
Neighbor Detection Based on
Multiple Virtual Mobile Nodes

Behnaz Bostanipour Benoı̂t Garbinato

Distributed Object Programming Laboratory
University of Lausanne

CH-1015 Lausanne, Switzerland
Email: {behnaz.bostanipour,benoit.garbinato}@unil.ch

Abstract—We introduce an algorithm that implements a time-
limited neighbor detector service in mobile ad hoc networks. The
time-limited neighbor detector enables a mobile device to detect
nearby devices in the past, present and up to some bounded time
interval in the future. In particular, it can be used by a new
trend of mobile applications known as proximity-based mobile
applications. To implement the neighbor detector, our algorithm
uses n = 2k virtual mobile nodes where k is a non-negative
integer. A virtual mobile node is an abstraction that is akin to a
mobile node that travels in the network in a predefined trajectory.
In practice, it can be implemented by a set of mobile nodes
based on a replicated state machine approach. Our algorithm
implements the neighbor detector for nodes located in a circular
region. We assume that each node can accurately predict its own
locations up to some bounded time interval ∆predict in the future.
The key idea of the algorithm is that the virtual mobile nodes
regularly collect location predictions of nodes from different
subregions, meet to share what they have collected with each other
and then distribute the collected location predictions to nodes.
Thus, each node can use the distributed location predictions for
neighbor detection. We show that our algorithm is correct under
certain conditions. Compared to a solution that works with a
single virtual mobile node, our algorithm has a main advantage:
as n grows, it remains correct with smaller values of ∆predict.
This feature makes the real world implementation of the neighbor
detector more feasible. In fact, although there exist different
approaches to predict the future locations of a node, usually
predictions tend to become less accurate as ∆predict increases.

Keywords—Neighbor Detection; Virtual Mobile Node; MANET;

I. INTRODUCTION

With the increasing use of mobile devices and particularly
smartphones, a new trend of distributed applications known
as Proximity-Based Mobile (PBM) applications has recently
emerged [1], [2], [3], [4]. These applications enable a user
to interact with others in a defined range and for a given
time duration e.g., for social networking (WhosHere, LoKast,
iGroups, LocoPing) or driving (Waze).1

Discovering who is nearby is the basic requirement of
various PBM applications. It is the preliminary step for further
interactions between users. It also enables users to extend their
social network from the people that they know to the people
that they might not know but who are in their proximity.
For instance, with the social networking applications such
as WhosHere or LoKast, a user first discovers others in her
proximity and then decides to view their profiles, start a
chat with them or add them as friends. The discoverability,

1whoshere.net www.lokast.com www.locoping.com www.waze.com
tinyurl.com/Apple-iGroups

however, may not always be limited to the current neighbors.
For instance, with the social networking applications such as
iGroups or LocoPing, a user can discover others who were
in her vicinity during a past event (e.g., concert, tradeshow,
wedding) or simply during a past time interval (e.g., the past
24 hours). One can also think of applications that provide the
user with the list of people who will be in her proximity up to
some time interval in the future and thus create the potential
for new types of social interactions [3].

To address the requirements of neighbor detection in PBM
applications, in a previous work [3], we introduced a time-
limited neighbor detector service and proposed a simple algo-
rithm for it. This service enables a device to discover the set of
its neighbors in the past, present and up to some bounded time
interval in the future in a mobile ad hoc network (MANET).

In this paper, we present a more advanced and general
algorithm that implements the time-limited neighbor detector
using n = 2k virtual mobile nodes where k is a non-negative
integer. A virtual mobile node is an abstraction that was already
introduced in the literature and used for tasks such as routing or
collecting data in MANETs [6], [7]. It is akin to a mobile node
that travels in the network in a predefined trajectory known
in advance to all nodes. In practice a virtual mobile node is
emulated by a set of nodes in the network using a replicated
state machine approach.

Our algorithm implements the neighbor detector for nodes
located in a circular region. We assume that each node can
accurately predict its locations up to some time interval
∆predict in the future. Thus, the region is divided into n equal
subregions and each subregion is associated with one virtual
mobile node. Each virtual mobile node regularly collects the
location predictions from the nodes in its subregion and meets
other virtual mobile nodes to share what it has collected with
them. After the sharing, each virtual mobile node has the
location predictions collected from the entire region, which
it distributes to the nodes in its subregion. In this way, each
node can find its neighbors at current and future times based
on the collected location predictions that it receives from a
virtual mobile node. It can also store the collected location
predictions so it can be queried about its past neighbors. We
show that our algorithm is correct under certain conditions.

