
Developing, Deploying and Evaluating

Protocols with ManetLab

François Vessaz1, Benôıt Garbinato1, Arielle Moro1, Adrian Holzer2

1 Université de Lausanne, Lausanne, Switzerland
{francois.vessaz,benoit.garbinato,arielle.moro}@unil.ch

2 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
adrian.holzer@epfl.ch

Abstract. Evaluating the performance of MANET-specific communi-
cation protocols is essential to build robust mobile ad hoc applications.
Unfortunately, most existing evaluation results are either based on sim-
ulations – which makes it di�cult to draw conclusions beyond confined
lab settings – or they are based on custom testbed results – which makes
it di�cult to reproduce them. In order to overcome this challenge, we in-
troduce ManetLab, a modular and configurable software framework for
creating and running testbeds to evaluate MANET-specific protocols.
With ManetLab, one can easily configure and automate reproducible
protocol executions on standard computer hardware, and thus provides
both the accuracy of testbed-based evaluations and the reproducibility
of simulation-based evaluations. After presenting ManetLab’s extensible
architecture, based on the notion of modular protocol stack, we show
how it helps evaluate the performance of di↵erent broadcast protocols in
real MANETs and how its results compare with simulation-based results.

1 Introduction

With the tidal wave created by the arrival of smart devices and tablets, the
prospects of seeing MANET-based apps pop up in the distributed systems land-
scape has become more promising than ever. To encourage the emergence of
such apps, system developers must provide solid communication building blocks
for application developers, such as multi-hop broadcast, multicast, unicast, and
other dissemination and routing protocols. Along that line, a large amount of
research e↵ort have been spent investigating mobile ad hoc routing protocols
over the past decade. Central to this e↵ort are the specialized tools that allow
researcher to develop and evaluate their protocols.

1.1 Protocol development and evaluation

The development of an e↵ective and e�cient protocol, be it wired, wireless
infrastructure-based or ad hoc, is an iterative process consisting of four steps, as
illustrated in Figure 1a. For a start, one has to devise the protocol in the form of
a distributed algorithm, ideally proving it formally and ultimately implementing



2 François Vessaz, Benôıt Garbinato, Arielle Moro, Adrian Holzer

it in some programming language (Step 1). Then, one has to configure some test
environment in which the protocol will be executed (Step 2) and run the actual
tests (Step 3). Finally, one has to analyze the collected data (Step 4), which
might then lead to fine-tune the protocol and trigger a new iteration.

configure

executeanalyze

develop

simulations

configure

executeanalyze

develop

testbeds

distributed
algorithm

connectivity
model

configure

executeanalyze

develop
① ②

③④

(a) general iterative process (b) combining simulations and testbeds

Fig. 1: Development of communication protocols

Existing tools for evaluating protocol performance can be categorised as ei-
ther simulators or testeds. When using testbeds, the iterative process sketched
in Figure 1a can be very time consuming, especially if one wants to evaluate
performances in various distributed environments, which is clearly a must. This
is particularly true for Steps 2 and 3, since they imply the deployment of the
protocol code and of the test configuration to various distributed nodes, the
launching of the testbed execution and the gathering of the results obtained at
each individual node. For this reason, dedicated tools aimed at facilitating the
creation and execution of testbeds have been proposed by the research commu-
nity for specific families of distributed environments. This is for example the
case of PlanetLab3 for large-scale distributed systems [10].

Performance evaluation tools for MANETs. When it comes to evaluate
the performance of MANET-specific protocols however, until now researchers
have had essentially the choice between the reproducibility o↵ered by simulators
and the accuracy o↵ered by testbeds. On the positive side, simulators are widely
used by the research community and their source code is generally accessible
online, which makes simulation-based evaluations fairly reproducible. Unfortu-
nately, as they rely on the modeling of complex physical and logical parameters,
it is di�cult to draw general conclusions about the behavior of such protocols
in real settings [27]. Section 5 further discusses evaluation tools for MANETs.

Testbeds on the contrary rely on real mobile ad hoc networking and therefore
tend to o↵er a high-level of accuracy. For this very reason however, they also
tend to impose a high development and deployment barrier [1]. In addition,
most testbeds are not directly available to other researchers and often require

3
http://www.planet-lab.org

http://www.planet-lab.org


Developing, Deploying and Evaluating Protocols with ManetLab 3

specialized or incompletely specified hardware. For these reasons, the level of
reproducibility of the resulting performance evaluation is generally quite low.

