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Abstract

The ubiquity of mobile devices and particularly smartphones has caused the emergence of

a new trend of distributed applications known as Proximity-Based Mobile (PBM) applica-

tions. These applications enable a user to interact with others in a defined range and for

a certain time duration for different purposes such as social networking, dating, gaming

and driving. The goal of this thesis is to introduce a set of programming abstractions and

algorithms that can be used for building PBM applications in a category of mobile net-

works, called mobile ad hoc networks (MANETs). In fact, the characteristics of MANETs

make them a promising technology to enable PBM applications. However, the existing ab-

stractions and algorithms in the literature of MANETs are not fully adequate for building

PBM applications. Thus, in this thesis we define proximity-based durable broadcast and

proximity-based neighbor detection as the main requirements of PBM applications. Then,

in each part of the thesis, we introduce abstractions and algorithms which address one of

these requirements.

In the first part of the thesis, we present abstractions and algorithms for proximity-

based durable broadcast. Thus, we introduce spotcast, a new communication abstraction

that enables a node to disseminate a message for a given time duration to all nodes located

within a given range. We present three variants of spotcast, which differ in their timing

guarantees for message delivery. We also introduce scoped broadcast, a communication

abstraction that enables a node to disseminate a message to all nodes located within a given

range. We introduce two variants of scoped broadcast: a reliable synchronous variant as

well as an asynchronous variant. We discuss the implementability of each scoped broadcast

variant in the single-hop and multi-hop cases. We then introduce a generic algorithm, which

can implement the three spotcast variants using different scoped broadcast variants and

different types of message buffers.

In the second part of the thesis, we present abstractions and algorithms for proximity-

based neighbor detection. We begin by adapting the hello protocols (which are one of

the most famous neighbor detection algorithms in MANETs) for effective and efficient

xvii



neighbor detection in three typical urban environments where PBM applications are mostly

used. Effectiveness refers to the degree to which the detection is successful and efficiency

refers to the degree to which the detection is energy saving. Based on a realistic simulation-

based study, we show that in all three environments, there is a conflict between effectiveness

and efficiency. Then for each environment, we propose a communication strategy which

makes a good tradeoff between effectiveness and efficiency in that environment. One of

the limitations of the hello protocols is that they only detect current neighbors. However,

for some of the existing PBM applications, neighbor discovery is not restricted to current

neighbors. Thus, we continue the second part of the thesis by introducing a new neighbor

detection abstraction called the time-limited neighbor detector. This abstraction enables a

node to detect its neighbors in the past, present and up to some bounded time interval in

the future. We introduce two algorithms that implement the time-limited neighbor detector

abstraction based on the notion of virtual mobile nodes already presented in the literature.

The first algorithm is simple but limited and uses a single virtual mobile node. The second

algorithm is more general and advanced and uses multiple virtual mobile nodes.

Keywords–Distributed Systems; Distributed Algorithms; Wireless Ad Hoc Networks;

Mobile Ad Hoc Networks (MANETs); Mobile Computing; Proximity-Based Mobile (PBM)

Applications; Smartphone; Proximity-Based Broadcast; IEEE 802.11; Energy Efficiency;

Neighbor Detection; Virtual Mobile Node; Location Prediction; Log-normal Shadowing

Radio Propagation Model; ns-2 Network Simulator; Wireless Network Interface Card.
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Résumé

L’omniprésence des appareils mobiles et en particulier des smartphones, a causé l’émergence

d’un nouveau type des applications réparties qu’on appelle les applications mobiles sen-

sibles à la proximité ou applications PBM (Proximity-Based Mobile). Ces applications

permettent à un utilisateur d’interagir avec tous les autres utilisateurs situés dans un

rayon donné autour de lui pendant une durée déterminée. Ces interactions peuvent avoir

des fins différentes, telles que le réseautage social, le jeu en ligne ou le support à la conduite

automobile. L’objectif de cette thèse est de proposer des abstractions et des algorithmes

qui peuvent être utilisés pour construire les applications PBM dans un type de réseau

mobile qu’on appelle réseaux mobiles ad hoc ou MANETs (Mobile Ad-hoc Networks). En

effet, les caractéristiques des MANETs en font une technologie prometteuse pour les ap-

plications PBM. Toutefois, les abstractions et les algorithmes existants dans la littérature

des MANETs ne sont pas tout à fait adéquats pour construire les applications PBM. Dans

cette thèse, nous définissons le broadcast durable sensible à la proximité et la détection de

voisins sensible à la proximité comme les exigences principales des applications PBM. En-

suite, dans chaque partie de la thèse, nous proposons des abstractions et des algorithmes

qui sont conçus pour satisfaire ces exigences.