To the best of our knowledge, our algorithm is the first
that uses multiple virtual mobile nodes to implement the time-
limited neighbor detector. Our algorithm has a main advantage
over a solution that works with a single virtual node [3]: as n
grows, it remains correct with smaller values of ∆predict. This



feature makes the real world implementation of the neighbor
detector more feasible. In fact, although there exist different
approaches to predict the future locations of a node, usually
predictions tend to become less accurate as ∆predict increases.

The remainder of the paper is as follows. In Section II,
we describe our system model and introduce some definitions.
In Section III, we present the time-limited neighbor detector
service. In Section IV, we present an implementation of the
time-limited neighbor detector service. In order to do so, we
first describe what a virtual mobile node is and how it can be
used for the implementation of the neighbor detector. We then
add n virtual mobile nodes to the system model and introduce
our algorithm that implements the neighbor detector in the new
system model. We sketch a correctness proof for the algorithm
(for complete proof see [5]). In particular, we define the value
of ∆predict for which the algorithm is correct. Then, we show
the evolution of this value as n grows. Finally, we discuss
related work in Section V before concluding in Section VI.

II. SYSTEM MODEL AND DEFINITIONS

We consider a mobile ad-hoc network (MANET) consisting
of a set P of processes that move in a two dimensional plane.
We use the terms process, node and real node interchangeably.
Each process has a unique identifier. Processes can move on
any continuous path, however there exists a known upper
bound on their motion speed. A process is prone to crash-
reboot failures: it can fail and recover at any time, and when
the process recovers, it returns to its initial state. A process is
correct if it never fails. We assume the existence of a discrete
global clock, i.e., the range T of the clock’s ticks is the set
of non-negative integers. We also assume the existence of a
known bound on the relative processing speed. Each process
in the system has access to a timely scoped broadcast service,
a global positioning service and a mobility predictor service.
In the following, we first introduce some definitions. We then
present each of the above mentioned services.

A. Definitions

Let pi be a process in the network, we introduce the
following definitions to capture the proximity-based semantics.

– A location denotes a geometric point in the two dimensional
plane and can be expressed as tuple (x, y).
– loc(pi, t) denotes the location occupied by pi at time t ∈ T .
– Z(pi, r, t) denotes all the locations inside or on the circle
centered at loc(pi, t) with given radius r.
– rd is called the neighbor detection radius. It is a constant
known by all processes in the network. So, Z(pi, rd, t) presents
the neighborhood region of pi at time t.

B. Timely Scoped Broadcast Service

This service allows a process to send messages to all
processes located within a given radius around it. Formally,
it exposes the following primitives:

• BROADCAST(m, r): broadcasts a message m in Z(pi, r, tb),
where pi is the sender and tb is the time when the broadcast
is invoked.
• RECEIVE(m, pi): callback delivering a message m broadcast
by process pi.

The service satisfies the following properties.

Timely Delivery. If a correct process pi broadcasts a message
m, there exists a bounded time duration ∆bcast such that every
correct process pj delivers m in interval [tb; tb + ∆bcast], if
loc(pj , t) ∈ Z(pi, r, t) for all t ∈ [tb; tb + ∆bcast].
No Duplication. No message is delivered more than once.
No Creation. If some process pj delivers a message m with
sender pi, then m was previously broadcast by process pi.

For a detailed discussion about the implementability of this
service in both the single-hop and the multi-hop cases see [1].

C. Global Positioning Service

This service allows each mobile process pi to know its cur-
rent location and the current time via the following functions:

• GETCURRENTTIME: returns the current global time.
• GETCURRENTLOCATION: returns the location occupied
by pi at the current global time.

In practice, such a service would typically be implemented
using NASA’s GPS space-based navigation technology.

D. Mobility Predictor Service

This service allows each mobile process pi to predict its
future locations up to some bounded time duration ∆predict

via the following function:

• PREDICTLOCATIONS: returns a hash map containing the
predicted locations for pi at each time t in the interval [tc; tc+
∆predict] where tc is the time when PREDICTLOCATIONS is
invoked.

The service satisfies the following property.

Strong Accuracy. Let t ∈ [tc; tc+∆predict] and l be a location,
if pi is predicted to be at l at time t, then loc(pi, t) = l.