1.2 Contribution and roadmap

The ManetLab framework precisely aims at filling this gap, by supporting both
accurate and reproducible performance evaluations of MANET-specific proto-
cols, in a similar way PlanetLab does it for large-scale distributed systems.

In Section 2, we discuss the need for a tool such as ManetLab and its key re-
quirements to achieve high accuracy and reproducibility. In Section 3, we present
ManetLab in details, by showing how it helps develop protocol layers and assem-
ble them into a full protocol stack, which can then be deployed on remote nodes.
We also introduce ManetLab’s graphical tool, which helps configure performance
evaluations, launch them and gather the corresponding results. In Section 4,
we then compare the results of various performance evaluations obtained using
ManetLab with those obtained with two simulations tools. While simulation-
based performance evaluations are fairly accurate for simple MANET environ-
ments, they diverge significantly from the results obtained in reality for more
complex environments, typically involving physical obstacles between nodes. In-
terestingly, when injecting the topological constraints observed with ManetLab
back into the two considered simulators, simulation-based evaluation tend to aug-
ment their level of accuracy. Finally, we discuss existing testbed for MANETs
in Section 5, and ongoing work on improving ManetLab in Section 6.

2 Achieving accuracy and reproducibility

To be useful, performance evaluations of MANET-specific protocols should ob-
viously achieve a high degree of both accuracy and reproducibility. As a conse-
quence, tools supporting such evaluations should mimic real-life environments
as accurately as possible and should allow researchers to easily reproduce exper-
iments with the purpose of comparing evaluation results.

2.1 Combining simulations and testbeds

Although this paper focuses on the need for a robust testbed tool, we advocate
the combination of simulations and testbeds, as illustrated in Figure 1b. While
simulations can indeed be considered an acceptable first approximation, com-
munication protocols tend to perform in more unpredictable way when actually
deployed in a real MANET than in an infrastructure-based network, be it wired
or wireless. For this reason, we believe that ultimately accuracy can only be
achieved with testbed approaches, at least at that stage of the evaluation.

In the early phases of a protocol development, simulations can be very useful
to validate the protocol in simple environment settings, e.g., in the absence
of walls or obstacles, using a basic wireless propagation model. Once this first
validation is done, the protocol should then be evaluated in a real mobile ad hoc



4 François Vessaz, Benôıt Garbinato, Arielle Moro, Adrian Holzer

network, using testbeds. As shown in Figure 1b, the results of testbed-oriented
evaluations can then be injected back into simulations, typically in the form of
a more accurate model of the wireless connectivity among network nodes. This
is precisely the approach we follow in Section 4.

2.2 Creating accurate and reproducible testbeds

While various simulation tools exists, some of which have become de facto stan-
dards, the situation is very di↵erent when it comes to testbeds for mobile ad hoc
networks. Moreover, coming up with universal and rigid testbeds for MANETs
might not even be a desirable goal, given the great variability of actual deploy-
ment settings. Rather, we believe that there exists a need for a framework that
facilitates the development, deployment and evaluation of MANET-specific pro-
tocols, by making it easy to create accurate and reproducible testbeds. That
is, accuracy and reproducibility should be the two key requirements for such a
testbed framework.

Accuracy. Devising a tool that o↵ers an accurate evaluation of the behavior of
a protocol running in a MANET can be very challenging. The central issue stems
from the fact that MANETs tend to exhibit very erratic behaviors in terms of
connectivity and of reliability, depending on their physical environment and on
how nodes are moving. In addition, the various layers that stack up, in particular
TCP/IP, tend to distort the actual performance evaluation of communication
protocols in MANETs. For this reason, an adequate testbed framework should
o↵er flexibility in protocol layering, all the way down to the lowest-level layers,
typically by making it easy to compose protocol stacks from elemental layers.

Reproducibility. To evaluate the accuracy of results provided by an evaluation
tool, other researchers must be able to reproduce the testbeds described in the
literature, and scrutinize the evaluation tool itself. Thus, it is important that any
evaluation tool, in particular a testbed framework, be easily accessible for the
research community. A testbed framework should in addition be configurable,
in order to easily switch from one deployment setting to another, and it should
o↵er support for automatically launching evaluations and gathering results.

