views
The inspector pane appears in the utility area above the Object library.

Each inspector provides important configuration options for elements in your interface. When you select an
object, such as a view, in your storyboard, you can use inspectors to customize different properties of that
object.

 ● File. Specify general information about the storyboard.

 ● Quick Help. Get useful documentation about an object.

 ●

Identity. Specify a custom class for your object and define its accessibility attributes.

Designing a User Interface
Use Inspectors to Configure Views

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

50

 ●

Attributes. Customize visual attributes of an object.

 ● Size. Specify an object’s size and Auto Layout attributes.

 ● Connections. Create connections between your interface and source code.

You began working with the Attributes inspector in the first tutorial. You’ll continue using these inspectors
throughout the rest of the tutorials to configure views and other objects in your storyboard. In particular, you’ll
use the Attributes inspector to configure your views, the Identity inspector to configure your view controllers,
and the Connections inspector to create connections between your views and view controllers.

Use Auto Layout to Position Views
When you start positioning views in your storyboard, you need to consider a variety of situations. iOS apps
run on a number of different devices, with various screen sizes, orientations, and languages. You need a dynamic
interface that responds seamlessly to changes in screen size, device orientation, localization, and metrics.

Designing a User Interface
Use Auto Layout to Position Views

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

51

As you already saw in Tutorial: Basics (page 11), Xcode offers a tool called Auto Layout to help create a versatile,
adaptive interface. Auto Layout is a system for expressing relationships between views. It lets you define these
relationships in terms of constraints on individual views or between sets of views.

Use the Auto Layout icons in the bottom-right area of your canvas to add various types of constraints to views
on your canvas, resolve layout issues, and determine constraint resizing behavior.

 ● Align. Create alignment constraints, such as centering a view in its container, or aligning the left edges
of two views.

 ● Pin. Create spacing constraints, such as defining the height of a view, or specifying its horizontal distance
from another view.

 ● ResolveAuto Layout Issues. Resolve layout issues by adding or resetting constraints based on suggestions.

Designing a User Interface
Use Auto Layout to Position Views

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

52

 ● Resizing Behavior. Specify how resizing affects constraints.

For the simple interface you’re creating in the ToDoList app, you don’t need to learn everything about Auto
Layout at this point. As an app’s interface layout gets more complex, you’ll add a variety of constraints to
specify exactly how the interface should lay out on different devices and orientations. At the end of this
document, there’s a link to the Auto Layout guide that helps you use constraints to define more intricate
adaptive interfaces.

Designing a User Interface
Use Auto Layout to Position Views

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

53

iOS apps are based on event-driven programming. That is, the flow of the app is determined by events: system
events and user actions. The user performs actions on the interface, which trigger events in the app. These
events result in the execution of the app’s logic and manipulation of its data. The app’s response to user action
is then reflected back in the interface. Because the user, rather than the developer, is in control of when certain
pieces of the app code get executed, you want to identify exactly which actions a user can perform and what
happens in response to those actions.

You define much of your event-handling logic in view controllers. Controllers are objects that support your
views by responding to user actions and populating the views with content. Controller objects are a conduit
through which views interact with the data model. Views are notified of changes in model data through the
app’s controllers, and controllers communicate user-initiated changes—for example, text entered in a text
field—to model objects. Whether they’re responding to user actions or defining navigation, controllers
implement your app’s behavior.

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

54

Defining the Interaction

View Controllers
After you’ve built a basic view hierarchy, your next step is to control the visual elements and respond to user
input. In an iOS app, you use a viewcontroller (UIViewController) to manage a content view with its hierarchy
of subviews.

A view controller isn’t part of the view hierarchy, and it’s not an element in your interface. Instead, it manages
the view objects in the hierarchy and provides them with behavior. Each content view hierarchy that you build
in your storyboard needs a corresponding view controller, responsible for managing the interface elements
and performing tasks in response to user interaction. This usually means writing a custom UIViewController
subclass for each content view hierarchy. If your app has multiple content views, you use a different custom
view controller class for each content view.

View controllers play many roles. They coordinate the flow of information between the app’s data model and
the views that display that data, manage the life cycle of their content views, and handle orientation changes
when the device is rotated. But perhaps their most obvious role is to respond to user input.

You also use view controllers to implement transitions from one type of content to another. Because iOS apps
have a limited amount of space in which to display content, view controllers provide the infrastructure needed
to remove the views of one view controller and replace them with the views of another.

To define interaction in your app, you make your view controller files communicate with the views in your
storyboard. You do this by defining connections between the storyboard and source code files through actions
and outlets.

Defining the Interaction
View Controllers

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

55

Actions
An action is a piece of code that’s linked to an event that can occur in your app. When that event takes place,
the code gets executed. You can define an action to accomplish anything from manipulating a piece of data
to updating the user interface. You use actions to drive the flow of your app in response to user or system
events.

You define an action by creating and implementing a method with an IBAction return type and a sender
parameter.

- (IBAction)restoreDefaults:(id)sender;

The sender parameter points to the object that was responsible for triggering the action. The IBAction
return type is a special keyword; it’s like the void keyword, but it indicates that the method is an action that
you can connect to from your storyboard in Interface Builder (which is why the keyword has the IB prefix).
You’ll learn more about how to link an IBAction action to an element in your storyboard in Tutorial:
Storyboards (page 60).

Outlets
Outlets provide a way to reference interface objects—the objects you added to your storyboard—from source
code files. To create an outlet, Control-drag from a particular object in your storyboard to a view controller file.
This operation creates a property for the object in your view controller file, which lets you access and manipulate
that object from code at runtime. For example, in the second tutorial, you’ll create an outlet for the text field
in your ToDoList app to be able to access the text field’s contents in code.

Outlets are defined as IBOutlet properties.

@property (weak, nonatomic) IBOutlet UITextField *textField;

The IBOutlet keyword tells Xcode that you can connect to this property from Interface Builder. You’ll learn
more about how to connect an outlet from a storyboard to source code in Tutorial: Storyboards (page 60).

Controls
A control is a user interface object such as a button, slider, or switch that users manipulate to interact with
content, provide input, navigate within an app, and perform other actions that you define. Controls enable
your code to receive messages from the user interface.

Defining the Interaction
Actions

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

56

When a user interacts with a control, a control event is created. A control event represents various physical
gestures that users can make on controls, such as lifting a finger from a control, dragging a finger onto a
control, and touching down within a text field.

There are three general categories of control events:

 ● Touch and drag events occur when a user interacts with a control with a touch or drag. When a user
initially touches a finger on a button, for example, the Touch Down Inside event is triggered; if the user
drags out of the button, the respective drag events are triggered. Touch Up Inside is sent when the user
lifts a finger off the button while still within the bounds of the button’s edges. If the user has dragged a
finger outside the button before lifting the finger, effectively canceling the touch, the Touch Up Outside
event is triggered.

 ● Editing events occur when a user edits a text field.

 ● Value-changed events occur when a user manipulates a control, causing it to emit a series of different
values.

As you define the interactions, know the action that’s associated with every control in your app and then make
that control’s purpose obvious to users in your interface.

Navigation Controllers
If your app has more than one content view hierarchy, you need to be able to transition between them. For
this, you’ll use a specialized type of view controller: a navigation controller (UINavigationController). A
navigation controller manages transitions backward and forward through a series of view controllers, such as
when a user navigates through email accounts, inbox messages, and individual emails in the iOS Mail app.

The set of view controllers managed by a particular navigation controller is called its navigation stack. The
navigation stack is a last-in, first-out collection of custom view controller objects. The first item added to the
stack becomes the root view controller and is never popped off the stack. Other view controllers can be pushed
on or popped off the navigation stack.

Although a navigation controller’s primary job is to manage the presentation of your content view controllers,
it’s also responsible for presenting custom views of its own. Specifically, it presents a navigation bar—the view
at the top of the screen that provides context about the user’s place in the navigation hierarchy—which
contains a back button and other buttons you can customize. Every view controller that’s added to the navigation
stack presents this navigation bar. You are responsible for configuring the navigation bar.

You generally don’t have to do any work to pop a view controller off of the navigation stack; the back button
provided by the navigation controller handles this for you. However, you do have to manually push a view
controller onto the stack. You can do this using storyboards.

Defining the Interaction
Navigation Controllers

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

57

Use Storyboards to Define Navigation
So far, you’ve learned about using storyboards to create a single screen of content in your app. Now, you’ll
learn about using them to define the flow between multiple scenes in your app.

In the first tutorial, the storyboard you worked with had one scene. In most apps, a storyboard is composed
of a sequence of scenes, each of which represents a view controller and its view hierarchy. Scenes are connected
by segues, which represent a transition between two view controllers: the source and the destination.

There are several types of segues you can create in a storyboard:

 ● Show. A show segue pushes new content on top of the current view controller stack. Where the content
shows up depends on the layout of view controllers in the scene.

 ● Show detail. A show detail segue either pushes new content on top of the current view controller stack
or replaces the content that’s shown, depending on the layout of view controllers in the scene.

Defining the Interaction
Use Storyboards to Define Navigation

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

58

 ● Present modally. A modal segue is one view controller presenting another controller modally, requiring
a user to perform an operation on the presented controller before returning to the main flow of the app.
A modal view controller isn’t added to a navigation stack; instead, it’s generally considered to be a child
of the presenting view controller. The presenting view controller is responsible for dismissing the modal
view controller it created and presented.

 ● Popover presentation. The presented view controller is shown as a popover anchored to an existing view.

 ● Custom. You can define your own custom transition by subclassing UIStoryboardSegue.

 ● Unwind. An unwind segue moves backward through one or more segues to return the user to an existing
instance of a view controller. You use unwind segues to implement reverse navigation.

In addition to segues, scenes may be connected by a relationship. For example, there’s a relationship between
the navigation controller and its root view controller. In this case, the relationship represents the containment
of the root view controller by the navigation controller.

Now that you’ve learned the basics of working with views and view controllers in storyboards, it’s time to
incorporate this knowledge into your ToDoList app in the next tutorial.

Defining the Interaction
Use Storyboards to Define Navigation

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

59

This tutorial builds on the project you created in the first tutorial (Tutorial: Basics (page 11)). You’ll put to use
what you learned about views, view controllers, actions, and navigation. You’ll also create some of the key user
interface flows for your ToDoList app and add behavior to the scene you’ve already created.

This tutorial teaches you how to:

 ● Use storyboards to define app content and flow

 ● Manage multiple view controllers

 ● Add actions to elements in your user interface

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

60

Tutorial: Storyboards

After you complete all the steps in this tutorial, you’ll have an app that looks something like this:

Tutorial: Storyboards

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

61

Create a Second Scene
So far, you’ve worked with a single scene managed by a view controller that represents a page where you can
add an item to your to-do list: the add-to-do-item scene. Now it’s time to create the scene that shows the
entire to-do list. Fortunately, iOS comes with a powerful built-in class called a table view (UITableView)
designed specifically to display a scrolling list of items.

To add a scene with a table view to your storyboard

1. In the project navigator, select Main.storyboard.

If the project navigator is still collapsed, toggle it by clicking the Navigator button in the Xcode toolbar.

If the assistant editor is still open, return to the standard editor by clicking the Standard button.

2. Open the Object library in the utility area. (To open the library with a menu command, choose View >
Utilities > Show Object Library.)

3. In the Object library, type table view controller in the filter field to find a Table View Controller
object quickly.

4. Drag a Table View Controller object from the list and drop it on the canvas to the left of the add-to-do-item
scene. If you need to, you can zoom out using Editor > Canvas > Zoom.

If you see a table view with content and nothing happens when you try to drag it to the canvas, you’re
probably dragging a table view rather than a table view controller. A table view is one of the things
managed by a table view controller, but you want the whole package, so find the table view controller
and drag it to the canvas.

Tutorial: Storyboards
Create a Second Scene

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

62

You now have two scenes, one for displaying the to-do list and one for adding to-do items.

It makes sense to have the to-do list be the first thing users see when they launch your app, so tell Xcode that’s
your intent by setting the table view controller as the first scene.

To set the table view controller as the initial scene

Tutorial: Storyboards
Create a Second Scene

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

63

 ● Drag the storyboard entry point from the add-to-do-item scene to the table view controller.

The table view controller is set as the initial view controller in your storyboard, making it the first scene
that loads on app launch.