In order for the service to predict the locations of a process,
we assume that the processes move in a way that their future
locations can be predicted up to a certain ∆predict e.g., if a
process moves according to a mobility model with temporal
dependency (such as Gauss-Markov Mobility Model), its fu-
ture locations can be predicted using its past locations.

III. THE TIME-LIMITED NEIGHBOR DETECTOR SERVICE

This service was first introduced in [3]. Intuitively, it allows
a process to know its neighbors at a given time. Formally, it
exposes the following primitive:

• PRESENT(t): returns N(pi, t) i.e., the set of processes de-
tected as neighbors of pi at time t, where pi is the process
that invokes PRESENT.

The service satisfies the two following properties.

Time-limited Completeness. Let pi and pj be two correct
processes and ∆future be a bounded time interval such that
∆future > 0, if loc(pj , t) ∈ Z(pi, rd, t) and t ≤ tc+∆future,
then pj ∈ N(pi, t), where tc is the time when PRESENT is
invoked at pi.
Perfect Accuracy. Let pi and pj be two correct processes, if
pj ∈ N(pi, t), then loc(pj , t) ∈ Z(pi, rd, t).

Roughly speaking, the time-limited completeness property
requires a neighbor detector to detect any node that is in
the neighborhood region at any time in the past or present.



However, its ability to detect the future neighbors is limited
by a bounded time duration ∆future. That is, it only detects
a node which is in the neighborhood region at any time from
the time when PRESENT is invoked up to ∆future. The perfect
accuracy property guarantees that no false detection occurs.

IV. IMPLEMENTING THE TIME-LIMITED NEIGHBOR
DETECTOR

To implement the time-limited neighbor detector, our intu-
ition is as follows: since each node knows its own locations up
to ∆predict in the future, we can think of a moving entity that
travels through the network, collects the location predictions
of all nodes, and then distributes all the collected location
predictions to the nodes. In this way, each node can find its
neighbors at current and future times based on the collected
location predictions. It can also store the collected location
predictions so it can be queried about its past neighbors. In our
solution, we consider a virtual mobile node (first introduced
in [6]) to be used as the moving entity. Moreover, to simplify
the problem, we perform the neighbor detection only for real
nodes which are in a circular region R of the two dimensional
plane. However, using only one virtual mobile node has a
main disadvantage: as the size of the region R grows, the
virtual mobile node spends more time to travel through the
network. This can cause the collected location predictions to
expire before they can be used for neighbor detection. One
way to overcome this problem is to increase ∆predict of the
mobility predictor. But, implementing mobility predictors with
long ∆predict is not easy. In fact, although there exist different
approaches to predict the future locations of a node, usually
predictions tend to become less accurate as ∆predict increases.

Another way to deal with this problem is to decrease the
traveling time of the virtual mobile node. In order to do so, our
solution consists of using more than one virtual mobile node.
In fact, our solution can work with n = 2k virtual mobile nodes
where k is a non-negative integer. Thus, the region is divided
into n equal subregions and each subregion is associated
with one virtual mobile node. Virtual mobile nodes collect
simultaneously the location predictions from the real nodes in
their subregions and meet at the center of R to share what
they have collected with each other. After the sharing, every
virtual mobile node has the location predictions collected from
the entire R. Then, the virtual mobile nodes simultaneously
distribute the collected location predictions to the real nodes
in their corresponding subregions. As we further show, as n
grows, our solution correctly implements the neighbor detector
with smaller values of ∆predict. Intuitively, this is because
as n grows, R is divided into more and consequently smaller
subregions and each virtual mobile node spends less time to
travel through its subregion.

In the following, we first describe what a virtual mobile
node is and we add n virtual mobile nodes to the system model.
We then introduce an algorithm that implements the neighbor
detector in the new system model and we sketch its correctness
proof. In particular, we define the value of ∆predict for which
the algorithm is correct. Then, we show the evolution of this
value as n grows.

A. Virtual Mobile Node

A virtual mobile node (also referred to as a virtual node) is
an abstraction that is akin to a mobile node that travels in the

network in a predefined trajectory. It was introduced in [6]. It is
designed such that it can execute any distributed algorithm that
a node can execute, however, its movement can be predefined
and known in advance to all nodes in the network.