3 Introducing ManetLab

ManetLab is a framework supporting the creation and execution of accurate and
reproducible testbeds for MANETs-specific protocols, using mainstream hard-
ware.4 On each computer where ManetLab is installed, the wireless network
interface is used to connect the MANET, while the wired network interface is
used as control network to provide feedback about the protocol performance.
More specifically, as illustrated in Figure 2, each computer running ManetLab is
hosting an agent connected to the MANET. In addition, one of the computers

4 ManetLab runs on Apple’s computers with Mac OS X 10.7 or higher.



Developing, Deploying and Evaluating Protocols with ManetLab 5

hosts the controller, which acts as a conductor orchestrating the protocol execu-
tion.5 That is, the controller uploads the protocol stack to each agent, triggers
the execution of the protocol and collects feedback from all agents about the
protocol execution, via the wired network interface. In the following, we discuss
how each step pictured in Figure 1 is performed with ManetLab.

Controller and
Agent 1 Agent 2 Agent 3

Wireless adhoc network

Wired control network
1

2 2

3

Fig. 2: ManetLab — Using an ad hoc network and a control network

3.1 Development

In order to test an ad hoc protocol, one has to first implement it. ManetLab
proposes an API6 to help MANET-specific protocol developers in this task. The
protocol must be implemented in Objective-C and designed as layers, inheriting
from the MLStackLayer class, in a stack (MLStack) provided by the API. The
layer above the stack represents the application, whereas the layer below the
stack is the antenna. At any given time, a ManetLab node is executing at most
one protocol stack. Communication between nodes and between layers inside a
stack is achieved via message passing (MLMessage). Figure 3 illustrates a stack
containing two layers, i.e., a fragmentation layer and a gossip layer.

As pointed out in [27], researchers rarely make the e↵ort to provide the
source code of their MANET-specific protocols to the community, which makes
it very di�cult to seriously compare di↵erent protocols pursuing the same goal.
Moreover, even when the source code is provided, the absence of a standard-
ized tool to compose and deploy protocols leads to low reproducibility of most
research results. For this reason, ManetLab proposes a plugin architecture that
makes it easy to package all the layers (subclasses of MLStackLayer) and mes-
sage types (subclasses of MLMessage) composing a MANET-specific protocol
stack. As a result, stacks created using ManetLab can be shared and reused
by other researchers. In addition, ManetLab is an open source project, which
further promotes the scrutiny and reproducibility of testbeds relying on it.

5 The example depicted in Figure 2 is further discussed in Section 3.3.
6 The API is distributed with the ManetLab software and available at http://doplab.
unil.ch/manetlab

http://doplab.unil.ch/manetlab
http://doplab.unil.ch/manetlab


6 François Vessaz, Benôıt Garbinato, Arielle Moro, Adrian Holzer

Fragmentation
(MLStackLayer)

Gossip
(MLStackLayer)

send

deliver

send

send

deliver

deliver

deliverFurther

deliverFurther

sendFurther

sendFurther

M
LS
ta
ck

User

Antenna

Fig. 3: A stack with two layers (left) and its corresponding GUI (right).

3.2 Configuration

The configuration step greatly di↵ers in a simulator-based approach and in a
testbed-based approach. However, in both cases, configuration entails installa-

tion of the tool (simulator or testbed) and its parameterization, and then de-

ployment of the protocol code in the tool.

Installation. Installing a simulator is usually non-trivial because it implies
to download the source code from the Internet and then to build the simulator
from that code. As for testbeds, they are rarely made publicly available and
when they are, they tend to be even more di�cult to install and to use, since
they often require specialized hardware. In contrast, ManetLab requires just a
few clicks to be installed on a standard desktop or laptop computer.7 Yet, if one
wants to access its source code, it is also made available via GitHub.8

Parameterization. For both simulators and testbeds, parameterization im-
plies to load the protocol stack into the tool, usually in some binary form. Apart
from this obvious step, parameterization is where simulators and testbeds di↵er
the most. As testbeds rely on real MANET implementations, one has only a few
parameters to set, e.g., the wireless channel used to communicate; this is typi-
cally the case with ManetLab. In addition, as already suggested in Section 3.1,
ManetLab makes it easy to dynamically load plugins containing protocol layers
into the tool, to then graphically compose a protocol stack from these layers and
deploy it of each node of the MANET (Figure 3). When it comes to simulators
however, many more parameters have to be set, such as the mobility model, the
connectivity model, the node distribution model, the interference model, etc.
In terms of accuracy, this step is critical because unrealistic values may result
in misleading or even erroneous performance evaluations.