Tutorial: Storyboards
Create a Second Scene

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

64

Checkpoint: Run your app. Instead of the add-to-do-item scene with its text field, you should now see an empty
table view—a screen with a number of horizontal dividers to separate it into rows, but with no content in each
row.

Tutorial: Storyboards
Create a Second Scene

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

65

Display Static Content in a Table View
Because you haven’t learned about storing data yet, it’s too early to create and store to-do items and display
them in the table view. But you don’t need real data to prototype your user interface. Xcode allows you to
create static content in a table view in Interface Builder. This makes it a lot easier to see how your user interface
will behave, and it’s a valuable way to try out different ideas.

To create a static cell in your table view

1.
If necessary, open the outline view .

2. In the outline view, select Table View under Table View Controller.

3.
With the table view selected, open the Attributes inspector in the utility area.

4. In the Attributes inspector, choose Static Cells from the pop-up menu next to the Content option.

Three empty table view cells appear in your table view.

Tutorial: Storyboards
Display Static Content in a Table View

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

66

5. In the outline view, select the top cell.

6. In the Attributes inspector, choose Basic from the pop-up menu next to the Style option.

The Basic style includes a label, so Xcode creates a label with the text “Title” in the table cell.

Tutorial: Storyboards
Display Static Content in a Table View

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

67

7. In the outline view, select the label.

8. In the Attributes inspector, change the text of the label from “Title” to “Mow the lawn.” For the change to
take effect, press Return or click outside the utility area.

Alternatively, you can edit a label by double-clicking it and editing the text directly.

9. Repeat steps 4–7 for the other cells, giving them text for other likely to-do items.

10. Create enough cells so that the items more than fill the screen. You can create new cells by copying and
pasting them or by holding down the Option key when dragging a cell.

Tutorial: Storyboards
Display Static Content in a Table View

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

68

Checkpoint: Run your app. You should now see a table view with the preconfigured cells you added in Interface
Builder. See how the new table view feels when you scroll it. Try rotating the simulated device—notice how
the table view is already configured to lay out its contents properly. You get a lot of behavior for free by using
a table view.

Tutorial: Storyboards
Display Static Content in a Table View

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

69

(You might notice that the top cell is overlapped by the device’s status bar—the area that shows the time,
battery level, and other information. Don’t worry, you’ll fix that next.)

Tutorial: Storyboards
Display Static Content in a Table View

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

70

Add a Segue to Navigate Forward
It’s time to provide a way to navigate from this table view, with its list of to-do items, to the first scene you
created, where a user can create a new to-do item. As your learned in Defining the Interaction (page 54),
transitions between scenes are called segues.

Before creating a segue, you need to configure your scenes. First, you’ll wrap your to-do list table view controller
in a navigation controller. Recall from Defining the Interaction (page 54) that navigation controllers provide
a navigation bar and keep track of the navigation stack. You’ll add a button to this navigation bar to transition
to the add-to-do-item scene.

To add a navigation controller to your table view controller

1. In the outline view, select Table View Controller.

2. With the table view controller selected, choose Editor > Embed In > Navigation Controller.

Tutorial: Storyboards
Add a Segue to Navigate Forward

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

71

Xcode adds a new navigation controller to your storyboard, sets the storyboard entry point to it, and creates
a relationship between the new navigation controller and your existing table view controller.

On the canvas, if you select the icon connecting the two scenes, you’ll see that it’s the root view controller
relationship. This means that the view for the content displayed below the navigation bar will be your table
view. The storyboard entry point is set to the navigation controller because the navigation controller holds all
of the content that you’ll display in your app—it’s the container for both the to-do list and the add-to-do-item
scenes.

Tutorial: Storyboards
Add a Segue to Navigate Forward

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

72

Checkpoint: Run your app. Above your table view you should now see extra space. This is the navigation bar
provided by the navigation controller. The navigation bar extends its background to the top of the status bar,
so the status bar doesn’t overlap with your content anymore.

Tutorial: Storyboards
Add a Segue to Navigate Forward

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

73

Now, you’ll add a title (to the to-do list) and a button (to add additional to-do items) to the navigation bar.
Navigation bars get their title from the view controller that the navigation controller currently displays—they
don’t themselves have a title. You set the title using the navigation item of your to-do list (the table view
controller) rather than setting it directly on the navigation bar.

To configure the navigation bar in the table view controller

1. In the outline view or on the canvas, select Navigation Item under Table View Controller.

Tutorial: Storyboards
Add a Segue to Navigate Forward

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

74

2. In the Attributes inspector, type To-Do List in the Title field. Press Return to save.

Xcode changes the description of the scene from “Table View Controller Scene” to “To-Do List Scene” to
make it easier for you to identify the scene. The description appears in the outline view.

3. In the Object library, find a Bar Button Item object.

4. Drag a Bar Button Item object from the list to the far right of the navigation bar in the table view controller.

A button containing the text “Item” appears where you dragged the bar button item.

5. In the outline view or on the canvas, select the bar button item.

6. In the Attributes inspector, find the Identifier option in the Bar Button Item section. Choose Add from the
Identifier pop-up menu.

The button changes to an Add button (+).

Tutorial: Storyboards
Add a Segue to Navigate Forward

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

75

Checkpoint: Run your app. The navigation bar should now have a title and display an Add button. The button
doesn’t do anything yet. You’ll fix that next.

Tutorial: Storyboards
Add a Segue to Navigate Forward

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

76

You want the Add button to bring up the add-to-do-item scene. The scene is already configured—it was the
first scene you created—but it’s not connected to the other scenes. You need to configure the Add button to
bring up another scene when a user taps the button.

To configure the Add button

1. On the canvas, select the Add button.

2. Control-drag from the button to the add-to-do-item view controller.

Tutorial: Storyboards
Add a Segue to Navigate Forward

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

77

A shortcut menu titled Action Segue appears in the location where the drag ended.

The Action Segue menu allows you to choose what type of segue to use to transition from the to-do list
to the add-to-do-item view controller when the user taps the Add button.

3. Choose show from the Action Segue menu.

Xcode sets up the segue and configures the add-to-do-item view controller to be displayed in a navigation
controller—you’ll see the navigation bar in Interface Builder.

Tutorial: Storyboards
Add a Segue to Navigate Forward

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

78

Checkpoint: Run your app. You can click the Add button and navigate to the add-to-do-item view controller
from the table view. Because you’re using a navigation controller with a show segue, the backward navigation
is handled for you. This means you can click the back button to get back to the table view.

Tutorial: Storyboards
Add a Segue to Navigate Forward

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

79

The push-style navigation you get by using the show segue is working just as it’s supposed to—but it’s not
quite what you want when adding items. Push navigation is designed for a drill-down interface, where you’re
providing more information about whatever the user selected. Adding an item, on the other hand, is a modal
operation—the user performs an action that’s complete and self-contained, and then returns from that scene
to the main navigation. The appropriate method of presentation for this type of scene is a modal segue.

Instead of deleting the existing segue and creating a new one, simply change the segue’s style in Attributes
inspector. Like most selectable elements in a storyboard, you can edit a segue’s attributes using Attributes
inspector.

To change the segue style

1. In the outline view or on the canvas, select the segue from the table view controller to the add-to-do-item
view controller.

2. In the Attributes inspector, choose Present Modally from the pop-up menu next to the Segue option.

Tutorial: Storyboards
Add a Segue to Navigate Forward

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

80

Because a modal view controller doesn’t get added to the navigation stack, it doesn’t get a navigation bar
from the table view controller’s navigation controller. However, you want to keep the navigation bar to provide
the user with visual continuity. To give the add-to-do-item view controller a navigation bar when presented
modally, embed it in its own navigation controller.

To add a navigation controller to the add-to-do-item view controller

1. In the outline view, select View Controller.

2. With the view controller selected, choose Editor > Embed In > Navigation Controller.

As before, Xcode adds a navigation controller and shows the navigation bar at the top of the view controller.
Next, configure this bar to add a title to this scene as well as two buttons, Cancel and Save. Later, you’ll link
these buttons to actions.

To configure the navigation bar in the add-to-do-item view controller

1. In the outline view or on the canvas, select Navigation Item under View Controller.

2. In the Attributes inspector, type Add To-Do Item in the Title field.

Xcode changes the description of the scene from “View Controller Scene” to “Add To-Do Item Scene” to
make it easier for you to identify the scene. The description appears in the outline view.

3. Drag a Bar Button Item object from the Object library to the far right of the navigation bar in the
add-to-do-item view controller.

4. In the Attributes inspector, choose Save from the pop-up menu next to the Identifier option.

The button text changes to “Save.”

5. Drag another Bar Button Item object from the Object library to the far left of the navigation bar in the
add-to-do-item view controller.

6. In the Attributes inspector, choose Cancel from the pop-up menu next to the Identifier option.

Tutorial: Storyboards
Add a Segue to Navigate Forward

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

81

The button text changes to “Cancel.”

Tutorial: Storyboards
Add a Segue to Navigate Forward

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

82

Checkpoint: Run your app. Click the Add button. You still see the add-to-do-item scene, but there’s no longer
a button to navigate back to the to-do list—instead, you see the two buttons you added, Save and Cancel.
Those buttons aren’t linked to any actions yet, so you can click them, but they don’t do anything. Configuring
the buttons to complete or cancel editing of the new to-do item—and bring the user back to the to-do list—is
the next task.

Tutorial: Storyboards
Add a Segue to Navigate Forward

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

83

Tutorial: Storyboards
Add a Segue to Navigate Forward

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

84

Create Custom View Controllers
You’ve accomplished all of this configuration without writing any code. Configuring the completion of the
add-to-do-item view controller requires some code, though, and you need a place to put it.

Right now Xcode has configured the add-to-do-item view controller to correspond to the code in
ViewController.h and ViewController.m in your project navigator. These files represent a custom view
controller subclass that got created for you as part of the Single View Application template. However, it’s
important to learn how to create and configure custom classes on your own, because this is a common task
in app development. So now, you’ll create a custom class called AddToDoItemViewController to correspond
with the add-to-do-item scene in your storyboard. AddToDoItemViewController will subclass
UIViewController so that it gets all of the basic view controller behavior.

(Go ahead and delete ViewController.h and ViewController.m if you’d like, because you won’t be using
them. To delete a file from your project, select it in the project navigator, press the Delete key, and click Move
to Trash in the message that appears.)

To create a subclass of UIViewController

1. Choose File > New > File (or press Command-N).

Tutorial: Storyboards
Create Custom View Controllers

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

85

2. On the left of the dialog that appears, select Source under iOS.

3. Select Cocoa Touch Class, and click Next.

4. In the Class field, type AddToDoItem.

5. Choose UIViewController in the “Subclass of” pop-up menu.

Tutorial: Storyboards
Create Custom View Controllers

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

86

The class title changes to AddToDoItemViewController. Xcode makes it clear from the naming that you’re
creating a custom view controller, so leave the new name as is.

6. Make sure the “Also create XIB file” option is unselected.

7. Make sure the Language option is set to Objective-C.

8. Click Next.

The save location defaults to your project directory.

The Group option defaults to your app name, ToDoList.

In the Targets section, your app is selected and the tests for your app are unselected.

9. Leave these defaults as they are, and click Create.

Xcode creates a pair of files that define the AddToDoItemViewController class: the interface file
(AddToDoItemViewController.h), and the implementation file (AddToDoItemViewController.m).

Tutorial: Storyboards
Create Custom View Controllers

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

87

Now that you’ve created a custom view controller subclass, you need to tell your storyboard to use it: you’ll
switch the add-to-do-item scene from using the old ViewController class to the new
AddToDoItemViewController class.

To identify AddToDoItemViewController as the class for the add-to-do-item scene

1. In the project navigator, select Main.storyboard.

2.
If necessary, open the outline view .

3. In the outline view, select View Controller under Add To-Do Item Scene.

4. With the view controller selected, click the third icon from the left in the utility area to open the Identity

inspector .

Tutorial: Storyboards
Create Custom View Controllers

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

88

The Identity inspector lets you edit properties of an object in your storyboard related to that object’s identity,
such as what class the object belongs to.

5. In the Identity inspector, open the pop-up menu next to the Class option.

You’ll see a list of all the view controller classes Xcode knows about. The first one in the list should be your
custom view controller, AddToDoItemViewController.