In [6] an algorithm called Mobile Point Emulator (MPE)
is introduced, which implements the virtual mobile node
abstraction in a system model equivalent to the system model
defined in this paper. The implementation of the virtual mobile
node is based on a replicated state machine technique similar
to the one originally presented in [8]. The algorithm defines
a mobile point to be a circular region of a radius rmp, which
moves according to the predefined path of the virtual mobile
node, i.e., at time t the center of the mobile point coincides
with the preplanned location of the virtual mobile node at time
t. The MPE replicates the state of the virtual mobile node at
every node within the mobile point’s region, modifying the set
of replicas as the nodes move in and out of the mobile point’s
region. MPE uses a total-order broadcast service to ensure that
the replicas are updated consistently. The total order broadcast
service is built using a synchronous local broadcast service
(equivalent to our timely scoped broadcast) and synchronized
clocks (obtained by using a service equivalent to our global
positioning service). A virtual mobile node is prone to crash-
reboot failures. It can crash if and only if its trajectory takes it
into a region unpopulated by any nodes (i.e., where there are
no nodes to act as replicas), however, it recovers to its initial
state as soon as it renters a dense area. A virtual mobile node
is correct if it never fails, i.e., ∀t ∈ T , at least one correct
node resides in the circular region of radius rmp around the
preplanned location of the virtual mobile node at time t.

B. Adding Virtual Mobile Nodes to the System Model

In this section, we add a set of n virtual mobile nodes
V = {v1, ..., vn} to the system model where n = 2k and k is
a non-negative integer. Each virtual node is assigned a unique
identifier. Note that we do not provide an implementation
for the virtual nodes, however, we assume that they can be
implemented by the MPE algorithm sketched in Section IV-A.

Let region R be a closed disk of radius rmap, centered at
location lmap-center which is the origin of the two dimensional
plane. Each virtual node vi is associated with a subregion Ri
of R. The subregion Ri is a sector of R enclosed by two radii
and an arc, where the arc subtends an angle 2π

n . All subregions
have the same area and

⋃i=n
i=1 Ri = R.2

A virtual node can communicate with other virtual nodes
or the real nodes using the timely scoped broadcast where the
broadcast radius equals to a constant non-negative integer rcom
known globally. This constant is defined by the virtual node
implementation (see [6]). Moreover, similar to a real node, a
virtual node has access to the global positioning service.

The movement of a virtual node vi is defined by a prede-
termined trajectory function loc(vi, t), which maps every t in
T to a location. This function is known to all virtual and real
nodes in the network. The average speed of vi’s movement is
equal to a constant vavg. This constant is defined by the speed
of the real nodes and the speed of the subprotocols of the

2In general, a disk can be divided using straightedge and compass into n
equal parts if n = 2km where k is a non-negative integer and m is either
equal to 1 or else m is a product of different Fermat primes.



MPE algorithm. The trajectory function of vi is defined such
that it can be used by our algorithm for the implementation of
the neighbor detector. According to the trajectory function, vi
continuously scans the subregion Ri. The scans are arranged
in the form of collect-distribute. More precisely, let linit(vi) be
a location different from lmap-center. Then, a collect scan starts
at linit(vi) and ends at lmap-center and a distribute scan starts at
lmap-center and ends at linit(vi). The first scan starts at time t0
and is a collect scan. Collect and distribute scans alternate and
vi uses exactly the same path in the collect and the distribute
scans. This path is called the scan path of vi and its length is
denoted by Lscan-path(vi). The amount of time that vi spends in
a collect scan is equal to the amount of time that it spends in
a distribute scan. This time duration is denoted by ∆scan(vi).
In order to be useful for our neighbor detection algorithm, the
scan path of vi should satisfy the three following properties:

Scan Completeness. Let s be a scan (collect or distribute) and
let tbegin be the time when s begins, then the path traversed by
vi during s is such that ∀location ∈ Ri,∃t ∈ [tbegin; tbegin +
∆scan(vi)−1] such that distance(loc(vi, t), location) ≤ rcom.
Equal Scan Path Lengths. Let vj be a virtual node different
from vi, then Lscan-path(vi) = Lscan-path(vj).
Proportional Scan Path Length. Lscan-path(vi) is an inverse
function of n.

The scan completeness property guarantees that a scan
covers the entire subregion Ri in terms of rcom. With regard
to the equal scan path lengths property, it has a direct result,
i.e., the value of ∆scan is the same for all virtual nodes (recall
that all virtual nodes have the same average speed vavg). Since
all virtual nodes start their scanning at t0 and with a collect
scan, this guarantees that all virtual nodes meet at the end of
each collect scan at lmap-center. Finally, proportional scan path
length guarantees that as n grows, the scan path length and
consequently ∆scan of each virtual node decreases.