Dans la première partie de la thèse, nous présentons des abstractions et des algorithmes

pour le broadcast durable sensible à la proximité. Pour ce faire, nous introduisons spotcast,

une nouvelle abstraction qui permet à un noeud de diffuser un message pendant une durée

déterminée à tous les noeuds situés dans un rayon donné autour de lui. Nous présentons

trois variantes de spotcast, qui diffèrent par leurs garanties temporels pour la livraison

des messages. Nous présentons aussi scoped broadcast, une abstraction qui permet à un

noeud de diffuser un message à tous les noeuds situés dans un rayon donné autour de lui.

Nous introduisons deux variantes de scoped broadcast: une variante synchrone fiable ainsi

qu’une variante asynchrone. Nous discutons de l’implémentation single-hop et multi-hop

de chaque variante de scoped broadcast. Ensuite, nous présentons un algorithme générique,

xix



qui implémente les trois variantes de spotcast en utilisant les différentes variantes de scoped

broadcast et différents types de tampon des messages.

Dans la deuxième partie de la thèse, nous présentons les abstractions et les algorithmes

pour la détection de voisins sensible à la proximité. Nous commençons par adapter les pro-

tocoles hello (qui font partie des algorithmes de détection de voisins les plus utilisés dans

les MANETs) pour la détection efficace et efficiente de voisins dans trois environnements

urbains typiques où les applications PBM sont utilisées. Par efficacité, nous entendons le

degré auquel la détection est réussie et par efficience, nous entendons le degré auquel la

détection est efficace du point de vue de sa consommation d’énergie. En se basant sur des

simulations réalistes, nous montrons que dans les trois environnements, il y a un conflit

entre l’efficacité et l’efficience. Ensuite, pour chaque environnement, nous présentons une

stratégie de communication qui fait un compromis entre l’efficacité et l’efficience dans cet

environnement-là. L’une des limitations des protocoles hello est qu’ils ne détectent que

les voisins actuels. Cependant, pour certaines applications PBM, la détection de voisins

n’est pas limitée aux voisins actuels. Nous poursuivons donc la seconde partie de la thèse

en introduisant une nouvelle abstraction de détection de voisins, appelée le time-limited

neighbor detector. Cette abstraction permet à un noeud de détecter ses voisins dans le

passé, le présent et jusqu’à un certain intervalle de temps borné dans le futur. Nous

présentons deux algorithmes qui implémentent le time-limited neighbor detector, en util-

isant les noeuds virtuels mobiles (la notion du noeud virtuel mobile existe déjà dans la

littérature). Le premier algorithme est simple et limité et utilise un seul noeud virtuel

mobile. Le second algorithme est plus général et utilise plusieurs noeuds virtuels mobiles.

Mots clefs–Systèmes Répartis; Algorithmes Répartis; Réseaux Sans Fil Ad Hoc;

Réseaux Mobiles Ad Hoc (MANETs); Informatique Mobile; Applications Mobiles Sensi-

bles à la Proximité ou Applications PBM; Smartphone; Broadcast Sensible à la Proximité;

IEEE 802.11; Économies d’énergie; Détection de Voisins; Noeud Virtuel Mobile; Prédiction

de Lieu; Modèle de Propagation Radio; Simulateur Réseau ns-2; Carte Réseau Sans Fil.
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چൊیده