Tutorial: Storyboards
Create Custom View Controllers

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

89

6. Choose AddToDoItemViewController to use it for this scene.

Tutorial: Storyboards
Create Custom View Controllers

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

90

Notice that Xcode changed the description of your add-to-do-item view controller from “View Controller”
to “Add To-Do Item” in the outline view. Xcode interprets the name of the custom class to make it easier
to understand what’s going on in the storyboard.

At runtime your storyboard will create an instance of AddToDoItemViewController, your custom view
controller subclass. The add-to-do-item screen in the app will get the interface defined in your storyboard and
the behavior defined in AddToDoItemViewController.m.

Now, create a custom class to correspond with the to-do list scene in your storyboard. Because the to-do list
scene is a table view controller, this class should subclass UITableViewController.
UITableViewController offers the same basic view controller behavior as UIViewController with a few
specialized pieces just for table views.

To create a subclass of UITableViewController

1. Choose File > New > File (or press Command-N).

Tutorial: Storyboards
Create Custom View Controllers

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

91

2. On the left, select Source under iOS, then select Cocoa Touch Class. If you haven’t created any classes since
the last steps in the tutorial, it’s probably already selected for you.

3. Click Next.

4. In the Class field, type ToDoList before ViewController.

5. Choose UITableViewController in the “Subclass of” pop-up menu.

Tutorial: Storyboards
Create Custom View Controllers

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

92

The class title changes to ToDoListTableViewController. Leave that as is.

6. Make sure the “Also create XIB file” option is unselected.

7. Make sure the Language option is set to Objective-C.

8. Click Next.

The save location defaults to your project directory.

The Group option defaults to your app name, ToDoList.

In the Targets section, your app is selected and the tests for your app are unselected.

9. Leave these defaults as they are, and click Create.

Xcode creates a pair of files that define the ToDoListTableViewController class: the interface file
(ToDoListTableViewController.h), and the implementation file
(ToDoListTableViewController.m).

Tutorial: Storyboards
Create Custom View Controllers

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

93

Once again, you need to make sure to configure your custom table view controller,
ToDoListTableViewController, in your storyboard.

To identify ToDoListTableViewController as the class for the to-do list scene

1. In the project navigator, select Main.storyboard.

2. In the outline view, select Table View Controller under To-Do List Scene and open the Identity inspector

in the utility area.

3. In the Identity inspector, choose ToDoListTableViewController from the pop-up menu next to the
Class option.

Now, you’re ready to add custom code to your view controllers.

Create an Unwind Segue to Navigate Back
In addition to show and modal segues, Xcode provides an unwind segue. This segue allows users to go from
a given scene back to a previous scene, and it provides a place for you to add your own code that gets executed
when users navigate to the previous scene. You can use an unwind segue to navigate back from
AddToDoItemViewController to ToDoListTableViewController.

To create an unwind segue, you first add an action method to the destination view controller (the view controller
for the scene you want to unwind to). This method must return an action (IBAction) and take a segue
(UIStoryboardSegue) as a parameter. Because you want to unwind back to the to-do list scene, you need
to add an action method with this format to the ToDoListTableViewController interface and
implementation.

To add an action method to ToDoListTableViewController

1. In the project navigator, open ToDoListTableViewController.h.

2. Add the following code on the line below @interface:

- (IBAction)unwindToList:(UIStoryboardSegue *)segue;

3. In the project navigator, open ToDoListTableViewController.m.

4. Add the following code on the line below @implementation:

- (IBAction)unwindToList:(UIStoryboardSegue *)segue {

Tutorial: Storyboards
Create an Unwind Segue to Navigate Back

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

94

}

You can name the unwind action anything you want. Calling it unwindToList: makes it clear where the
unwind will take you. For future projects, adopt a similar naming convention, one where the name of the action
makes it clear where the unwind will go.

For now, leave this method implementation empty. Later, you’ll use this method to retrieve data from the
AddToDoItemViewController to add an item to your to-do list.

To create the unwind segue, link the Cancel and Save buttons to the unwindToList: action. In your storyboard,
you do this using the Exit icon in the dock of the source view controller, AddToDoItemViewController.

To link buttons to the unwindToList: action method

1. In the project navigator, select Main.storyboard.

Tutorial: Storyboards
Create an Unwind Segue to Navigate Back

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

95

2. On the canvas, Control-drag from the Cancel button to the Exit item at the top of the add-to-do-item
scene.

If you don’t see the Exit item but instead see the description of the scene, zoom in using Editor > Canvas
> Zoom until you see it.

Tutorial: Storyboards
Create an Unwind Segue to Navigate Back

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

96

A menu appears in the location where the drag ended.

3. Choose unwindToList: from the shortcut menu.

Tutorial: Storyboards
Create an Unwind Segue to Navigate Back

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

97

This is the action you just added to the ToDoListTableViewController.m file. Now, when users tap
the Cancel button, they will navigate back to the to-do list scene. At this point, unwindToList: will be
called.

Tutorial: Storyboards
Create an Unwind Segue to Navigate Back

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

98

4. On the canvas, Control-drag from the Save button to the Exit item at the top of the add-to-do-item scene.

Tutorial: Storyboards
Create an Unwind Segue to Navigate Back

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

99

A menu appears in the location where the drag ended.

5. Choose unwindToList: from the shortcut menu.

Tutorial: Storyboards
Create an Unwind Segue to Navigate Back

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

100

Now, when users tap the Save button, they will navigate back to the to-do list scene. At this point,
unwindToList: will be called.

Notice that you used the same action for both the Cancel and the Save buttons. In the next tutorial, you’ll
distinguish between the two different cases when you write the code to handle the unwind segue.

Checkpoint: Now, run your app. At launch, you see a table view—but there’s no data in it. You can click the
Add button and navigate to the add-to-do-item scene from the to-do list scene. You can click the Cancel and
Save buttons to navigate back to the to-do list scene.

So why doesn’t your data show up? Table views have two ways of getting data—statically or dynamically.
When a table view’s controller implements the required UITableViewDataSource methods, the table view
asks its view controller for data to display, regardless of whether static data has been configured in Interface
Builder. If you look at ToDoListTableViewController.m, you’ll notice that it implements three
methods—numberOfSectionsInTableView:, tableView:numberOfRowsInSection:, and
tableView:cellForRowAtIndexPath:. You’ll be working with these methods in the next tutorial to display
dynamic data.

Recap
At this point, you’ve finished developing the interface for your app. You have two scenes—one for adding
items to your to-do list and one for viewing the list—and you can navigate between them. In the next module,
you’ll implement the ability for users to add a new to-do item and have it appear in the list.

Tutorial: Storyboards
Recap

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

101

 ● Incorporating the Data (page 103)

 ● Using Design Patterns (page 105)

 ● Working with Foundation (page 108)

 ● Writing a Custom Class (page 119)

 ● Tutorial: Add Data (page 126)

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

102

Implementing an App

After you implement your app’s behavior, you create a data model to support your app’s interface. An app’s
data model defines the way you maintain data in your app. Data models can range from a basic dictionary of
objects to complex databases. A good data model makes it easier to build a scalable app, improve functionality,
and make changes to your features.

Your app’s data model is composed of your data structures and (optionally) custom business logic needed to
keep that data in a consistent state. You never want to design your data model in total isolation from your
app’s user interface. You do, however, want to implement your data model objects separately, without relying
on the presence of specific views or view controllers. When you keep your data separate from your user interface,
you’ll find it easier to implement a universal app—one that can run on both iPad and iPhone—and easier to
reuse portions of your code later.

Designing Your Model
If you simply need to store a small amount of data, Foundation framework classes may be your best option.
Research existing Foundation classes to see what behaviors are available for you to use instead of attempting
to implement the same thing on your own. For example, if your app only needs to keep track of a list of strings,
you can rely on NSArray and NSString to do the job for you. You’ll learn more about these and other
Foundation classes in Working with Foundation (page 108).

If your data model requires custom business logic in addition to just storing data, you can write a custom class.
Consider how you can incorporate existing framework classes into the implementation of your own classes.
It’s beneficial to use existing framework classes within your custom classes instead of trying to reinvent them.
For example, a custom class might use NSMutableArray to store information—but define its own features
for working with that information.

When you design your data model, ask yourself these questions:

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

103

Incorporating the Data

Howwill the user use your app, andwhat types of data do you need to store? Make sure your model reflects
the app’s content and purpose. Even though the user doesn’t interact with the data directly, there should be
a clear correlation between the interface and the data. Whether you’re storing text, documents, large images,
or another type of information, design your data model to handle that particular type of content appropriately.

What data structures can you use? Determine where you can use framework classes and where you need to
define classes with custom functionality.

How will you supply data to the user interface? Your model shouldn’t communicate directly with your
interface. To handle the interaction between the model and the interface, you’ll need to add logic to your
controllers.

Implementing Your Model
In Tutorial: Storyboards (page 60), you started working with the Objective-C programming language. Although
this guide teaches you how to build a simple app, you’ll want to become familiar with the language before
writing your own fully functional app.

Some people learn the concepts by reading Programmingwith Objective-C and then writing a number of small
test apps to solidify their understanding of the language and to practice writing good code. Others jump right
into programming and look for more information when they don’t know how to accomplish something. If you
prefer this approach, keep Programming with Objective-C as a reference and make it an exercise to learn
concepts and apply them to your app as you develop it.

The most important goal in developing your first data model is to get something that works. Think carefully
about the structure of your data model, but don’t worry about making it perfect. Don’t be afraid to iterate and
refine your model after you begin implementing it.

Incorporating Real Data
When you first test your data model, you may want to use static or fake data until you know the model is
assembled and connected properly. After you’ve defined a working data model, you can pull real data into
your app.

Incorporating the Data
Implementing Your Model

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

104

A design pattern solves a common software engineering problem. Patterns are abstract designs, not code. You
use them to help you define the structure of your data model and its interaction with the rest of your app.
When you adopt a design, you adapt its general pattern to your specific needs. No matter what type of app
you’re creating, it’s good to know the fundamental design patterns used in the frameworks. Understanding
design patterns helps you use frameworks more effectively and allows you to write apps that are more reusable,
more extensible, and easier to change.

MVC
Model-View-Controller (MVC) is central to a good design for any iOS app. MVC assigns the objects in an app to
one of three roles: model, view, or controller. In this pattern, models keep track of your app’s data, views display
your user interface and make up the content of an app, and controllers manage your views. By responding to
user actions and populating views with content from the data model, controllers serve as a gateway for
communication between the model and views.

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

105

Using Design Patterns

As you’ve built your ToDoList app, you’ve followed an MVC-centric design. The interface you built in storyboards
makes up the view layer. AddToDoItemViewController and ToDoListTableViewController are the
controllers that manage your views. In Tutorial: Add Data (page 126), you’ll be incorporating a data model to
work with the views and controllers in your app. When you begin designing your own app, it’s important to
keep MVC at the center of your design.

Target-Action
Target-action is a conceptually simple design in which one object sends a message to another object when
a specific event occurs. The action message is a selector defined in source code, and the target—the object
that receives the message—is an object capable of performing the action, typically a view controller. The object
that sends the action message is usually a control—such as a button, slider, or switch—that can trigger an
event in response to user interaction such as tap, drag, or value change.

For example, imagine that you want to restore default settings in your app whenever a user taps the Restore
Defaults button (which you create in your user interface). First, you implement an action, restoreDefaults:,
to perform the logic to restore default settings. Next, you register the button’s Touch Up Inside event to send
the restoreDefaults: action message to the view controller that implements that method.

You’ve already used target-action in your ToDoList app. When a user taps the Save button in the
AddToDoItemViewController, it triggers the unwindToList: action. In this case, the Save button is the
object sending the message, the target object is the ToDoListTableViewController, the action message
is unwindToList:, and the event that triggers the action message to be sent is a user tapping the Save button.
Target-action is a powerful mechanism for defining interaction and sending information between different
parts of your app.

Using Design Patterns
Target-Action

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

106

Delegation
Delegation is a simple and powerful pattern in which one object in an app acts on behalf of, or in coordination
with, another object. The delegating object keeps a reference to the other object—the delegate—and at the
appropriate time, the delegating object sends a message to the delegate. The message informs the delegate
of an event that the delegating object is about to handle or has just handled. The delegate may respond to
the message by updating the appearance (or state) of itself or of other objects in the app, and in some cases
it will return a value that affects how an impending event is handled.

delegation.eps
Streamline Your App with Design Patterns
Apple, Inc.
window.tif reduced to 25%

The delegate pattern is prevalent in existing framework classes, but you can also implement delegation between
two custom objects in an app. A common design uses delegation to allow a child view controller to communicate
a value (typically a user-entered value) to its parent view controller.