7 ManetLab executable is available from http://doplab.unil.ch/manetlab.
8 ManetLab source code is available from http://github.com/doplab/ManetLab.

http://doplab.unil.ch/manetlab
http://github.com/doplab/ManetLab


Developing, Deploying and Evaluating Protocols with ManetLab 7

Deployment. When using testbeds, one of the major obstacles to reproducibil-
ity often lies in the need to deploy and maintain specialized hardware, typically
in the form of prototype devices. In order to solve this problem, at least par-
tially, ManetLab is implemented on the OS X platform, which is widespread in
research institutions today. In addition, Apple’s hardware is known to be very
standardized and traceable, e.g., using a tool like Mactraker,9 which is clearly
an advantage in term of reproducibility. Moreover, building ManetLab on top
of OS X, which shares the same code basis as iOS when it comes to low-level
services, opens the opportunity to port ManetLab to iOS devices in the future.

3.3 Execution

With ManetLab, protocols communicate using the IEEE 802.11 wireless ad hoc
network (IBSS mode), so the accuracy of performance evaluations is naturally
ensured. On the controller, the graphical user interface shown in Figure 4 is used
to prepare and launch the testbed execution.

Execution example. Arrows pictured in Figure 2 illustrate an execution with
ManetLab, where the controller simply requests one agent to broadcast a mes-
sage. First, the controller asks Agent 2 to broadcast a message (Arrow 1). As a
result, Agent 2 does indeed broadcast a message on the wireless ad hoc network
(Arrow 2). Finally, all agents have received the message and provide feedback to
the controller, using the wired and reliable control network (Arrow 3).

O✏ine control mode. Since the controller communicates with agents via a
wired control network, ManetLab does not allow to test protocol with mobility
in its first version. To overcome this limitation, we are currently implementing an
o✏ine control mode, which uses the wireless network for both control messages
and protocol messages. The idea is to have each agent log its evaluation results
locally during the testbed execution, so that it can send them to the controller
after the execution.

Fig. 4: ManetLab Controller — Graphical user interface

9
http://mactracker.ca

http://mactracker.ca


8 François Vessaz, Benôıt Garbinato, Arielle Moro, Adrian Holzer

3.4 Analysis

Most simulators and testbeds do not provide specific analysis tools. Rather, they
allow protocol developers to produce log files or populate databases, which can
then be fed into some analysis tool, such as a graphical network animator like
NetAnim for example. This is also the case of the ManetLab testbed framework:
its API o↵ers a log methods that allows developers to produce whatever trace
they need for their performance evaluation.

4 ManetLab testbeds versus simulations

To compare performance evaluations obtained from ManetLab with those ob-
tained from simulations, we study the behavior of various broadcast protocols in
ManetLab and in two simulators. These two simulators are NS-3 [16], the latest
simulator from the NS family, and Sinalgo,10 a simple Java-based simulator we
used to evaluate several of our own MANET-specific protocols [12,13,14]. For our
comparison, we rely on two simple measures: the delivery ratio, defined as the
number of nodes who received a message over the total number of nodes, and
the forward ratio, defined as the number of nodes who send or retransmit the

message over the total number of nodes. Each measure is the average of 1’000
distinct executions.

4.1 Network settings

In order to avoid a potential distortion or overhead caused by TCP/IP (in partic-
ular its routing scheme), all protocols are directly using the MAC layer when it
comes to broadcast a message in the MANET. Along that line, we parameterize
the MAC layer of each tool in a similar way, as discussed hereafter.

ManetLab. Sincle ManetLab is a real MANET implementation, there are only
a very few settings we can change. All other settings are constraints deriving from
the operating system and the hardware on which ManetLab is running. Basically,
ManetLab creates an IEEE 802.11a ad hoc network with a theoretical data rate
of maximum 6 MBits/s for broadcast.

NS-3. We use the WifiNetDevice from NS-3 with the YansWifiChannel and
the YansWifiPhy models. We set all the settings we can to similar values of what
ManetLab uses on real computers. That is, we configure NS-3 to use an IEEE
802.11a physical layer model, with a data rate of maximum 5.5 Mbits/s and a
MTU of 1’500 bytes.

Sinalgo. Being a higher-level simulator than NS-3, Sinalgo does not rely on an
implementation of the IEEE 802.11 standard. So we configure Sinalgo to send
messages smaller than 1’500 bytes, with a Unit Disk Graph connectivity model
and a Signal to Interference plus Noise Ratio interference model.

10
http://www.disco.ethz.ch/projects/sinalgo/

http://www.disco.ethz.ch/projects/sinalgo/


Developing, Deploying and Evaluating Protocols with ManetLab 9

4.2 Protocols, environments and communication patterns

Because we aim at providing a solid first comparison, we consider a number of
broadcast protocols, physical environments and communication patterns. They
are presented in details hereafter.