توزیع کاربردی برنامه�های از نوینͬ پیدایشگونه موجب هوشمند تلفنهای ویژه به و موبایل دستͽاه�های فراگیری
شده (Proximity-BasedMobile applications)ͬͺنزدی بر مبتنͬ� موبایل کاربردی برنامه�های نام به شده
پیرامونش در تعریفشده شعاعͬ در کاربران دیͽر با مͬ��تواند یͷکاربر کاربردی، برنامه�های این وسیله به است.
همچون گوناگونͬ مقاصد برای مͬ��تواند ارتباط برقرای این کند. برقرار ارتباط شده تعریف زمانͬ� مدت برای و
(انتزاع ابسترکشن�ها ارائه نامه پایان این هدف گیرد. صورت رانندگͬ و بازی دوست�یابͬ، اجتماعͬ، شبͺه�های
گونه�ای در �ͬͺنزدی بر مبتنͬ� موبایل کاربردی برنامه�های ساختن برای بتوانند که که است الͽوریتم�های و ها)
واقع، در شوند. استفاده (MANETs) ها منت یا ادهاک موبایل های شبͺه نام به موبایل های شبͺه از
مبتنͬ� موبایل کاربردی برنامه�های برای بخشͬ نوید فناوری که مͬ��دهد را این توانایͬ� آنها به منت�ها ویژگیهای
مناسب کاملا اند، شده طراحͬ� منت�ها برای کنون تا که الͽوریتم�هایͬ� و ابسترکشن�ها اما، باشند. �ͬͺنزدی بر
�ͬͺنزدی بر مبتنͬ� مداوم برادکست نامه پایان این در نیستند. ͬͺنزدی بر مبتنͬ� موبایل کاربردی برنامه�های ساختن
تعریف �ͬͺنزدی بر مبتنͬ� موبایل کاربردی برنامه�های بنیادی نیازهای عنوان به ͬͺنزدی بر مبتنͬ� یابͬ� همسایه و
نیاز�ها این از �ͬͺی که مͬ��شوند ارائه الͽوریتم�های و ابسترکشن�ها نامه پایان این از بخش هر در سپس، شوند. مͬ�

مͬ��دهند. پوشش را
ارائه �ͬͺنزدی بر مبتنͬ� مداوم برادکست برای الͽوریتم�هایͬ� و ابسترکشن�ها نامه، پایان این نخست بخش در
گره ͷی آن وسیله به که مͬ�کنیم معرفͬ� را (spotcast) اسپاتͺست نام به ابسترکشنͬ ما بدینسان، مͬ��شوند.
سه� ما کند. پخش شده تعریف زمانͬ� مدت برای و پیرامونش در شده تعریف شعاعͬ در را پیامͬ مͬ��تواند
به ابسترکشنͬ ما همچنین، مͬ��دهیم. ارائه را پیام دریافت برای متفاوت زمانͬ� تضمینهای با اسپاتͺست از گونه
در را پیامͬ مͬ��تواند گره ͷی آن وسیله به که مͬ��کنیم معرفͬ� را (scoped broadcast) برادکست اسͺوپد نام
قابل گونه ͷی مͬ��دهیم: ارائه را برادکست اسͺوپد از گونه دو ما کند. پخش پیرامونش در شده تعریف شعاعͬ
هر سازی پیاده ما . (asynchronous) ناهمͽام گونه ͷی و (reliable synchronous) همͽام و اعتماد
(generic)�ͬعموم الͽوریتم ͷی سپس، مͬ�کنیم. بررسͬ� هاپ چند حالتتͷهاپو در را گونه�ها این از کدام
بافرهای و برادکست اسͺوپد متفاوت گونه�های از استفاده با را اسپاتͺست گونه سه� مͬ��تواند که مͬ��دهیم ارائه را