You haven’t worked with delegation yet, but in Tutorial: Add Data (page 126), you’ll see an example of it when
you add additional behavior to your ToDoListTableViewController class.

These are a few of the most common design patterns that you’ll encounter during iOS development, but there
are many more. As you learn more about Objective-C, you’ll spot other design patterns that you can apply in
your app.

Using Design Patterns
Delegation

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

107

As you begin writing Objective-C code for your app, you’ll find many frameworks that you can take advantage
of. Of particular importance is the Foundation framework, which provides basic services for all apps. The
Foundation framework includes value classes representing basic data types such as strings and numbers, as
well as collection classes for storing other objects. You’ll be relying on value and collection classes to write
much of the code for your ToDoList app.

Value Objects
The Foundation framework provides classes that generate value objects for strings, binary data, dates and
times, numbers, and other values.

A value object is an object that encapsulates a primitive value (of a C data type) and provides services related
to that value. You frequently encounter value objects as the parameters and return values of methods and
functions that your app calls. Different parts of a framework—or even different frameworks—can exchange
data by passing value objects.

Some examples of value objects in the Foundation framework are:

NSString and NSMutableString

NSData and NSMutableData

NSDate

NSNumber

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

108

Working with Foundation

NSValue

Because value objects represent scalar values, you can use them in collections and wherever else objects are
required. Value objects have an advantage over the primitive types they encapsulate: They let you perform
certain operations on the encapsulated value simply and efficiently. The NSString class, for example, has
methods for searching for and replacing substrings, for writing strings to files or (preferably) URLs, and for
constructing file-system paths.

You create a value object from data of a primitive type. The NSNumber class provides an example of this
approach.

int n = 5; // Value assigned to primitive type

NSNumber *numberObject = [NSNumber numberWithInt:n]; // Value object created from
primitive type

Later, you can access the encapsulated data from the object.

int y = [numberObject intValue]; // Encapsulated value obtained from value object
(y == n)

Most value classes create their instances by declaring both initializers and class factory methods. Class factory
methods—implemented by a class as a convenience for clients—combine allocation and initialization in one
step and return the created object. For example, the NSString class declares a string class method that
allocates and initializes a new instance of the class and returns it to your code.

NSString *string = [NSString string];

In addition to creating value objects and letting you access their encapsulated values, most value classes
provide methods for simple operations such as object comparison.

Strings
Objective-C and C support the same conventions for specifying strings: Single characters are enclosed by single
quotes, and strings of characters are surrounded by double quotes. But Objective-C frameworks typically don’t
use C strings. Instead, they use NSString objects.

Working with Foundation
Value Objects

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

109

The NSString class provides an object wrapper for strings, offering advantages such as built-in memory
management for storing arbitrary-length strings, support for different character encodings (particularly Unicode),
and utilities for string formatting. Because you commonly use such strings, Objective-C provides a shorthand
notation for creating NSString objects from constant values. To use this NSString literal, just precede a
double-quoted string with the at sign (@), as shown in the following examples:

// Create the string "My String" plus newline.

NSString *myString = @"My String\n";

// Create the formatted string "1 String".

NSString *anotherString = [NSString stringWithFormat:@"%d %@", 1, @"String"];

// Create an Objective-C string from a C string.

NSString *fromCString = [NSString stringWithCString:"A C string"
encoding:NSUTF8StringEncoding];

Numbers
Objective-C offers a shorthand notation for creating NSNumber objects, removing the need to call initializers
or class factory methods to create such objects. Simply precede the numeric value with the at sign (@) and
optionally follow it with a value type indicator. For example, you can create NSNumber objects encapsulating
an integer value and a double value:

NSNumber *myIntValue = @32;

NSNumber *myDoubleValue = @3.22346432;

You can even use NSNumber literals to create encapsulated Boolean and character values.

NSNumber *myBoolValue = @YES;

NSNumber *myCharValue = @'V';

You can create NSNumber objects representing unsigned integers, long integers, long long integers, and float
values by appending the letters U, L, LL, and F, respectively, to the notated value. For example, to create an
NSNumber object encapsulating a float value, you can write:

NSNumber *myFloatValue = @3.2F;

Working with Foundation
Value Objects

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

110

Collection Objects
Most collection objects in Objective-C code are instances of a basic collection class—NSArray, NSSet, and
NSDictionary. Collection classes are used to manage groups of objects, so any item you want to add to a
collection must be an instance of an Objective-C class. If you need to add a scalar value, you must first create
a suitable NSNumber or NSValue instance to represent it.

Any object you add to a collection will be kept alive at least as long as the collection is kept alive. That’s because
collection classes use strong references to keep track of their contents. In addition to keeping track of their
contents, each collection class makes it easy to perform certain tasks, such as enumeration, accessing specific
items, or finding out whether a particular object is part of the collection.

The contents of the NSArray, NSSet, and NSDictionary classes are set at creation. Because their contents
can’t be changed over time, these classes are called immutable. Each one also has a subclass that’s mutable to
allow you to add or remove objects at will. Different types of collections organize their contained objects in
distinctive ways:

 ● NSArray and NSMutableArray. An array is an ordered collection of objects. You access an object by
specifying its position (that is, its index) in the array. The first element in an array is at index 0 (zero).

 ● NSSet and NSMutableSet. A set stores an unordered collection of objects, with each object occurring
only once. You generally access objects in the set by applying tests or filters to objects in the set.

 ● NSDictionary and NSMutableDictionary. A dictionary stores its entries as key-value pairs; the key is
a unique identifier, usually a string, and the value is the object you want to store. You access this object
by specifying the key.

Arrays
An array (NSArray) represents an ordered collection of objects. The only requirement is that each item be an
Objective-C object—there’s no requirement for each object to be an instance of the same class.

To maintain order in the array, each element is stored at a zero-based index.

...
NSObject

@"Hello, World!"
NSString

@42
NSNumber

...
NSValue

0

1

2

3

Working with Foundation
Collection Objects

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

111

Creating Arrays
You create an array through initialization or class factory methods. A variety of different initialization and factory
methods are available, depending on the number of objects.

+ (id)arrayWithObject:(id)anObject;

+ (id)arrayWithObjects:(id)firstObject, ...;

- (id)initWithObjects:(id)firstObject, ...;

Because the arrayWithObjects: and initWithObjects: methods both take a nil-terminated, variable
number of arguments, you must include nil as the last value.

id firstObject = @"someString";

id secondObject = @"secondString";

id thirdObject = @"anotherString";

NSArray *someArray =

[NSArray arrayWithObjects:firstObject, secondObject, thirdObject, nil];

The preceding example creates an array with three objects. The first object, firstObject, will have an array
index of 0; the last object, thirdObject, will have an index of 2.

It’s possible to create an array literal using a compact syntax.

NSArray *someArray = @[firstObject, secondObject, thirdObject];

When using this syntax, don’t terminate the list of objects with nil—in fact, nil is an invalid value. For example,
you’ll get an exception at runtime if you try to execute the following code:

id nilObject = nil;

NSArray *someArray = @[firstObject, nilObject];

// exception: "attempt to insert nil object"

Querying Array Objects
After you’ve created an array, you can query it for information—such as how many objects it has or whether
it contains a given item.

NSUInteger numberOfItems = [someArray count];

Working with Foundation
Collection Objects

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

112

if ([someArray containsObject:secondObject]) {

...

}

You can also query the array for an item at a given index. If you attempt to request an invalid index, you’ll get
an out-of-bounds exception at runtime. To avoid getting an exception, always check the number of items first.

if ([someArray count] > 0) {

NSLog(@"First item is: %@", [someArray objectAtIndex:0]);

}

This example checks to see whether the number of items is greater than zero. If it is, the Foundation function
NSLog logs a description of the first item, which has an index of 0.

As an alternative to using objectAtIndex:, query the array using a subscript syntax, which is just like accessing
a value in a standard C array. The previous example can be rewritten like this:

if ([someArray count] > 0) {

NSLog(@"First item is: %@", someArray[0]);

}

Sorting Array Objects
The NSArray class offers a variety of methods to sort its collected objects. Because NSArray is immutable,
each method returns a new array containing the items in the sorted order.

For example, you can sort an array of strings by calling compare: on each string.

NSArray *unsortedStrings = @[@"gamma", @"alpha", @"beta"];

NSArray *sortedStrings =

[unsortedStrings sortedArrayUsingSelector:@selector(compare:)];

Array Mutability
Although the NSArray class itself is immutable, it can nevertheless contain mutable objects. For example, if
you create an immutable array that contains a mutable string, like this:

Working with Foundation
Collection Objects

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

113

NSMutableString *mutableString = [NSMutableString stringWithString:@"Hello"];

NSArray *immutableArray = @[mutableString];

there’s nothing to stop you from mutating the string.

if ([immutableArray count] > 0) {

id string = immutableArray[0];

if ([string isKindOfClass:[NSMutableString class]]) {

[string appendString:@" World!"];

}

}

If you want to add or remove objects from an array after initial creation, use NSMutableArray, which adds a
variety of methods to add, remove, or replace one or more objects.

NSMutableArray *mutableArray = [NSMutableArray array];

[mutableArray addObject:@"gamma"];

[mutableArray addObject:@"alpha"];

[mutableArray addObject:@"beta"];

[mutableArray replaceObjectAtIndex:0 withObject:@"epsilon"];

This example creates an array made up of the objects @"epsilon", @"alpha", and @"beta".

It’s also possible to sort a mutable array in place, without creating a secondary array.

[mutableArray sortUsingSelector:@selector(caseInsensitiveCompare:)];

In this case, the contained items are sorted into the ascending, case-insensitive order @"alpha", @"beta",
and @"epsilon".

Working with Foundation
Collection Objects

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

114

Sets
A set (NSSet) object is similar to an array, but it maintains an unordered group of distinct objects.

...
NSObject

@"Hello, World!"
NSString

@42
NSNumber

...
NSValue

Because sets don’t maintain order, they offer faster performance than arrays do when it comes to testing for
membership.

Because the basic NSSet class is immutable, its contents must be specified at creation, using either an initializer
or a class factory method.

NSSet *simpleSet =

[NSSet setWithObjects:@"Hello, World!", @42, aValue, anObject, nil];

As with NSArray, the initWithObjects: and setWithObjects: methods both take a nil-terminated,
variable number of arguments. The name of the mutable NSSet subclass is NSMutableSet.

Sets store only one reference to an individual object, even if you try adding an object more than once.

NSNumber *number = @42;

NSSet *numberSet =

[NSSet setWithObjects:number, number, number, number, nil];

// numberSet only contains one object

Dictionaries
Rather than simply maintaining an ordered or unordered collection of objects, a dictionary (NSDictionary)
stores objects associated with given keys, which can then be used for retrieval.

Working with Foundation
Collection Objects

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

115

The best practice is to use string objects as dictionary keys.

Keys

Values
...

@"anObject"

NSObject

@"Hello, World!"

@"helloString"

NSString

@42

@"magicNumber"

NSNumber

...

@"aValue"

NSValue

Although you can use other objects as keys, keep in mind that each key is copied for use by a dictionary and
so must support NSCopying. If you want to use key-value coding, however, you must use string keys for
dictionary objects. (To learn more, see Key-Value Coding Programming Guide).

Creating Dictionaries
You can create dictionaries through initialization, or you can use class factory methods, like this:

NSDictionary *dictionary = [NSDictionary dictionaryWithObjectsAndKeys:

someObject, @"anObject",

@"Hello, World!", @"helloString",

@42, @"magicNumber",

someValue, @"aValue",

nil];

For the dictionaryWithObjectsAndKeys: and initWithObjectsAndKeys: methods, each object is
specified before its key, and the list of objects and keys must be nil-terminated.

Objective-C offers a concise syntax for dictionary literal creation.

NSDictionary *dictionary = @{

@"anObject" : someObject,

@"helloString" : @"Hello, World!",

@"magicNumber" : @42,

@"aValue" : someValue

};

For dictionary literals, the key is specified before its object, and the list of objects and keys is not nil-terminated.