Broadcast protocols. We consider three probabilistic broadcast protocols,
namely Simple Flooding,Gossip, andCounter-Based Scheme (CBS), which
are well-known to the research community. With Simple Flooding [15], each node
systematically retransmits a message the first time it receives it, so the delivery
ratio is always equal to the forward ratio. With Gossip [30], each node retransmits
a message with a probability p the first time it receives it. For our comparisons,
we set p to 0.7, 0.5, and 0.2. Finally, with CBS [30], a node waits for some
random delay between 0 and w

max

before retransmitting a message, only if it
received it only once. That is, if a node receives a message more than once, it
does not retransmit it. For CBS, we set w

max

to 0.1 and 0.5 seconds.

2 3 4 5 6 7 8 9 10

1

7m

12 m

Fig. 5: Sketch of the open space environment.

5,
5 

m

4 m 3 m 3 m 3 m 3 m 3 m

19 m

2 
m

8 4 2 6 5 31

7

Observed wireless links

Fig. 6: Sketch of the private o�ces environment.

Physical environments. We consider two environments: an open space and
private o�ces. In the open space, ten computers are placed in one open space
as illustrated in Figure 5; this is typically the case in a classroom. With private
o�ces, eight computers are placed in adjacent o�ces as depicted in Figure 6. In
each physical environment, Computer 1 acts as the initial broadcaster.

Communication patterns. We consider two communication patterns: a one-

shot message, which corresponds to a low network load, and the streaming of
1’000 messages, which correspond to a high network load. With the one-shot



10 François Vessaz, Benôıt Garbinato, Arielle Moro, Adrian Holzer

pattern, Computer 1 broadcasts a single 1’400-bytes message. Those 1’400 bytes
are encapsulated in just one network frame consisting of 1’485 bytes, including
headers. With the streaming pattern, Computer 1 sends 1.4 Mbytes, which are
fragmented into 1’000 network frames of 1’485 bytes each.

4.3 Results in the open space environment

Figure 7 shows the delivery and forward ratios of the one-shot communication
pattern. Since all nodes are connected (fully connected graph) and there are al-
most no interferences, the delivery ratios are strictly equal to 1.0 for all protocols
in NS-3 and Sinalgo, and above 0.99 for ManetLab. For this reason, the forward
ratios tend to converge towards their theoretical values, i.e., 1 for flooding, p for
gossip and much smaller values for CBS. Overall, we can say that in this scenario
(one-shot in an open space), simulations are quite accurate since they faithfully
mimic the results obtained by ManetLab in a real MANET.

In the second scenario (streaming in an open space), interferences start to
disturb the behavior of the protocols and a↵ect both the delivery ratio and the
forward ratio, as shown in Figure 8. The more messages are transmitted, e.g.,
for flooding or for gossip with p = 0.7, the more the delivery ratio decreases.
Interestingly, the delivery ratios of ManetLab are over 0.7, whereas the delivery
ratios of NS-3 and Sinalgo are under 0.6. That is, the interferences models used
in the two simulators are discarding too many frames, which indicates that their
accuracy is diminishing. As for the forward ratios, they tend to be only slightly
lower with the simulators than with ManetLab.

4.4 Results in the private o�ces environment

In the private o�ces environment, the real MANET experienced by ManetLab
is no longer a fully connected graph, due to various physical obstacles (mainly
walls but also furniture, possibly people, etc.). It is thus not surprising that
the delivery ratio of a one-shot communication pattern in ManetLab tends to
drop compared to the open space, as shown in Figure 9. NS-3 and Sinalgo, on
the contrary, continue to view the MANET as a fully connected graph, so their
delivery ratios remain strictly equal to 1. This clearly indicates that their level
of accuracy is dropping. As for the forward ratios, NS-3 and Sinalgo have similar
results to those of ManetLab except for CBS.

Streaming in private o�ces is by far the worst scenario when it comes to the
delivery ratio, as shown in Figure 10. Both physical obstacles and interferences
are significantly decreasing the performances of all protocols. Again, the accuracy
of NS-3 and Sinalgo is compromised, as they only roughly approximate the
delivery ratio observed with ManetLab. Furthermore, since fewer nodes receive
the messages being broadcast, the forward ratios with NS-3 and Sinalgo are also
dropping and thus diverge from those observed with ManetLab.



Developing, Deploying and Evaluating Protocols with ManetLab 11

0"

0.25"

0.5"

0.75"

1"

ManetLab" NS13" Sinalgo"
0"

0.25"

0.5"

0.75"

1"

ManetLab" NS13" Sinalgo"

Fig. 7: One-shot in an open space – delivery ratio (left) and forward ratio (right).