In the longer version of this paper [5], we describe a
method to find the scan path that satisfies these properties and
is used by the trajectory functions of the virtual nodes. Here,
due to the lack of space, we only mention the key idea behind
our method. Thus, we first find the optimal path that satisfies
the scan completeness property. It is the shortest possible path
that goes through a set of locations called covering centers.
Roughly speaking, the covering centers are such that if vi
broadcasts a message at all covering centers then the message
is disseminated at all locations in Ri. Thus, covering centers are
centers of disks of radius rcom that cover the whole surface of
Ri such that the number of disks is minimum. As shown in [5],
the path found in this way also satisfies the other properties
of a scan path and hence, is identified as the scan path. Thus,
Lscan-path(vi) = (NOC(Ri)−1)×

√
3rcom where NOC(Ri) is the

number of covering centers of Ri and is output by an algorithm
that also finds the covering centers (see [5]). Lscan-path(vi) can
be used to calculate ∆scan(vi) since ∆scan(vi) =

Lscan-path(vi)
vavg

.
Let c1 and c2 be two constants, as shown in [5], we also find
the following upper bound on ∆scan(vi):

∆scan(vi) <
1

vavg
× (c1 +

c2
n

)
(1)

As we discuss in detail in Section IV-E, Eq. 1 plus the
correctness conditions of the algorithm imply that as n grows,
the algorithm remains correct with smaller values of ∆predict.

C. Neighbor Detector Algorithm

The algorithm includes two parts: a part that is executed on
each real node pi (Algorithm 1) and a part that is executed on
each virtual node vi (Algorithm 2). The algorithm relies on the
movement of the virtual nodes. So, it divides time into rounds
of duration ∆scan where ∆scan = ∆scan(vi) with vi ∈ V and
is globally known. Note that since the value of ∆scan(vi) is
the same for all virtual nodes, there is no difference which
virtual node vi is used for calculation of ∆scan.

There exist two types of rounds: collect and distribute
rounds, which alternate. The first round is a collect round.
Given this fact and since the execution of the algorithm starts
at time t0 (i.e., when the virtual nodes start their movement by
a collect scan), the collect and distribute rounds coincide with
the collect and distribute scans of virtual nodes, respectively.

Thus, the basic idea of the algorithm is as follows: in
each collect round, every virtual node scans its subregion and
collects the location predictions sent to it by real nodes. Then,
the virtual nodes share their collected location predictions with
each other when the collect round terminates (i.e., when they
meet at lmap-center). At the distribute round, each virtual node
distributes the collected location predictions to real nodes in
its subregion. Every real node stores the collected location
predictions that it receives to use them for neighbor detection.
In the following, we discuss the algorithm in more detail.

Since the trajectory function of all virtual nodes are glob-
ally known, each real node pi can calculate its distance to every
virtual node at any time. So, at each collect round pi waits until
its distance to a virtual node vi becomes less than or equal to
rcom (note that vi can be any virtual node in V ) (line 12).
Then, if pi has not already sent a message to any virtual
node in that round, it creates a message realmsg to send to vi
(line 14). This message encapsulates a hash map locs which is
used to store the output of PREDICTLOCATIONS primitive of
the mobility predictor service (line 15). To store each location
prediction of pi, the hash map locs uses one key which is the
time instant for which the location is predicted e.g., locs(t)
returns the predicted location at time t. Once locs is assigned
its value, realmsg is broadcast within the radius rcom, so it
can be received by vi (line 16). Each virtual node has a hash
map collectedLocs. It is used to store the location predictions
that the virtual node collects. When vi receives realmsg from
pi, it stores every location prediction that exists in locs in
its collectedLocs (lines 32-34). For this storage, two keys are
used where one key is the name of the real node for which
the prediction is made and the other key is the time instant
for which the prediction is made e.g., collectedLocs(pi, t)
returns the predicted location of pi at time t. When a collect
round terminates (i.e., when all virtual nodes are at lmap-center),
vi creates intervirtmsg to share its collectedLocs with other
virtual nodes (lines 35-38). It broadcasts intervirtmsg within
the radius rcom, so it can be received by all virtual nodes (line
39). When a virtual node receives intervirtmsg, it combines its
own collectedLocs with collectedLocs of intervirtmsg, so that
at the next distribute round, all virtual nodes have the same
location predictions in their collectedLocs maps (lines 44-45).
In a distribute round, vi encapsulates its collectedLocs in a
virtmsg and broadcasts it whenever it is on a covering center of
its subregion Ri (lines 46-50), so it can be disseminated in the
whole Ri. Each real node has a hash map called networkLocs
that is used to store the location predictions of all real nodes in