Working with Foundation
Collection Objects

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

116

Querying Dictionaries
After you’ve created a dictionary, you can ask it for the object stored against a given key.

NSNumber *storedNumber = [dictionary objectForKey:@"magicNumber"];

If the object isn’t found, the objectForKey: method returns nil.

There’s also a subscript syntax alternative to using objectForKey:.

NSNumber *storedNumber = dictionary[@"magicNumber"];

Dictionary Mutability
If you need to add or remove objects from a dictionary after creation, use the NSMutableDictionary subclass.

[dictionary setObject:@"another string" forKey:@"secondString"];

[dictionary removeObjectForKey:@"anObject"];

Representing nil with NSNull
It’s not possible to add nil to the collection classes described in this section because nil in Objective-C means
“no object.” If you need to represent “no object” in a collection, use the NSNull class.

NSArray *array = @[@"string", @42, [NSNull null]];

With NSNull, the null method always returns the same instance. Classes that behave in this way are called
singleton classes. You can check to see whether an object in an array is equal to the shared NSNull instance
like this:

for (id object in array) {

if (object == [NSNull null]) {

NSLog(@"Found a null object");

}

}

Working with Foundation
Collection Objects

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

117

Although the Foundation framework contains many more capabilities than are described here, you don’t need
to know every single detail right away. If you do want to learn more about Foundation, take a look at Foundation
Framework Reference . For now, you have enough information to continue implementing your ToDoList app,
which you’ll do by writing a custom data class.

Working with Foundation
Collection Objects

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

118

As you develop iOS apps, you’ll find many occasions when you need to write your own custom classes. Custom
classes are useful when you need to package custom behavior together with data. In a custom class, you can
define your own behaviors for storing, manipulating, and displaying your data.

For example, consider the World Clock tab in the iOS Clock app. The cells in this table view need to display
more content than a standard table view cell. This is a good opportunity to implement a subclass that extends
the behavior of UITableViewCell to let you display additional custom data for a given table view cell. If you
were designing this custom class, you might add outlets for a label to display the hours ahead information
and an image view to display the custom clock on the right of the cell.

This chapter teaches you what you need to know about Objective-C syntax and class structure to finish
implementing the behavior of your ToDoList app. It discusses the design of ToDoItem, the custom class that
will represent a single item on your to-do list. In the third tutorial, you’ll actually implement this class and add
it to your app.

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

119

Writing a Custom Class

Declaring and Implementing a Class
The specification of a class in Objective-C requires two distinct pieces: the interface and the implementation.
The interface specifies exactly how a given type of object is intended to be used by other objects. In other
words, it defines the public interface between instances of the class and the outside world. The implementation
includes the executable code for each method declared in the interface.

An object should be designed to hide the details of its internal implementation. In Objective-C, the interface
and implementation are usually placed in separate files so that you need to make only the interface public. As
with C code, you define header files and source files to separate public declarations from the implementation
details of your code. Interface files have a .h extension, and implementation files have a .m extension. (You’ll
actually create these files for the ToDoItem class in Tutorial: Add Data (page 126)—for now, just follow along
as all of the pieces are introduced.)

Interface
The Objective-C syntax used to declare a class interface looks like this:

@interface ToDoItem : NSObject

@end

This example declares a class named ToDoItem, which inherits from NSObject.

The public properties and behavior are defined inside the @interface declaration. In this example, nothing
is specified beyond the superclass, so the only behavior expected to be available on instances of ToDoItem
is the behavior inherited from NSObject. All objects are expected to have a minimum behavior, so by default,
they must inherit from NSObject (or one of its subclasses).

Implementation
The Objective-C syntax used to declare a class implementation looks like this:

#import "ToDoItem.h"

@implementation ToDoItem

@end

Writing a Custom Class
Declaring and Implementing a Class

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

120

If you declare any methods in the class interface, you’ll need to implement them inside this file.

Properties Store an Object’s Data
Consider what information the to-do item needs to hold. You probably need to know its name, when it was
created, and whether it’s been completed. In your custom ToDoItem class, you’ll store this information in
properties.

Declarations for these properties reside inside the interface file (ToDoItem.h). Here’s what they look like:

@interface ToDoItem : NSObject

@property NSString *itemName;

@property BOOL completed;

@property NSDate *creationDate;

@end

In this example, the ToDoItem class declares three public properties. Unless you specify otherwise, other
objects can both read and change the values of the properties.

To declare a property read-only, you specify that in a property attribute. For example, if you don’t want the
creation date of ToDoItem to be changeable, you might update the ToDoItem class interface to look like this:

@interface ToDoItem : NSObject

@property NSString *itemName;

@property BOOL completed;

@property (readonly) NSDate *creationDate;

@end

Properties can be private or public. Sometimes it makes sense to make a property private so that other classes
can’t see or access it. For example, if you want to keep track of a property that represents the date an item was
marked as completed without giving other classes access to this information, you make the property private
by putting it in a class extension that you add after the #import statement the top of your implementation
file (ToDoItem.m), as shown here.

Writing a Custom Class
Properties Store an Object’s Data

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

121

#import "ToDoItem.h"

@interface ToDoItem ()

@property NSDate *completionDate;

@end

@implementation ToDoItem

@end

You access properties using getters and setters. A getter returns the value of a property, and a setter changes
it. A common syntactical shorthand for accessing getters and setters is dot notation. For properties with read
and write access, you can use dot notation for both getting and setting a property’s value. If you have an object
toDoItem of class ToDoItem, you can do the following:

toDoItem.itemName = @"Buy milk"; //Sets the value of itemName

NSString *selectedItemName = toDoItem.itemName; //Gets the value of itemName

Methods Define an Object’s Behavior
Methods define what an object can do. A method is a piece of code that you define to perform a task or
subroutine in a class. Methods have access to data stored in the class and can use that information to perform
an operation.

For example, to give a to-do item (ToDoItem) the ability to get marked as complete, you can add a
markAsCompleted method to the class interface. Later, you’ll implement this method’s behavior in the class
implementation, as described in Implementing Methods (page 124).

@interface ToDoItem : NSObject

@property NSString *itemName;

@property BOOL completed;

@property (readonly) NSDate *creationDate;

- (void)markAsCompleted;

Writing a Custom Class
Methods Define an Object’s Behavior

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

122

@end

The minus sign (-) at the front of the method name indicates that it is an instancemethod, which can be called
on an object of that class. This minus sign differentiates it from class methods, which are denoted with a plus
sign (+). Class methods can be called on the class itself. A common example of class methods are class factory
methods, which you learned about in Working with Foundation (page 108). You can also use class methods to
access a piece of shared information associated with the class.

The void keyword is used inside parentheses at the beginning of the declaration to indicate that the method
doesn’t return a value. In this case, the markAsCompleted method takes in no parameters. Parameters are
discussed in more detail in Method Parameters (page 123).

Method Parameters
You declare methods with parameters to pass along a piece of information when you call a method.

For example, you can revise the markAsCompletedmethod from the previous code snippet to take in a single
parameter that determines whether the item is marked completed or uncompleted. This way, you can toggle
the completion state of the item instead of setting it only as completed.

@interface ToDoItem : NSObject

@property NSString *itemName;

@property BOOL completed;

@property (readonly) NSDate *creationDate;

- (void)markAsCompleted:(BOOL)isComplete;

@end

Now, your method takes in one parameter, isComplete, which is of type BOOL.

When you refer to a method with a parameter by name, you include the colon as part of the method name,
so the name of the updated method is now markAsCompleted:. If a method has multiple parameters, the
method name is broken up and interspersed with the parameter names. If you wanted to add another parameter
to this method, its declaration would look like this:

- (void)markAsCompleted:(BOOL)isComplete onDate:(NSDate *)date;

Writing a Custom Class
Methods Define an Object’s Behavior

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

123

Here, the method’s name is written as markAsCompleted:onDate:. The names isComplete and date are
used in the implementation to access the values supplied when the method is called, as if these names were
variables.

Implementing Methods
Method implementations use braces to contain the relevant code. The name of the method must be identical
to its counterpart in the interface file, and the parameter and return types must match exactly.

Here is a simple implementation of the markAsCompleted: method discussed earlier:

@implementation ToDoItem

- (void)markAsCompleted:(BOOL)isComplete {

self.completed = isComplete;

}

@end

Like properties, methods can be private or public. Public methods are declared in the public interface and so
can be seen and called by other objects. Their corresponding implementation resides in the implementation
file and can’t be seen by other objects. Private methods have only an implementation and are internal to the
class, meaning they’re only available to call inside the class implementation. This is a powerful mechanism for
adding internal behavior to a class without allowing other objects access to it.

For example, say you want to keep a to-do item’s completionDate updated. If the to-do item gets marked
as completed, set completionDate to the current date. If it gets marked as uncompleted, set completionDate
to nil, because it hasn’t been completed yet. Because updating the to-do item’s completionDate is a
self-contained task, the best practice is to write its own method for it. However, it’s important to make sure
that other objects can’t call this method—otherwise, another object could set the to-do item’s completionDate
to anything at any time. For this reason, you make this method private.

To accomplish this, you update the implementation of ToDoItem to include the private method
setCompletionDate that gets called insidemarkAsCompleted: to update the to-do item’scompletionDate
whenever it gets marked as completed or uncompleted. Notice that you’re not adding anything to the interface
file, because you don’t want other objects to see this method.

@implementation ToDoItem

- (void)markAsCompleted:(BOOL)isComplete {

self.completed = isComplete;

[self setCompletionDate];

Writing a Custom Class
Methods Define an Object’s Behavior

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

124

}

- (void)setCompletionDate {

if (self.completed) {

self.completionDate = [NSDate date];

} else {

self.completionDate = nil;

}

}

@end

At this point, you’ve designed a basic representation of a to-do list item using the ToDoItem class. ToDoItem
stores information about itself—name, creation date, completion state—in the form of properties, and it defines
what it can do—get marked as completed or uncompleted—using a method. Now it’s time to move on to the
next tutorial and add this class to your app.

Writing a Custom Class
Methods Define an Object’s Behavior

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

125

SwiftObjective-C
This tutorial builds on the project you created in the second tutorial (Tutorial: Storyboards (page 60)). You’ll
apply what you learned about using design patterns, working with Foundation, and writing a custom class to
add support for dynamic data to your ToDoList app.

This tutorial teaches you how to:

 ● Work with common Foundation classes

 ● Create custom data classes

 ● Implement a data source and delegate protocol

 ● Pass data between view controllers

After you complete all the steps in this tutorial, you’ll have an app that looks something like this:

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

126

Tutorial: Add Data

Tutorial: Add Data

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

127

Create a Data Class
To get started, open your existing project in Xcode.

At this point, you have an interface and a navigation scheme for your ToDoList app using storyboards. Now,
it’s time to add data storage and behavior with model objects.

The goal of your app is to create a list of to-do items, so first you’ll create a custom class, ToDoItem, to represent
an individual to-do item. As you recall, the ToDoItem class was discussed in Writing a Custom Class (page 119).

To create the ToDoItem class

1. Choose File > New > File (or press Command-N).

A dialog appears that prompts you to choose a template for your new file.

2. On the left, select Source under iOS.

3. Select Cocoa Touch Class, and click Next.

4. In the Class field, type ToDoItem.

Tutorial: Add Data
Create a Data Class

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

128

5. Choose NSObject from the “Subclass of” pop-up menu.

6. Click Next.

The save location defaults to your project directory.

The Group option defaults to your app name, ToDoList.

In the Targets section, your app is selected and the tests for your app are unselected.

7. Leave these defaults as they are, and click Create.

The ToDoItem class is straightforward to implement. It has properties for its name, creation date, and completion
status. Go ahead and add these properties to the ToDoItem class interface.

To configure the ToDoItem class

1. In the project navigator, select ToDoItem.h.

Tutorial: Add Data
Create a Data Class

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

129

2. Add the following properties to the interface so that the declaration looks like this:

@interface ToDoItem : NSObject

@property NSString *itemName;

@property BOOL completed;

@property (readonly) NSDate *creationDate;

@end

Checkpoint: Build your project by choosing Product > Build (or pressing Command-B). You’re not using your
new class for anything yet, but building it gives the compiler a chance to verify that you haven’t made any
typing mistakes. If you have, fix them by reading through the warnings or errors that the compiler provides,
and then look back over the instructions in this tutorial to make sure everything looks the way it’s described
here.