0"

0.25"

0.5"

0.75"

1"

ManetLab" NS13" Sinalgo"
0"

0.25"

0.5"

0.75"

1"

ManetLab" NS13" Sinalgo"

Fig. 8: Streaming in an open space – delivery ratio (left) and forward ratio (right).

0"

0.25"

0.5"

0.75"

1"

ManetLab" NS13" Sinalgo" NS13"with"
connec:vity"

Sinalgo"with"
connec:vity"

0"

0.25"

0.5"

0.75"

1"

ManetLab" NS13" Sinalgo" NS13"with"
connec:vity"

Sinalgo"with"
connec:vity"

Fig. 9: One-shot in private o�ces – delivery ratio (left) and forward ratio (right).

0"

0.25"

0.5"

0.75"

1"

ManetLab" NS13" Sinalgo" NS13"with"
connec:vity"

Sinalgo"with"
connec:vity"

0"

0.25"

0.5"

0.75"

1"

ManetLab" NS13" Sinalgo" NS13"with"
connec:vity"

Sinalgo"with"
connec:vity"

Fig. 10: Streaming in private o�ces – delivery ratio (left) and forward ratio(right).



12 François Vessaz, Benôıt Garbinato, Arielle Moro, Adrian Holzer

4.5 Injecting the observed connectivity into simulations

It seems reasonable to assume that the drop in accuracy we observe for both NS-3
and Sinalgo, when considering private o�ces, is largely due to their erroneous
modeling of the MANET connectivity. In order to confirm this assumption, we
inject the connectivity graph experienced by ManetLab (see Figure 6) into NS-3
and Sinalgo, and we re-run our performance evaluations.

As shown in Figure 9, after the injection the accuracy of both NS-3 and
Sinalgo is improved for the one-shot communication pattern. Interestingly, and
somewhat surprisingly, the results for the simple flooding protocol are more
accurate with Sinalgo than with NS-3. With the streaming communication pat-
terns however, injecting the connectivity graph is not su�cient to improve the
accuracy of NS-3 and Sinalgo, as shown in Figure 10. It seems that the e↵ect
of interferences, combined with a lower connectivity, leads both simulators to
produce results that are significantly lower than what happens in reality.

5 Related work

To evaluate the behavior of their protocols, researchers should rely on simula-
tors and testbeds that aim at providing accurate and reproducible performance
evaluations. Hereafter, using these two dimensions, we review a wide range of
evaluation tools for MANETs found in the literature [27,29,25,17,26] and we
compare them with ManetLab. For accuracy, we focus on their communication
support, as this is a critical element when it comes to evaluate performance in
a MANET. For reproducibility, we assess the availability of the tools.

5.1 Communication support

Simulators on the one hand do not provide a real implementation of a wireless
communication layer. For this reason, assessing the accuracy of their communica-
tion support, i.e., of their modelling of wireless communications, is very di�cult
and can only be achieved by comparing their results with those of a real MANET
(as we did in Section 4). Such tools include NS-2 [9], NS-3 [16], GloMoSim [34]
and its commercial version Qual Net11, OPNET [8], OMNet++ [33], and others
such as Sinalgo or JIST / SWANS [3,4].

Testbeds on the other hand tend to be more accurate because they rely on real
wireless communication links. Such tools include Castadiva [18], MASSIVE [28],
MobiEmu [35], mLab [22], Carnegie Mellon University Wireless Emulator [23],
ORBIT [31], Seawind [24] and WHYNET [36] or JEmu [19], PoEM [20], and
of course ManetLab. Some testbeds however tend to oversimplify topological
constraints, e.g., by simply piling up a stack of wireless devices. In addition, while
one-hop communication is provided by all testbeds, multi-hop communication
is only found in tools such as WHYNET, RoofNet [7], ManetLab and Airplug-
emu [6]. Other testbeds also provide multi-hop communication, but they shorten

11
http://www.scalable-networks.com/content/products/qualnet

http://www.scalable-networks.com/content/products/qualnet


Developing, Deploying and Evaluating Protocols with ManetLab 13

their wifi range. Such tools include ORBIT, TrueMobile [21] and MiNT [11].
Other tools provide a logical multi hop communication, such as mLab, MobiEmu
and Castadiva.

5.2 Tool availability

To assess the availability of each tool, we evaluate if it is available online, if its
source code is disclosed and available for download and installation, if detailed
documentation is provided, and if specialized hardware is required in order to
run testbeds relying on that tool.