کند. سازی پیاده متفاوت پیام
مͬ��شوند. ارائه �ͬͺنزدی بر مبتنͬ� یابͬ� همسایه برای الͽوریتم�هایͬ� و ابسترکشن�ها نامه، پایان این دوم بخش در
موجود های الͽوریتم� شناخته�ترین از �ͬͺی که ، (hello protocols) هلو پروتͺل�های تطبیق با را بخش این ما
یابͬ� همسایه برای را هلو پروتͺل�های ما تر�، دقیق بیان به مͬ�کنیم. آغاز هستند، منت�ها در یابͬ� همسایه برای
استفاده آنها در بیشتر �ͬͺنزدی بر مبتنͬ� موبایل کاربردی برنامه�های که شهری محیط سه� در ور بهره و بخش اثر
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درجه مفهوم به بهره�وری و یابͬ� همسایه موفقیت درجه مفهوم به بخشͬ اثر اینجا در مͬ��دهیم. تطبیق مͬ��شوند،
واقعͽرایانه شبͺه�ای سازی�های اساسشبیه بر ما باشد. مͬ� یابͬ� همسایه فرایند در انرژی مصرف در جویͬ� صرفه
محیط هر برای سپس، دارند. قرار هم با مغایرت در بهره�وری و بخشͬ اثر محیط، سه� هر در که مͬ��دهیم نشان
قرار بر وری بهره و بخشͬ اثر میا��ن خوبͬ� (tradeoff) بستان بده که مͬ��کنیم پیشنهاد ارتباطͬ� استراتژی ͷی
تشخیص را کنونͬ همسایͽان توانند مͬ� تنها آنها که است این هلو پروتͺل�های کاستͬ�های از �ͬͺی مͬ��کند.
به مختص یابͬ� همسایه ،ͬͺنزدی بر مبتنͬ� موبایل کاربردی برنامه�های برخͬ� در که است حالͬ� در این ��دهند.
برای نوین ابسترکشن ͷی ارائه با را نامه پایان این دوم بخش ما این، بنابر نمͬ�شود. کنونͬ همسایͽان یافتن
مͬ��دهیم. ادامه (time-limited neighbor detector) زمان در محدود یاب همسایه نام به یابͬ� همسایه
آینده، در محدودی زمانͬ� بازه تا و حال گذشته، در را همسایͽانش مͬ��تواند گره ͷی ابسترکشن، این وسیله به
گره�های از استفاده با را زمان در محدود یاب همسایه که مͬ�کنیم معرفͬ� را الͽوریتم دو ما کند. شناسائͬ
است ابسترکشن ͷی (virtual mobile node) متحرک مجازی گره مͬ��کنند. سازی پیاده متحرک مجازی
در محدود یاب همسایه و است محدود و ساده نخست، الͽوریتم است. شده طراحͬ� منت�ها برای پیشتر که
است تر عمومͬ� و تر پیشرفته دوم، الͽوریتم مͬ��کند. سازی پیاده متحرک مجازی گره ͷی از استفاده با را زمان

مͬ��کند. سازی پیاده متحرک مجازی گره چندین از استفاده با را زمان در محدود یاب همسایه و
موبایل شبͺه�های سیم؛ بͬ� ادهاک شبͺه�های شده؛ توزیع الͽوریتم�های شده؛ توزیع سیستم�های واژگانکൎیدی
برادکست هوشمند؛ تلفن نزدیͺͬ�؛ بر مبتنͬ� موبایل کاربردی برنامه�های موبایل؛ رایانش ها؛ منت یا ادهاک
مͺان؛ پیشبینͬ� متحرک؛ مجازی گره یابͬ�؛ همسایه انرژی؛ وری بهره ٨٠٢٫١١؛ آی�تریپل�ئͬ نزدیͺͬ�؛ بر مبتنͬ�

سیم. بͬ� شبͺه کارت اس�-٢؛ ان شبͺه ساز �شبیه نرمال؛ لاگ رادیویͬ انتشار مدل

xxii



Acknowledgements

I would like to thank my advisor, Professor Benôıt Garbinato, for his guidance
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Chapter 1

Introduction

A distributed application is a software that executes on a collection of autonomous

networked computers and which aims at producing some sort of cooperation. Ab-

stractions and algorithms form the building blocks of a distributed application. An

abstraction is an artifact that provides a functional interface and a set of guarantees

for an entity or a service in a distributed application. An algorithm is either an

implementation of an abstraction (i.e., it satisfies the abstraction’s guarantees) or is

best-effort, i.e., it implements no abstraction and satisfies some fair but not formal

guarantees.

Until the mid-nineties, distributed applications tended to be strictly confined

to intranets, that is, networks within organizations such as banks or companies.

These networks were usually composed of wired stationary computers and protected

by a firewall from the outside world. However, due to the exponential increase in

the number of computers of all sizes interconnected via the Internet, distributed

applications soon broke free from intranets and evolved. The emergence of peer-to-

peer file sharing applications such as Kazaa in late nineties and the growing interest

for cloud computing in the recent years are famous examples of this evolution.