Algorithm 1 Neighbor Detector Algorithm at Real Node pi
1: initialisation:
2: round← collect
3: noMsgSentInThisRound← true
4: networkLocs←⊥

5: PRESENT(t)
6: N← ∅
7: if networkLocs(pi, t) 6=⊥ then
8: for all pj ∈ networkLocs do
9: if pj 6= pi ∧ DISTANCE(networkLocs(pj , t), networkLocs(pi, t)) ≤ rd

then
10: N← N ∪ pj
11: return N

12: upon DISTANCE(GETCURRENTLOCATION, loc(vi, GETCURRENTTIME) ≤
rcom such that vi ∈ V do

13: if round = collect ∧ noMsgSentInThisRound then
14: realmsg←⊥
15: realmsg.locs← PREDICTLOCATIONS
16: trigger BROADCAST(realmsg, rcom)
17: noMsgSentInThisRound← false

18: every ∆scan do
19: noMsgSentInThisRound← true
20: if round = collect then
21: round← distribute
22: else if round = distribute then
23: round← collect

24: upon RECEIVE(virtmsg, vi) do
25: for all (pk, t) ∈ virtmsg.collectedLocs do
26: if networkLocs(pk, t) =⊥ then
27: networkLocs(pk, t)← virtmsg.collectedLocs(pk, t)

Algorithm 2 Neighbor Detector Algorithm at Virtual Mobile Node vi
28: initialisation:
29: round← collect
30: coveringCenters← {l1, ..., lNOC(Ri)}
31: collectedLocs←⊥

32: upon RECEIVE(realmsg, pi) do
33: for all t ∈ realmsg.locs do
34: collectedLocs(pi, t)← realmsg.locs(t)

35: every ∆scan do
36: if round = collect then
37: intervirtmsg←⊥
38: intervirtmsg.collectedLocs← collectedLocs
39: trigger BROADCAST(intervirtmsg, rcom)
40: round← distribute
41: if round = distribute then
42: collectedLocs.CLEAR()
43: round← collect

44: upon RECEIVE(intervirtmsg, vj) do
45: collectedLocs.COMBINE(intervirtmsg.collectedLocs)

46: upon GETCURRENTLOCATION = li such that li ∈ coveringCenters do
47: if round = distribute then
48: virtmsg←⊥
49: virtmsg.collectedLocs← collectedLocs
50: trigger BROADCAST(virtmsg, rcom)

the network. Similarly to collectedLocs, networkLocs has two
keys to store a location prediction: one key is the name of the
real node for which the prediction is made and the other key is
the time instant for which the prediction is made. For instance,
networkLocs(pi, t) returns the predicted location of pi at time
t. The networkLocs map is extended in distribute rounds, i.e.,
when new location predictions are received in collectedLocs of
a virtmsg (lines 24-27). Thus, whenever primitive PRESENT(t)
is invoked at pi, the map lookups on networkLocs as well
as distance comparisons are performed to find the real nodes
which are in the neighborhood region of pi at time t (lines
5-9). The names of real nodes found in this way, are stored in
set N which is returned as the result (lines 10-11).

D. Proof of Correctness

In this section, due to the lack of space, we only sketch
a correctness proof for the algorithm (for complete proof
see [5]). In what follows, we use the notations below:

– PR is a subset of P such that ∀pi ∈ PR, pi never leaves
region R and the movement of pi during ∆scan is negligible.

– tb,k and te,k refer to the first clock tick and the last clock
tick in a round k of the algorithm, respectively. For instance,
tb,3 and te,1 denote, respectively, the beginning of round 3 and
the end of round 1. Note that, te,k = tb,k + ∆scan − 1.

We show that our algorithm satisfies the neighbor detector
properties (stated in Section III) under the conditions below:

Conditions:

C1. All virtual mobile nodes are correct.

C2. ∆bcast of the timely scoped broadcast is negligible.

C3. The execution time of lines 36-40 and line 45 of the
algorithm is negligible.

C4. ∆predict = 4×∆scan + ∆future − 1.

C5. Let pi and pj be the processes defined in the time-limited
completeness property, then pi, pj ∈ PR.