Online availability. While many of the surveyed tools are available online for
download, just as ManetLab, some other tools are only described in scientific
papers, with no further details provided online. This is for instance the case
of TrueMobile, PoEM, MASSIVE, JEmu, and the tool described by Barolli et
al. [2]. This makes it very hard for other researchers to get a hold of these tools
and reproduce experiments.

Source code availability and documentation. In order to evaluate the
accuracy of a performance evaluation tool, providing the disclosed source code
is another important aspect. Most reviewed simulators, except GloMoSim and
OPNet, provide a downloadable version of their code. Among testbeds how-
ever, source code becomes much more scarce: only Castadiva, MobiEmu, mLab,
Airplug-emu and MIT Roofnet provide access to their code, some of them with-
out much documentation. ManetLab on the other hand provides both its source
code and an easy-to-install binary file, with documentation and examples online.

Specialized hardware. While most simulators can be easily deployed on al-
most any computer, many testbeds require specialized hardware. This require-
ment makes it harder for other researchers to install the testbed and execute
existing protocols. Moreover, some testbeds are deployed in specific lab settings
and allow remote users to connect, such as CMUTrueMobile (based on the Em-
ulab testbed [32]), which o↵ers access to its testbed built on custom robots, or
ORBIT which o↵ers a testbed of 400 fixed WiFi devices placed in a grid for-
mation on the ceiling of a single room. Other tools are devised to use special
hardware, such as MiNT-m that uses Roomba vacuum cleaner robots as under-
lying hardware in order to support mobility and custom hardware on which to
run protocols. Airplug-emu is another such example and is designed to emu-
late vehicular network and runs on laptops connected to specific GPS and radio
receivers. Remote solutions have the advantage of side-stepping the tool deploy-
ment stage, and often allowing node mobility, but they impose restrictions on
the execution scenarios. Other tools along with ManetLab can be deployed on
standard equipment, which makes it easier for others to deploy and evaluate
them. These tools include: Castadiva, MobileEmu, mLab and Airplug-emu.



14 François Vessaz, Benôıt Garbinato, Arielle Moro, Adrian Holzer

6 Conclusion

Even though performance evaluation is central when it comes to designing ro-
bust MANET-specific communication protocols, we believe this problem has not
been addressed in a satisfactory manner so far. Either protocols were evaluated
through simulations and the results might not be valid in a real MANET envi-
ronment, or they were evaluated in a customized testbed, which makes it hard
to reproduce experiments. In this paper we presented ManetLab as a solution
to this conundrum: ManetLab aims at o↵ering the best of both worlds, i.e., ac-
curate and reproducible results. In future work, we plan to extend ManetLab to
iOS devices and to add an o✏ine control mode.

Acknowledgement. This research is partially funded by the Swiss National
Science Foundation under project numbers 138092 and 140762.

References

1. M. Al-Bado, C. Sengul, and R. Merz. What details are needed for wireless simula-
tions? - a study of a site-specific indoor wireless model. In INFOCOM’12, 289–297.

2. L. Barolli, M. Ikeda, F. Xhafa, and A. Durresi. A testbed for manets: Implementa-
tion, experiences and learned lessons. In IEEE Sys. Journ., 4(2):243–252, 2010.

3. R. Barr, Z. Haas, and R. van Renesse. Jist: An e�cient approach to simulation
using virtual machines. In Software Practice & Experience 35(6):539–576, 2005.

4. R. Barr, Z. Haas, and R. van Renesse. Scalable wireless ad hoc network simulation.
In Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad hoc Wireless,
and Peer-to-Peer Networks, ch. 19, 2005.

5. Y. Benchäıb and C. Chaudet. Virmanel: a mobile multihop network virtualization
tool. In WiNTECH’12, 67–74.

6. A. Buisset, B. Ducourthial, F. El Ali and S. Khalfallah. Vehicular networks emula-
tion. In ICCCN’10, 1–7.

7. B. A. Chambers. The grid roofnet: A rooftop adhoc wireless network. In M.S.
Thesis, MIT, Cambridge, Massachusetts, June 2002.

8. X. Chang. Network simulations with opnet. In Wintersim’99, 307–314.
9. Q. Chen, F. Schmidt-Eisenlohr, D. Jiang, M. Torrent-Moreno, L. Delgrossi, and

H. Hartenstein. Overhaul of ieee 802.11 modeling and simulation in ns-2. In
MSWiM’07, 159–168.

10. B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and
M. Bowman. PlanetLab: An Overlay Testbed for Broad-Coverage Services. In
ACM CCR, 33(3), 2003.

11. P. De, A. Raniwala, S. Sharma, and T. Chiueh. Mint: A miniaturized network
testbed for mobile wireless research. In INFOCOM’05, 2731–2742.