Today with the increasing adoption and usage of mobile devices, in particular

smartphones, we face the emergence of a new blend of distributed applications,

known as proximity-based mobile (PBM) applications. These applications enable a

user to interact with others in a defined range and for a certain time duration e.g.,

for social networking (WhosHere [73], LoKast [52], iGroups [35], LocoPing [51]),

gaming (local multiplayer apps [50]) and driving (Waze [72]). Compared to typical

distributed applications that flourished in the past two decades, PBM applications

have intrinsic spatio-temporal semantics, i.e., they are defined for a given range and

some time duration.
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In this thesis, we consider the problem of building PBM applications in a category

of mobile networks called mobile ad hoc networks (MANETs). As we further discuss

in this chapter, the characteristics of MANETs make them a promising technology to

enable PBM applications. However, the existing abstractions and algorithms in the

literature of MANETs are not fully adequate for building PBM applications. In fact,

the majority of the existing abstractions and algorithms in the literature of MANETs

are originally devised for traditional (or intranet-oriented) applications. Accordingly,

these abstractions and algorithms are location and time-oblivious. Moreover, the

main concern of these abstractions and algorithms is usually to reach some sort of

network-wide information consistency, whereas the main concern of PBM applica-

tions is the spatio-temporal nature of interactions i.e., the fact that they are defined

for a certain range and a certain time duration. In the literature of MANETs, there

also exist some location and/or time-aware abstractions and algorithms. However,

they cannot entirely satisfy the requirements of PBM applications.

To fill the described research gap, in this thesis we design and develop new abstrac-

tions and algorithms for building PBM applications in MANETs. We also propose

ways to adapt some of the existing algorithms in order to be used as the building

blocks for PBM applications.

The rest of this chapter is structured as follows. In Section 1.1, we introduce the

definition of PBM applications and present their examples and requirements. We

then present the definition of MANETs. Finally, we discuss the reason behind our

choice of MANETs as the underlying technology for building PBM applications.

In Section 1.2, we review the literature of MANETs and show that the existing

abstractions and algorithms are not fully adequate for building PBM applications.

In Section 1.3, we present the overall question that we address in this thesis as well

as the research questions which are derived from it. In Section 1.4, we present an

overview of the thesis and its chapters. In particular, we define how each chapter

addresses some of the research questions already presented in Section 1.3. Finally,

in Section 1.5 we present the list of publications related to this thesis.
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1.1 Proximity-Based Mobile (PBM) Applications and

Mobile Ad Hoc Networks (MANETs)

Throughout this thesis, we focus on designing and developing abstractions and al-

gorithms that can be used for building proximity-based mobile (PBM) applications

in mobile ad hoc networks (MANETs). Thus, in this section we first introduce the

definition of PBM applications and present their examples and requirements. We

then present the definition of mobile ad hoc networks. Finally, we discuss the rea-

son behind our choice of MANETs as the underlying technology for building PBM

applications.

1.1.1 Proximity-Based Mobile (PBM) Applications

Definition. We define a proximity-based mobile (PBM) application, as a distributed

application which has three characteristics:

(1) it involves a set of mobile devices;

(2) interaction between devices follow a peer-to-peer communication model;

(3) it has spatio-temporal semantics, i.e., it is defined for a given range (proximity

of the devices) and a certain time duration.

The most common examples of PBM applications can be found in some of existing

smartphone applications. These applications are used for different purposes such as

social networking or dating (WhosHere [73], LoKast [52], iGroups [35], LocoPing [51],

FireChat [23]), event organizing and professional networking (Bizzabo [7]), gaming

(local multiplayer apps [50]) and driving (Waze [72]).

Requirements. Here we list the requirements of PBM applications, which are

mainly defined based on the characteristics of current PBM applications.

• Proximity-Based Durable Broadcast. In various existing PBM applications, a mes-

sage should be sent to all nearby devices for some time duration. An example of

such applications is Waze [72]. Waze is a smartphone-based driving application

which among other things, enables users to create real-time and accurate news

about conditions of routes and share them with others in their proximity. For
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instance, if a user Alice is stuck in a traffic jam, she can report this event for a

certain amount of time in her proximity, so other users approaching her location

can be notified and can avoid the traffic jam. Another example is LoKast [52].

LoKast is a smartphone-based social networking application which among other

things, enables a user Alice, participating in some social event, to share photos

taken during the event with other users attending that event.

The tasks described in both above mentioned applications, can be performed by

a proximity-based durable broadcast: in the case of Waze, the traffic alert can

be broadcast in the proximity of Alice for some time duration and in the case

of LoKast, the URL pointing to the photos taken at the event can be broadcast

in the proximity of Alice for some time duration. However, the message delivery

guarantees of proximity-based durable broadcast are not the same in both appli-

cations. More precisely, in the case of Waze it is important to receive the traffic

alert quickly and in a time-limited interval whereas in the case of LoKast, a user

Bob who was in the proximity of Alice during the event, can receive the URL

even after the event, i.e., as soon as he stays in the neighborhood of Alice long

enough (to deliver the URL).