Load the Data
You now have a class from which you can create and store the data for individual to-do items. You also need
to keep a list of those items. The natural place to track this is in the ToDoListTableViewController
class—view controllers are responsible for coordinating between the model and the view, so they need a
reference to the model.

The Foundation framework includes a class, NSMutableArray, that works well for tracking lists of items. It’s
important to use a mutable array so that you can add items to the array. The immutable version, NSArray,
doesn’t let you add items to it after it’s initialized.

To use an array you need to both declare it and create it. You do this by allocating and initializing the array.

To allocate and initialize the array

1. In the project navigator, select ToDoListTableViewController.m.

Because the array of items is an implementation detail of your table view controller, you declare it in the
.m file instead of the .h file. This makes it private to your custom class.

2. Add the following property to the interface category Xcode created in your custom table view controller
class. The declaration should look like this:

Tutorial: Add Data
Load the Data

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

130

@interface ToDoListTableViewController ()

@property NSMutableArray *toDoItems;

@end

3. Find the viewDidLoad method. The template implementation looks like this:

- (void)viewDidLoad {

[super viewDidLoad];

// Uncomment the following line to preserve selection between
presentations.

// self.clearsSelectionOnViewWillAppear = NO;

// Uncomment the following line to display an Edit button in the
navigation bar for this view controller.

// self.navigationItem.rightBarButtonItem = self.editButtonItem;

}

The template implementation of this method includes comments that were inserted by Xcode when it
created ToDoListTableViewController. Code comments like this provide helpful hints and contextual
information in source code files, but you don’t need them for this tutorial. Feel free to delete the comments.

4. Update the method implementation to allocate and initialize the toDoItems array in the viewDidLoad
method:

- (void)viewDidLoad {

[super viewDidLoad];

self.toDoItems = [[NSMutableArray alloc] init];

}

At this point, you have an array that you can add items to. You’ll add a few initial items in a separate method,
loadInitialData, which you’ll call from viewDidLoad. This code goes in its own method because it’s a
modular task, and you can improve code readability by making this method separate. In a real app, this method
would load the data from a persistent store, such as a file. For now, you’ll create some test data to experiment
with.

Tutorial: Add Data
Load the Data

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

131

Create an item as you created the array: Allocate and initialize. Then, give the item a name. This name will be
shown in the table view. Do this for a couple of items.

To load initial data

1. In ToDoListTableViewController.m, add a new method called loadInitialData below the
@implementation line.

- (void)loadInitialData {

}

2. In this method, create a few list items, and add them to the array.

- (void)loadInitialData {

ToDoItem *item1 = [[ToDoItem alloc] init];

item1.itemName = @"Buy milk";

[self.toDoItems addObject:item1];

ToDoItem *item2 = [[ToDoItem alloc] init];

item2.itemName = @"Buy eggs";

[self.toDoItems addObject:item2];

ToDoItem *item3 = [[ToDoItem alloc] init];

item3.itemName = @"Read a book";

[self.toDoItems addObject:item3];

}

3. Update the implementation of the viewDidLoad method to call the loadInitialData method.

- (void)viewDidLoad {

[super viewDidLoad];

self.toDoItems = [[NSMutableArray alloc] init];

[self loadInitialData];

}

Tutorial: Add Data
Load the Data

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

132

Checkpoint: Build your project by choosing Product > Build. You should see numerous errors for the lines of
your loadInitialData method. The key to what’s gone wrong is the first line, which should say “Use of
undeclared identifier ToDoItem.” This means that the compiler doesn’t know about your ToDoItem class when
it’s compiling ToDoListTableViewController. Compilers are very particular and need to be told explicitly
what to pay attention to.

To tell the compiler to pay attention to your ToDoItem class

1. Find the #import "ToDoListTableViewController.h" line near the top of the
ToDoListTableViewController.m file.

2. Add the following line immediately below it:

#import "ToDoItem.h"

Checkpoint: Build your project by choosing Product > Build. It should build without errors.

Display the Data
At this point, your custom table view controller subclass, ToDoListTableViewController, has a mutable
array that’s prepopulated with some sample to-do items. Now you need to display the data in the table view
that’s managed by this class.

To display dynamic data, a table view needs two important helpers: a data source and a delegate. A table view
data source, as implied by its name, supplies the table view with the data it needs to display. A table view
delegate helps the table view manage cell selection, row heights, and other aspects related to displaying the
data. By default, UITableViewController—and any of its subclasses—adopts the necessary protocols to
make the table view controller both a data source (UITableViewDataSource protocol) and a delegate
(UITableViewDelegate protocol) for its associated table view. Your job is to implement the appropriate
protocol methods in your table view controller subclass so that your table view has the correct behavior.

A functioning table view requires three table view data source methods. The first of these is
numberOfSectionsInTableView:, which tells the table view how many sections to display. Sections provide
a way of visually grouping cells within table views, especially table views with a lot of data. For a simple table
view like the one in the ToDoList app, you just need the table view to display a single section, so the
implementation of the numberOfSectionsInTableView: data source method is straightforward.

To display a section in your table view

1. In the project navigator, select ToDoListTableViewController.m.

Tutorial: Add Data
Display the Data

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

133

2. Find the numberOfSectionsInTableView: data source method. The template implementation looks
like this:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {

#warning Potentially incomplete method implementation.

// Return the number of sections.

return 0;

}

3. You want a single section, so change the return value from 0 to 1, and remove the warning line.

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {

// Return the number of sections.

return 1;

}

You removed the warning line that says “Potentially incomplete method implementation” because you’ve
completed the implementation.

The next data source method, tableView:numberOfRowsInSection:, tells the table view how many rows
to display in a given section. You have a single section in your table, and each to-do item should have its own
row in that section. That means that the number of rows should be the number of ToDoItem objects in your
toDoItems array.

To return the number of rows in your table view

1. In ToDoListTableViewController.m, find the tableView:numberOfRowsInSection: data source
method. The template implementation looks like this:

- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section {

#warning Incomplete method implementation.

// Return the number of rows in the section.

return 0;

}

You want to return the number of to-do items you have. Fortunately, NSArray has a handy method called
count that returns the number of items in the array, so the number of rows is [self.toDoItems count].

Tutorial: Add Data
Display the Data

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

134

2. Change the tableView:numberOfRowsInSection: data source method to return the appropriate
number of rows, and remove the warning line.

- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section {

// Return the number of rows in the section.

return [self.toDoItems count];

}

The last data source method, tableView:cellForRowAtIndexPath:, asks for a cell to display for a given
row. Each row in a table view has one cell, and that cell determines the content that appears in that row and
how that content is laid out.

Until now, you’ve worked with code only, but the cell to display for a row is very much part of your interface.
Fortunately, Xcode makes it easy to design custom cells in your storyboard. The first task is to tell the table
view that instead of using static content, it’s going to be using prototype cells with dynamic content.

To configure your table view to use prototype cells

1. In the project navigator, select Main.storyboard.

2. In the outline view, select Table View under To-Do List Scene.

3.
With the table view selected, open the Attributes inspector in the utility area.

4. In the Attributes inspector, change the table view’s Content field from Static Cells to Dynamic Prototypes.

Interface Builder takes the static cells you configured and converts them all into prototypes.

Prototype cells, as the name implies, are cells that are configured with text styles, colors, images, or other
attributes as you want them to be displayed but that get their data from the table view data source at runtime.
The data source will load a prototype cell for each row and then configure that cell to display the data for the
row.

To load the correct cell, the data source needs to know what it’s called, and that name must also be configured
in the storyboard.

While you’re setting the prototype cell name, you’ll also configure another property—the cell selection style,
which determines a cell’s appearance when a user taps it. You’ll set the cell selection style so that the cell won’t
be highlighted when a user taps it. This is the behavior you want your cells to have when a user taps an item
in the to-do list to mark it as completed or uncompleted—a feature you’ll implement later in this tutorial.

To configure the prototype cell

Tutorial: Add Data
Display the Data

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

135

1. Select the first table view cell in your table view.

2. In the Attributes inspector, locate the Identifier field and type ListPrototypeCell.

3. In the Attributes inspector, change the cell’s Selection field from Default to None.

4. In the outline view, select every cell besides the first one and delete them.

You only need one prototype cell from this point.

You could also change the font or other attributes of the prototype cell. The basic configuration is easy to work
with, so you’ll keep that.

The next step is to teach your data source how to configure the cell for a given row by implementing
tableView:cellForRowAtIndexPath:. For table views with a small number of rows, all rows may be
onscreen at once, so this method gets called for each row in your table. But table views with a large number
of rows display only a small fraction of their total items at a given time. It’s most efficient for table views to
only ask for the cells for rows that are being displayed, and that’s what tableView:cellForRowAtIndexPath:
allows the table view to do.

For any given row in the table view, you configure the cell by fetching the corresponding item in the toDoItems
array and then setting the cell’s text label to that item’s name.

To display cells in your table view

1. In the project navigator, select ToDoListTableViewController.m.

2. Find and uncomment the tableView:cellForRowAtIndexPath: data source method. (To uncomment
the method, remove the /* and */ characters surrounding it.)

After you do that, the template implementation looks like this:

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:@"reuseIdentifier"
forIndexPath:indexPath];

// Configure the cell...

return cell;

}

The template performs several tasks. It asks the table view for a cell with a placeholder identifier, adds a
comment about where code to configure the cell should go, and then returns the cell.

Tutorial: Add Data
Display the Data

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

136

To make this code work for your app, you’ll need to change the placeholder identifier to the one you set
in the storyboard and then add code to configure the cell.

3. Change the placeholder identifier to the identifier you set in your storyboard. To avoid typos, copy and
paste from the storyboard to the implementation file. The line of code that returns the cell should now
look like this:

UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:@"ListPrototypeCell"
forIndexPath:indexPath];

4. Immediately before the return statement, add the following lines of code:

ToDoItem *toDoItem = [self.toDoItems objectAtIndex:indexPath.row];

cell.textLabel.text = toDoItem.itemName;

These lines fetch the appropriate item in the toDoItems array and set the name of that item to display
in the cell.

Your tableView:cellForRowAtIndexPath: method should look like this:

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:@"ListPrototypeCell" forIndexPath:indexPath];

ToDoItem *toDoItem = [self.toDoItems objectAtIndex:indexPath.row];

cell.textLabel.text = toDoItem.itemName;

return cell;

}

Checkpoint: Run your app. The list of items you added in loadInitialData should show up as cells in your
table view.

Toggle Item Completion State
A to-do list isn’t much good if you can never mark items as completed. Now, you’ll add support for that. Table
views allow you to implement a simple interface where the completion state of an item toggles when the user
taps a cell. Specifically, a table view notifies its delegate when the user taps a cell. When the delegate receives
this notification, you’ll write code to respond to it in one of two ways:

Tutorial: Add Data
Toggle Item Completion State

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

137

 ● If the item in that cell has not been completed, then the code marks it as completed and displays the
completed item with a checkmark next to it.

 ● If the item in that cell has been completed, then the code marks it as uncompleted and removes the
checkmark next to it.

All you have to do is implement the tableView:didSelectRowAtIndexPath: delegate method to respond
to user taps and update your to-do list items accordingly.

To toggle an item as completed or uncompleted

1. In the project navigator, select ToDoListTableViewController.m.

2. Add the following lines to the end of the file, just above the @end line:

#pragma mark - Table view delegate

- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

}

Try typing the second line instead of just copying and pasting. You’ll find that code completion is one of
the great time-saving features of Xcode. When Xcode brings up the list of potential completions, scroll
through the list until you find the one you want and then press Return. Xcode inserts the whole line for
you.

3. In this method, you want to respond to a tap but not actually leave the cell selected. Add the following
code to deselect the cell immediately after selection:

[tableView deselectRowAtIndexPath:indexPath animated:NO];

4. Add this code line to search for the ToDoItem in your toDoItems array that corresponds to the cell that
was tapped.

ToDoItem *tappedItem = [self.toDoItems objectAtIndex:indexPath.row];

5. Toggle the completion state of the tapped item.

tappedItem.completed = !tappedItem.completed;

Tutorial: Add Data
Toggle Item Completion State

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

138

6. Tell the table view to reload the row whose data you just updated.

[tableView reloadRowsAtIndexPaths:@[indexPath]
withRowAnimation:UITableViewRowAnimationNone];

Your tableView:didSelectRowAtIndexPath: method should look like this:

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath {

[tableView deselectRowAtIndexPath:indexPath animated:NO];

ToDoItem *tappedItem = [self.toDoItems objectAtIndex:indexPath.row];

tappedItem.completed = !tappedItem.completed;

[tableView reloadRowsAtIndexPaths:@[indexPath]
withRowAnimation:UITableViewRowAnimationNone];

}

Checkpoint: Run your app. The list of items you added in loadInitialData is visible as cells in your table
view. But when you tap items, nothing seems to happen. Why not?