12. B. Garbinato, A. Holzer and F. Vessaz. Six-Shot Broadcast: A Context-Aware
Algorithm for E�cient Message Di↵usion in MANETs. In DOA’08, 625–638.

13. B. Garbinato, A. Holzer and F. Vessaz. Context-aware broadcasting approaches
in mobile ad hoc networks. In Computer Networks, 1210 – 1228, 2010.

14. B. Garbinato, A. Holzer and F. Vessaz. Six-Shot Multicast: A Location-Aware
Strategy for E�cient Message Routing in MANETs. In NCA’10, 1–9.



Developing, Deploying and Evaluating Protocols with ManetLab 15

15. W. R. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for infor-
mation dissemination in wireless sensor networks. In MOBICOM’99, 174–185.

16. T. R. Henderson, M. Lacage, and G. F. Riley. Network simulations with the ns-3
simulator. In SIGCOMM’08.

17. J. Hortelano, J.-C. Cano, C. T. Calafate, and P. Manzoni. Testing applications
in manet environments through emulation. EURASIP J. Wirel. Commun. Netw.,
2009:47:1–47:9, 2009.

18. J. Hortelano, M.acher, J.-C. Cano, C. T. Calafate, and P. Manzoni. Castadiva: A
Test-Bed Architecture for Mobile AD HOC Networks. In PIMRC’07, 1–5.

19. H. T. J. Flynn and D. O’Mahony. Jemu: A real time emulation system for mobile
ad hoc networks. In Symp. on Tel. Sys. Res., 2001.

20. W. Jiang and C. Zhang. A portable real-time emulator for testing multi-radio
manets. In IPDPS’06, 169–169.

21. D. Johnson, T. Stack, R. Fish, D. Flickinger, R. Ricci, and J. Lepreau. Truemobile:
A mobile robotic wireless and sensor network testbed?, flux technical note ftn-2005-
02. In INFOCOM’06.

22. A. Karygiannis and E. Antonakakis. mlab: A mobile ad hoc network test bed. In
SecPerU’05.

23. K. Borries, W. Xiaohui, G. Judd, P. Steenkiste and D. Stancil. Experience with a
wireless network testbed based on signal propagation emulation. In EW’10.

24. M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, T. Alanko, and K. Raatikainen.
Seawind: a wireless network emulator. In MMB’01.

25. M. Krop↵, T. Krop, M. Hollick, P. Mogre, and R. Steinmetz. A survey on real
world and emulation testbeds for mobile ad hoc networks. In RIDENTCOM’06.

26. E. Kulla, M. Ikeda, L. Barolli, F. Xhafa, and J. Iwashige. A survey on manet
testbeds and mobility models. In CSA’12, 651–657.

27. S. Kurkowski, T. Camp, and M. Colagrosso. MANET simulation studies: the
incredibles. In Mob. Comput. Commun. Rev., 9(4):50–61, 2005.

28. M. Matthes, H. Biehl, M. Lauer and O. Drobnik. Massive: An emulation environ-
ment for mobile ad-hoc networks. In WONS’05, 54–59.

29. M. M. Qabajeh, A. A. Hashim, O. O. Khalifa, L. K. Qabajeh and J. I. Daoud.
Performance evaluation in manets environment. In Australian J. of Basic and Appl.
Sciences, 6(1):143-148, 2012.

30. S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The broadcast storm problem
in a mobile ad hoc network. In MobiCom’99, 151–162.

31. D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Sir-
acusa, H. Liu and M. Singh. Overview of the orbit radio grid testbed for evaluation
of next-generation wireless network protocols. In WCNC’05, 1664–1669.

32. T. Stack, R. Fish, D. M. Flickinger, L. Stoller, R. Ricci, and J. Lepreau. Mobile
emulab: A robotic wireless and sensor network testbed. In INFOCOM’06, 1–12.

33. A. Varga. The omnet++ discrete event simulation system. In ESM’01.
34. X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: A library for parallel simulation

of large-scale wireless networks. In PADS’98, 154–161.
35. Y. Zhang and W. Li. An integrated environment for testing mobile ad-hoc net-

works. In MobiHoc’02.
36. J. Zhou, Z. Ji, M. Varshney, Z. Xu, Y. Yang, M. Marina, and R. Bagrodia. Whynet:

a hybrid testbed for large-scale, heterogeneous and adaptive wireless networks. In
WiNTECH ’06, 111–112.


	Developing, Deploying and Evaluating Protocols with ManetLab