C6. If PRESENT(t) of the neighbor detector is called, then t ≥
te,1 and tc ≥ tb,3 where tc is the time when PRESENT is called.

For the proof, we use Lemma 1 and Theorems 1 to 3 where
Lemma 1 is used to prove Theorem 1.

Lemma 1. Let pi and pj be the processes defined in the time-
limited completeness property. Then, at every round k s.t. k ≥
3, networkLocs of pi contains accurate location predictions
for both pi and pj for the time interval [te,1; te,k + ∆future].

Proof Sketch: For the proof of the lemma, we use the fact
that at each distribute round m, pi receives accurate location
predictions for both pi and pj which are valid for time interval
[te,m−1; te,m+2 + ∆future]. This can be easily shown based
on Conditions C1-C5 plus the scan completeness property of
the scan path, the strong accuracy property of the mobility
predictor and the timely delivery property of the underlying
broadcast. So, we prove the lemma by induction. Base case
corresponds to round k = 3. According to the algorithm,
round 2 is a distribute round. We know that in round 2, pi
has received accurate location predictions for both pi and pj
for interval T1 = [te,1; te,4 + ∆future] and has stored them in
its networkLocs. Let T2 = [te,1; te,3+∆future], then T2 ⊂ T1,
so, the lemma holds in this case. For Inductive step, we show
that if the lemma holds for a round k s.t. k ≥ 3, then it
holds for round k + 1. From inductive hypothesis, we get
that in round k, networkLocs of pi contains accurate location
predictions for both pi and pj for T3 = [te,1; te,k + ∆future].
Then, there exists two cases: (a) Round k+1 is a collect
round. In this case, in round k, which is a distribute round,
pi has received accurate location predictions for both pi and
pj for interval T4 = [te,k−1; te,k+2 + ∆future] and has stored
them in its networkLocs. Since [te,1; te,k+1 + ∆future] ⊂
(T3 ∪ T4), then the lemma holds for round k + 1 in this
case; (b) Round k+1 is a distribute round. In this case, in
round k − 1, which is a distribute round, pi has received
accurate location predictions for both pi and pj for interval
T5 = [te,k−2; te,k+1 + ∆future] and has stored them in its



networkLocs. Since [te,1; te,k+1 + ∆future] = T3 ∪ T5, then
the lemma holds for round k + 1 in this case.

Theorem 1. The neighbor detector algorithm satisfies the
time-limited completeness property.

Proof Sketch: From Condition C6, we have tc ≥ tb,3,
which means that PRESENT(t) is called in a round k s.t. k ≥ 3.
Also, t ≥ te,1 implies that the neighbor detection is not guaran-
teed for time instants before te,1. Thus, considering Condition
C6, we can reformulate the theorem as follows. Let pi and
pj be the processes defined in the time-limited completeness
property. Let PRESENT(t) be invoked at pi in round k s.t.
k ≥ 3. If loc(pj , t) ∈ Z(pi, rd, t) and te,1 ≤ t ≤ tc+∆future,
then pj ∈ N(pi, t) where tc is the time when PRESENT(t)
is called at pi. For the proof, we proceed as follows. By
Lemma 1, we know that at every round k s.t. k ≥ 3,
networkLocs of pi contains accurate location predictions for
both pi and pj for interval T1 = [te,1; te,k + ∆future]. In
round k, tc ∈ [tb,k; te,k]. Thus, let T2 = [te,1; tc + ∆future]
we have T2 ⊂ T1. Therefore, in round k, networkLocs of
pi contains accurate location predictions for both pi and pj
for T2. Since the algorithm guarantees the correct neighbor
detection matching (line 9), if loc(pj , t) ∈ Z(pi, rd, t), then
pj ∈ N(pi, t) for ∀t ∈ T2. So, the theorem holds.

Theorem 2. The neighbor detector algorithm satisfies the
perfect accuracy property.

Proof Sketch: Let pi and pj be the processes defined in the
perfect accuracy property, if pj ∈ N(pi, t), then there exists a
round where pi has received from a virtual node a virtmsg with
a collectedLocs map such that a location prediction for key pair
(pj , t) exists in virtmsg.collectedLocs. The no creation prop-
erty of the underlying broadcast guarantees that no location
prediction is created during collection, distribution and sharing
of location predictions. The strong accuracy property of the
mobility predictor also guarantees that the location predictions
collected from real nodes are accurate. Moreover, the algorithm
only detects pj as a neighbor of pi at time t if the distance
between their predicted locations at t is less than or equal to rd
(line 9). Hence, if pj ∈ N(pi, t), then loc(pj , t) ∈ Z(pi, rd, t)
and the theorem holds.