The reason is that you haven’t configured the table view cell to display the completion state of an item. To do
so, you need to go back to the tableView:cellForRowAtIndexPath: data source method and configure
the cell to display a checkmark when an item is completed.

Table view cells can have a cell accessory on the right side. By default, there’s no accessory selected; however,
you can change the cell to display a checkmark.

To display an item’s completion state

1. Go to the tableView:cellForRowAtIndexPath: method.

2. Add the following code just below the line that sets the text label of the cell:

if (toDoItem.completed) {

cell.accessoryType = UITableViewCellAccessoryCheckmark;

} else {

cell.accessoryType = UITableViewCellAccessoryNone;

}

This code checks the completion state of a to-do item and sets the cell accessory based on that.

Tutorial: Add Data
Toggle Item Completion State

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

139

Your tableView:cellForRowAtIndexPath: method should now look like this:

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:@"ListPrototypeCell" forIndexPath:indexPath];

ToDoItem *toDoItem = [self.toDoItems objectAtIndex:indexPath.row];

cell.textLabel.text = toDoItem.itemName;

if (toDoItem.completed) {

cell.accessoryType = UITableViewCellAccessoryCheckmark;

} else {

cell.accessoryType = UITableViewCellAccessoryNone;

}

return cell;

}

Checkpoint: Run your app. The list of items you added in loadInitialData is visible as cells in your table
view. When you tap an item, a checkmark should appear next to it. If you tap the same item again, the checkmark
disappears.

Add New Items
The final step in creating the to-do list app’s functionality is implementing the ability to add an item. When a
user enters an item name in the text field in the add-to-do-item scene and taps the Save button, you want
AddToDoItemViewController to create a new to-do item and pass it back to
ToDoListTableViewController to display in the to-do list.

First, you need to have a to-do item to configure. Give AddToDoItemViewController a property to hold
information about a new to-do item.

To add a to-do item property to AddToDoItemViewController

1. In the project navigator, select AddToDoItemViewController.h.

Because you’ll need to access the to-do item from your table view controller later on, it’s important to
make the to-do item property public. That’s why you declare it in the interface file,
AddToDoItemViewController.h, instead of in the implementation file,
AddToDoItemViewController.m.

Tutorial: Add Data
Add New Items

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

140

2. InAddToDoItemViewController.h, add an import declaration toToDoItem.h right below the#import
<UIKit/UIKit.h> line.

#import "ToDoItem.h"

3. Add a toDoItem property to the interface.

@interface AddToDoItemViewController : UIViewController

@property ToDoItem *toDoItem;

@end

To get the name of the new item, AddToDoItemViewController needs access to the contents of the text
field where the user enters the name. To do this, create a connection from AddToDoItemViewController.m
to the text field in your storyboard.

To connect the text field to the AddToDoItemViewController code

1. In the project navigator, select Main.storyboard.

2. In the outline view, select Add To-Do Item under Add To-Do Item Scene.

3. Click the Assistant button in the Xcode toolbar to open the assistant editor.

4. Change the assistant editor from Preview to Automatic > AddToDoItemViewController.m.

5. In your storyboard, select the text field.

Tutorial: Add Data
Add New Items

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

141

6. Control-drag from the text field on your canvas to the code display in the editor on the right, stopping
the drag at the line just below the @interface line in AddToDoItemViewController.m.

7. In the dialog that appears, for Name, type textField.

Tutorial: Add Data
Add New Items

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

142

Leave the rest of the options as they are. Your dialog should look like this:

8. Click Connect.

Xcode adds the necessary code to AddToDoItemViewController.m to store a pointer to the text field
and configures the storyboard to set up that connection.

Additionally, AddToDoItemViewController needs to know when to create a new to-do item. You want the
item to be created only if the Save button was tapped. To be able to determine when this happens, add the
Save button as an outlet in AddToDoItemViewController.m.

To connect the Save button to the AddToDoItemViewController code

1. In your storyboard, select the Save button.

Tutorial: Add Data
Add New Items

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

143

2. Control-drag from the Save button on your canvas to the code display in the editor on the right, stopping
the drag at the line just below your textField property in AddToDoItemViewController.m.

3. In the dialog that appears, for Name, type saveButton.

Tutorial: Add Data
Add New Items

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

144

Leave the rest of the options as they are. Your dialog should look like this:

4. Click Connect.

You now have a way to identify the Save button. Because you want to create an item when the Save button
is tapped, you need to know when that happens.

Recall that when the user taps either the Cancel or the Save button, it kicks off an unwind segue back to the
to-do list—that’s something you configured in the second tutorial. Before a segue executes, the system gives
the view controller involved a chance to prepare by calling prepareForSegue:. This is exactly the point at
which the view controller should check which one of the buttons got tapped, and if it was the Save button,
create a new to-do item. (If the Cancel button is tapped, you don’t need to do anything to save the item.)

To tell AddToDoItemViewController to create an item only when the user taps the Save button

1. In the project navigator, select AddToDoItemViewController.m.

If the assistant editor is still open, return to the standard editor by clicking the Standard button in the
Xcode toolbar.

2. Find and uncomment the prepareForSegue: data source method. (To uncomment the method, remove
the /* and */ characters surrounding it.)

After you do that, the template implementation looks like this:

Tutorial: Add Data
Add New Items

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

145

#pragma mark - Navigation

// In a storyboard-based application, you will often want to do a little
preparation before navigation

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {

// Get the new view controller using [segue destinationViewController].

// Pass the selected object to the new view controller.

}

3. In the method, see whether the Save button was tapped.

If the Save button wasn’t tapped, instead of saving the item, you want the method to return without doing
anything else, like this:

if (sender != self.saveButton) return;

4. Add this code to check whether the user entered any text in the text field.

if (self.textField.text.length > 0) {

}

5. If there’s text, create a new item and give it the name of the text in the text field. Also, ensure that the
completed state is set to NO.

self.toDoItem = [[ToDoItem alloc] init];

self.toDoItem.itemName = self.textField.text;

self.toDoItem.completed = NO;

If there isn’t text, you don’t want to save the item, so you don’t need to add code to do anything else.

Your prepareForSegue: method should look like this:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {

if (sender != self.saveButton) return;

if (self.textField.text.length > 0) {

self.toDoItem = [[ToDoItem alloc] init];

Tutorial: Add Data
Add New Items

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

146

self.toDoItem.itemName = self.textField.text;

self.toDoItem.completed = NO;

}

}

The new item needs to be passed back to ToDoListTableViewController so that it can add the item to
the to-do list. To accomplish this, you need to revisit the unwindToList:method that you wrote in the second
tutorial. This method gets called after the unwind segue triggers.

The unwindToList: method takes a segue as a parameter, like all methods that are used as targets for an
unwind segue. The segue parameter is the segue that unwinds from AddToDoItemViewController back
to ToDoListTableViewController. Because a segue is a transition between two view controllers, it is aware
of its source view controller—AddToDoItemViewController. By asking the segue object for its source view
controller, you can access any data stored in the source view controller in the unwindToList: method. In
this case, you want to access the toDoItem property. If it’s nil, the item was never created—either the text
field had no text or the user tapped the Cancel button. If there’s a value for toDoItem, you retrieve the item,
add it to your toDoItems array, and display it in the to-do list by reloading the data in the table view.

To store and display the new item

1. In the project navigator, select ToDoListTableViewController.m.

2. InToDoListTableViewController.m, add an import declaration toAddToDoItemViewController.h
right below the #import "ToDoItem.h" line.

#import "AddToDoItemViewController.h"

3. Find the unwindToList: method you added in the second tutorial. It looks like this:

- (IBAction)unwindToList:(UIStoryboardSegue *)segue {

}

4. In this method, retrieve the source view controller—the controller you’re unwinding from,
AddToDoItemViewController.

AddToDoItemViewController *source = [segue sourceViewController];

5. Retrieve the value of the controller’s toDoItem property.

Tutorial: Add Data
Add New Items

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

147

ToDoItem *item = source.toDoItem;

If a user entered text in the text field of the add-to-do-item scene and then tapped the Save button, the
value of the toDoItem property will contain an item. If a user didn’t enter text in the text field or tapped
the Cancel button to close the screen, the value of the toDoItem property won’t contain an item. You
need to check whether the item exists.

6. Add this code to check whether the item exists.

if (item != nil) {

}

If it’s nil, there’s no item in the toDoItem property, so you don’t need to do additional work to save the
item.

If it does exist, you need to add the item to your toDoItems array, like this:

[self.toDoItems addObject:item];

7. Reload the data in your table.

Because the table view doesn’t keep track of its data, it’s the responsibility of the data source—in this
case, your table view controller—to notify the table view when there’s new data for it to display.

[self.tableView reloadData];

Your unwindToList: method should look like this:

- (IBAction)unwindToList:(UIStoryboardSegue *)segue {

AddToDoItemViewController *source = [segue sourceViewController];

ToDoItem *item = source.toDoItem;

if (item != nil) {

[self.toDoItems addObject:item];

[self.tableView reloadData];

}

}

Tutorial: Add Data
Add New Items

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

148

Checkpoint: Run your app. Now when you click the Add button (+) and create a new item, you should see it
in your to-do list. Congratulations! You’ve created an app that takes input from the user, stores it in an object,
and passes that object between two view controllers. This is the foundation of moving data between scenes
in a storyboard-based app.

Recap
You’re almost done with this introductory tour of developing apps for iOS. The final section gives you more
information about how to find your way around the documentation, and it suggests some next steps you
might take as you learn how to create more advanced apps.

Tutorial: Add Data
Recap

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

149

 ● iOS Technologies (page 151)

 ● Finding Information (page 154)

 ● Where to Go from Here (page 165)

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

150

Next Steps

You’ve just learned how to write an app with a simple user interface and basic behavior. At this point, you may
be thinking about implementing additional behavior that will turn your project into a full-featured app.

As you consider which features you want to add, remember that you don’t have to implement everything from
scratch. iOS provides frameworks that define particular sets of functionality—from gaming and media to
security and data management—which you can integrate into your app. You’ve already used the UIKit framework
to design your app’s user interface, and the Foundation framework to incorporate common data structures
and behavior into your code. These are two of the most common frameworks used in iOS app development,
but there are many more available to you.

This chapter is a high-level overview of technologies and frameworks that you might consider adopting in
your app. Use this chapter as a starting point for possible technologies to explore. For a full overview of the
technologies available in iOS, see iOS Technology Overview .

User Interface
UIKit. UIKit framework classes let you create a touch-based user interface. Because all iOS apps are based on
UIKit, you can’t ship an app without this framework. UIKit provides the infrastructure for drawing to the screen,
handling events, and creating common user interface elements. UIKit also organizes a complex app by managing
the content that’s displayed onscreen. See UIKit Framework Reference .

Core Graphics. Core Graphics—a low-level, C-based framework—is the workhorse for handling high-quality
vector graphics, path-based drawing, transformations, images, data management, and more. Of course, the
simplest and most efficient way to create graphics in iOS is to use prerendered images with the standard views
and controls of the UIKit framework, letting iOS do the drawing. Because UIKit, a higher-level framework, also
provides classes for custom drawing—including paths, colors, patterns, gradients, images, text, and
transformations—use it instead of Core Graphics whenever possible. See Core Graphics Framework Reference .

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

151

iOS Technologies

Core Animation. Core Animation interfaces are part of the Quartz Core framework. Use Core Animation to
make advanced animations and visual effects. UIKit provides animations that are built on top of the Core
Animation technology. If you need advanced animations beyond the capabilities of UIKit, use Core Animation
directly. You can create a hierarchy of layer objects that you manipulate, rotate, scale, transform, and so forth.
Core Animation’s familiar view-like abstraction lets you can create dynamic user interfaces without having to
use low-level graphics APIs such as OpenGL ES. See Core Animation Programming Guide .

Games
GameKit. The GameKit framework provides leaderboards, achievements, and other features to add to your
iOS game. See GameKit Framework Reference .

SpriteKit. The SpriteKit framework provides graphics support for animating arbitrary textured images, or sprites .
In addition to being a graphics engine, it also includes physics support to bring objects to life. SpriteKit is a
good choice for games and other apps that require complex animation chains. (For other kinds of user interface
animation, use Core Animation instead.) See SpriteKit Programming Guide .

OpenGL ES. OpenGL ES is a low-level framework that supports hardware-accelerated 2D and 3D drawing.
Apple’s implementation of the OpenGL ES standard works closely with the device hardware to provide high
frame rates for full-screen, game-style apps. Because OpenGL ES is a low-level, hardware-focused API, it has a
steep learning curve and a significant effect on the overall design of your app. (For apps that require
high-performance graphics for more specialized uses, consider SpriteKit or Core Animation.) See OpenGL ES
Programming Guide for iOS .

Game Controller. The Game Controller framework makes it easy to find controllers connected to a Mac or iOS
device. When a controller is discovered on your device, your game reads control inputs as part of its normal
gameplay. These controllers provide new ways for players to control your game. Apple has designed
specifications for hardware controllers to ensure that all controllers have consistent sets of control elements
that both players and game designers can rely on. See Game Controller Framework Reference .

Data
Core Data. The Core Data framework manages an app’s data model. Use it to create model objects, known as
managed objects. You manage relationships between those objects and make changes to the data through
the framework. Core Data takes advantage of the built-in SQLite technology to store and manage data efficiently.
See Core Data Framework Reference .

iOS Technologies
Games

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

152

Foundation. You worked with Foundation earlier in this guide. The Foundation framework defines a set of
useful base classes. Among other things, this framework includes classes representing basic data types, such
as strings and numbers, and collection classes for storing other objects. See Foundation Framework Reference .

Media
AV Foundation. AV Foundation is one of several frameworks that you can use to play and create time-based
audiovisual media. For example, use AV Foundation to examine, create, edit, or reencode media files. You can
also use it to get input streams from devices and manipulate video during real-time capture and playback. See
AV Foundation Framework Reference .

iOS Technologies
Media

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

153

As you develop your app, you’ll want the information you’ve learned—and more—at your fingertips. You can
get all the information you need without leaving Xcode.

Xcode comes with a large documentation suite containing general and conceptual guides, framework and
class references, focused help articles, and more. You can access this documentation by Control-clicking on a
UI element of Xcode to learn how to use it, opening the Quick Help pane in the main project window for
context-aware code help, or searching in the documentation viewer to find guides and full API reference. You
can also view documentation online at developer.apple.com/library/ios.

Use Contextual Help Articles for Xcode Guidance
To get help when using Xcode itself, take a look at help articles.Help articles show how to accomplish common
tasks, such as creating a new class, setting a custom class in Interface Builder, and resolving issues with Auto
Layout.

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

154

Finding Information

https://developer.apple.com/library/ios

Depending on what you’re trying to do, you can access some help articles by Control-clicking on a UI element
in Xcode. Look for the last entry (in this image, Project Navigator Help) in the contextual menu.

Finding Information
Use Contextual Help Articles for Xcode Guidance

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

155

If you’re looking for general help, or information about a task related to an element that doesn’t support
Control-clicking, you can also search for contextual help in the Xcode Help menu.

Use Guides for General and Conceptual Overviews
To learn about a new technology or to gain a deeper understanding of how the different classes in a framework
work together, look at one of the programming guides. Most Cocoa frameworks and technologies have
programmingguidesassociatedwiththem,suchasSpriteKitProgrammingGuide ,ProgrammingwithObjective-C ,
and Location and Maps Programming Guide .

Finding Information
Use Guides for General and Conceptual Overviews

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

156

To view these documents in Xcode, use the documentation viewer, which you can access by choosing Help >
Documentation and API Reference (Shift–Command–0). Simply type the name of a technology, such as Sprite
Kit.

The results are ordered to be most helpful when you are writing code. This means that you’ll see top hits,
followed by API reference, and then SDK and tools guides.

Finding Information
Use Guides for General and Conceptual Overviews

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

157

If a suitable result doesn’t appear in the pop-up list, view all results by pressing Return without selecting
anything. This displays a complete set of results that you can filter.

Use API Reference for Class Information
When you’ve read a guide to learn about the different parts of a technology and you start writing code that
uses the technology, you’ll probably find that you need to know more about what an individual class can do,
or that you need to learn the correct way to call a particular method. This information is provided by API
reference documents.

Finding Information
Use API Reference for Class Information

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

158

For example, for more information on the NSString class that you used in the earlier tutorials, just type the
name of the class in the documentation viewer’s search field.

Finding Information
Use API Reference for Class Information

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

159

The top hit is usually the one you want; press Return to select it, and you see the API reference for that class.

Finding Information
Use API Reference for Class Information

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

160

API reference documentation gives you quick access to information about individual classes, including methods,
properties, parent class, adopted protocols, and tasks that the class can perform. Click “More related items” to
see general information about the class.

The Related Items popover also shows a list of related guides. For NSString, for example, you might want a
more conceptual overview rather than delving into reference material, so you should read String Programming
Guide .

Finding Information
Use API Reference for Class Information

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

161

Use Quick Help for Contextual Source Code Information
When you’re writing code in the source editor, you have easy access to API reference documentation in the
Quick Help pane (choose View > Utilities > Show Quick Help Inspector). The Quick Help pane updates as you
write code, showing information about the symbol you’re currently typing.

Finding Information
Use Quick Help for Contextual Source Code Information

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

162

Alternatively, you can Option-click a symbol in the source editor to display a pop-up window with the Quick
Help information.

From the Quick Help pane or pop-up window, open the API Reference in the documentation viewer, or view
the original header file containing the declaration for the symbol you clicked.

Finding Information
Use Quick Help for Contextual Source Code Information

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

163

Use Sample Code to See Real-World Usage
In addition to written documentation, you can access a library of sample code. Whenever you look at quick
help, or guides and reference in the documentation viewer, you’ll see entries showing relevant sample code
projects for the given technology or class.

Click one of the sample code entries to download and open a project in Xcode so that you can examine the
code.

Finding Information
Use Sample Code to See Real-World Usage

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

164

In Start Developing iOS Apps Today , you learned the basics of iOS app development. At this point, you’re ready
to start developing your first full-featured app. Although taking an app from a simple concept to the App Store
isn’t a small task, the process and practices you’ve learned in this document will guide you in the right direction.

Here are a few more pointers on where to go from here:

 ● Register as a developer.

Managing Accounts walks you through the process of registering as an Apple developer.

 ● Learn to design beautiful app interfaces.

iOS Human Interface Guidelines teaches you how to make your app consistent with the user interface
conventions for iOS.

Auto Layout Guide teaches you how to create adaptive, versatile user interfaces.

 ● Learn the Objective-C language.

Programming with Objective-C describes how to define classes, send messages, encapsulate data, and
accomplish a variety of other tasks with the Objective-C programming language.

 ● Learn to develop great apps.

App Programming Guide for iOS explains the essential things you must know and do when developing an
iOS app.

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

165

Where to Go from Here

 ● Learn about the technologies available to you.

iOS Technology Overview describes the frameworks and other technologies that are available to your app
in iOS.

 ● Access the documentation.

Finding Information (page 154) shows you how to make the most of the documentation available to you.

 ● Debug and test your app.

Debug Your App teaches you how to thoroughly debug and test your app in Xcode.

 ● Ship your app.

App Distribution Guide walks you through the process of provisioning devices for testing and submitting
apps to the App Store.

Taking the ToDoList App to the Next Level
The to-do list app you just created benefits from numerous built-in behaviors. You can continue to experiment
with this app to enhance your understanding, or you can start something new. If you do continue with the
to-do list app, here are some areas to investigate:

 ● Your to-do list disappears when you quit and relaunch the app. You might want to explore ways to make
the list persist over time.

 ● You’re using the default appearance for all of the controls in your app. UIKit includes features for customizing
the appearance of many controls. Explore different user interface options using this technology.

 ● You’ve given the user a way to add items to the list and mark them as completed, but there’s no facility
for deleting items. Table views have built-in behavior for supporting editing, including deletion and
reordering of rows, which you might consider incorporating into your app.

As you continue developing iOS apps, you’ll find many concepts and technologies to explore, including
localization, accessibility, and appearance customization. Start by defining a direction that interests you.
Remember to put concepts into practice as you learn them. When you encounter an interesting new technology,
framework, or design pattern, don’t be afraid to write a small app to test it out.

By adopting the approach shown in this document, you’ll find that you ship your first app quickly. After you
have an app in the App Store, you can continue to incorporate additional features incrementally. There are
always new ways to keep your customers engaged and looking forward to the next great thing.

Where to Go from Here
Taking the ToDoList App to the Next Level

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

166

This table describes the changes to Start Developing iOS Apps Today .

NotesDate

Applied minor edits throughout.2015-03-09

Updated for new features in Xcode 6.1 and iOS 8.1.2014-12-19

Rewritten as a multipart tutorial to provide the fundamental skills needed
to create an iOS app.

2013-10-22

2015-03-09 | Copyright © 2015 Apple Inc. All Rights Reserved.

167

Document Revision History

Apple Inc.
Copyright © 2015 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer or device for personal use only and to
print copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-branded products.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Cocoa Touch, iPad,
iPhone, iPod, iPod touch, Mac, Numbers,
Objective-C, OS X, Quartz, and Xcode are
trademarks of Apple Inc., registered in the U.S.
and other countries.

App Store is a service mark of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE.ASARESULT, THISDOCUMENT ISPROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, ORCONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT, ERROR OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

Some jurisdictions do not allow the exclusion of
implied warranties or liability, so the above exclusion
may not apply to you.

	Start Developing iOS Apps Today
	Contents
	Part I: Introduction
	Setup
	Get the Tools
	Review a Few Objective-C Concepts
	Objects Are Building Blocks for Apps
	Classes Are Blueprints for Objects
	Objects Communicate Through Messages
	Protocols Define Messaging Contracts

	Tutorial: Basics
	Create a New Project
	Get Familiar with Xcode
	Run iOS Simulator
	Review the Source Code
	The main.m File and the UIApplicationMain Function
	The App Delegate Source Files

	Open Your Storyboard
	Build the Basic Interface
	Preview Your Interface
	Adopt Auto Layout
	Recap

	Part II: Structuring an App
	Defining the Concept
	Designing a User Interface
	The View Hierarchy
	Types of Views
	Use Storyboards to Lay Out Views
	Use Inspectors to Configure Views
	Use Auto Layout to Position Views

	Defining the Interaction
	View Controllers
	Actions
	Outlets
	Controls
	Navigation Controllers
	Use Storyboards to Define Navigation

	Tutorial: Storyboards
	Create a Second Scene
	Display Static Content in a Table View
	Add a Segue to Navigate Forward
	Create Custom View Controllers
	Create an Unwind Segue to Navigate Back
	Recap

	Part III: Implementing an App
	Incorporating the Data
	Designing Your Model
	Implementing Your Model
	Incorporating Real Data

	Using Design Patterns
	MVC
	Target-Action
	Delegation

	Working with Foundation
	Value Objects
	Strings
	Numbers

	Collection Objects
	Arrays
	Creating Arrays
	Querying Array Objects
	Sorting Array Objects
	Array Mutability

	Sets
	Dictionaries
	Creating Dictionaries
	Querying Dictionaries
	Dictionary Mutability

	Representing nil with NSNull

	Writing a Custom Class
	Declaring and Implementing a Class
	Interface
	Implementation

	Properties Store an Object’s Data
	Methods Define an Object’s Behavior
	Method Parameters
	Implementing Methods

	Tutorial: Add Data
	Create a Data Class
	Load the Data
	Display the Data
	Toggle Item Completion State
	Add New Items
	Recap

	Part IV: Next Steps
	iOS Technologies
	User Interface
	Games
	Data
	Media

	Finding Information
	Use Contextual Help Articles for Xcode Guidance
	Use Guides for General and Conceptual Overviews
	Use API Reference for Class Information
	Use Quick Help for Contextual Source Code Information
	Use Sample Code to See Real-World Usage

	Where to Go from Here
	Taking the ToDoList App to the Next Level

	Revision History
	Objective-C