Theorem 3. The neighbor detector algorithm correctly imple-
ments the time-limited neighbor detector service.

Proof: The proof follows from Theorems 1 and 2.

E. Impact of Increasing the Number of Virtual Mobile Nodes
on ∆predict required for Correctness of the Algorithm

By Theorem 3, one of the conditions under which the algo-
rithm implements correctly the neighbor detector is ∆predict =
4×∆scan + ∆future− 1. Considering this fact and Eq. 1, we
find an upper bound for ∆predict:

∆predict <
4

vavg
× (c1 +

c2
n

) + ∆future − 1
(2)

According to Eq. 2, as n grows the algorithm requires
smaller values of ∆predict to correctly implement the neighbor
detector. However, as n approaches infinity, the right hand side
of the equation approaches 4

vavg
× c1 + ∆future − 1 which

is a constant. In practice, this means that if n is very large,
increasing n does not change any more ∆predict required for
correctness of the algorithm.

V. RELATED WORK

The idea of using virtual mobile nodes to facilitate the
design of algorithms for MANETs was first introduced in [6].
In [7], several basic algorithms that use virtual mobile nodes
to solve problems such as routing and collecting data in
MANETs are briefly presented. However, contrary to our
work, no explicit properties for the trajectory functions of
the virtual nodes are defined to guarantee their coordination.
In our previous work [3], we presented an algorithm that
implements the time-limited neighbor detector in a MANET.
Similarly to the present work, real nodes can predict their
locations up to ∆predict. However, the algorithm uses only a
single virtual mobile node that travels in the network, collects
location predictions and distributes neighbor detection-related
information. Thus, in order to stay correct, the algorithm
requires greater ∆predict values as the map size grows. This
drawback is one of the main motivations for the present work.

VI. CONCLUSION

We have introduced an algorithm that implements the time-
limited neighbor detector service for MANETs using n = 2k

virtual mobile nodes where k is a non-negative integer. We
showed that our algorithm is correct under certain conditions.
We also showed that as n grows, the algorithm remains correct
with smaller values of ∆predict. To the best of our knowledge,
this is the first work that uses multiple virtual mobile nodes
to implement a neighbor detector service. It is also the first
paper that defines a set of explicit properties for the trajectory
functions of the virtual nodes to guarantee their coordination.

In this paper, one of the conditions required for the cor-
rectness of the algorithm is the correctness of all virtual nodes.
So, as future work, we intend to design an algorithm that
implements the neighbor detector with the same guarantees
but at the same time can tolerate the failure of virtual nodes.
Acknowledgment. This research is partially funded by the Swiss
National Science Foundation in the context of Project 200021-140762.

REFERENCES

[1] B. Bostanipour, B. Garbinato and A. Holzer, Spotcast – A communication
abstraction for proximity-based mobile applications, In Proc. IEEE
NCA’12, pp. 121–129, 2012.

[2] B. Bostanipour and B. Garbinato, Improving neighbor detection for
proximity-based mobile applications, In Proc. IEEE NCA’13, pp. 177–
182, 2013.

[3] B. Bostanipour and B. Garbinato, Using virtual mobile nodes for
neighbor detection in proximity-based mobile applications, In Proc. IEEE
NCA’14, pp. 9–16, 2014.

[4] B. Bostanipour and B. Garbinato, Effective and efficient neighbor de-
tection for proximity-based mobile applications, In Computer Networks
Journal, Elsevier, vol. 79, pp. 216–235, 2015.

[5] B. Bostanipour and B. Garbinato, Neighbor detection based on multiple
virtual mobile nodes, Tech Report DOP-20150615, UNIL, 2015.

[6] S. Dolev, S. Gilbert, N. A. Lynch, E. Schiller, A. A. Shvartsman, J. L.
Welch: Virtual Mobile Nodes for Mobile Ad Hoc Networks. In Proc.
DISC’04, pp. 230–244, 2004.

[7] S. Dolev, S. Gilbert, N. A. Lynch, E. Schiller, A. A. Shvartsman, J. L.
Welch. Virtual mobile nodes for mobile ad hoc networks. Tech Report
LCS-TR-937, MIT, 2004.

[8] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.