• Proximity-Based Neighbor Detection. Discovering who is nearby is one of the

basic requirements of PBM applications. It is the preliminary step for further

interactions between users. It also enables users to extend their social network

from the people that they know to the people that they might not know but who

are in their proximity. For instance, in a simple usage scenario of smartphone-

based social networking applications such as WhosHere [73] or LoKast [52], a user

Alice first discovers nearby users and then decides to view their profiles, add them

as friends or start a chat with a user or a group of users with her smartphone. She

will be constantly notified about the changes in her neighborhood, i.e., whenever

a user enters or leaves her proximity.

The neighbor discovery is not always limited to the current neighbors. For

instance, with the smartphone-based social networking applications such as

iGroups [35] or LocoPing [51], Alice can discover others who were in her vicinity

during a past event (e.g., concert, tradeshow, wedding) or simply during a past

time interval (e.g., the past 24 hours). One can also think of applications that

provide Alice with the list of people who will be in her proximity up to some

time interval in the future and thus create the potential for new types of social

interactions.
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Based on the above mentioned examples, a proximity-based neighbor detection

should have the following characteristics:

(1) It should be effective: even if a device remains in proximity for a limited

amount of time, it should be detected with a high probability as a neighbor;

(2) It should be efficient : due to the limited battery life of mobile devices, the

neighbor-detection should be performed by consuming as little energy as pos-

sible;

(3) It should detect not only the current neighbors, but also the past and the

future neighbors (up to some bounded time-interval).

1.1.2 Mobile Ad Hoc Networks (MANETs)

Mobile ad hoc networks are self-configuring, infrastructureless networks of mobile

nodes (devices). In a MANET, each node is equipped with wireless communica-

tion and has a transmission range. The transmission range of a node is defined

by the transmission power and the frequency of its radio and is influenced by the

environmental factors such as radio interference, packet collision, obstructions and

movement. Thus, in idealized conditions (i.e., in the absence of any interference,

obstruction, movement, etc...), when a node sends a message using its radio every

node which is in its transmission range will receive the message. This is known as

a broadcast at the medium access control (MAC ) layer and the nodes that receive

the message are one hop away from the sender. If a node is outside the transmission

range of the sender and should receive the message, intermediate nodes have to route

the message. This is known as multi-hop communication [70].

1.1.3 Why Building Proximity-Based Mobile (PBM)

Applications in Mobile Ad Hoc Networks (MANETs)?

In this thesis we consider an underlying MANET architecture to build PBM appli-

cations. We acknowledge the fact that, currently the majority of PBM applications

use infrastructure-based architectures and MANETs are mostly used to enable mil-

itary and disaster relief applications. Thus, we do not dismiss the idea of using

infrastructure-based architectures to build PBM applications. However, we believe
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that MANETs are a promising technology to enable PBM applications for the two

following reasons:

(1) Characteristics of MANETs make them a natural technology for building PBM

applications. More precisely, similar to PBM applications, MANETs have a

spatio-temporal nature i.e., two nodes can communicate in MANETs if they

are in certain distance to each other (to have radio connectivity) for a certain

amount of time. Moreover, MANETs operate in a fully distributed fashion with-

out the aid of a central authority. Therefore, they are preferable when a fast

and unpredicted communication needs to take place between nodes that are in

proximity of each other for a certain amount of time.

(2) There is a good chance that the usage of MANETs in urban environments (i.e.,

where PBM applications are mostly used) will grow in the future. In fact, mobile

devices are increasingly equipped with ad hoc communication capabilities (e.g.,

WiFi in ad hoc mode or Bluetooth). Moreover, MANETs can be used in urban

environments as a complement to cellular networks (e.g., in a hybrid architecture)

to solve problems such as poor coverage of base stations on the edge of the cells.

Accordingly, in recent years some PBM applications have been proposed that can

be executed in hybrid and/or pure ad hoc modes. An example of such applications

is FireChat [23]. FireChat is a smartphone-based social networking application

that was released on the App store in 2014 and can be executed in both cellular

and ad hoc networks. Another example is iGropes [35], a smartphone-based social

networking application that can be executed in hybrid architectures.

1.2 Related Work

In Section 1.1, we defined proximity-based durable broadcast and proximity-based

neighbor detection as the two main requirements of PBM applications. Thus, in

this section, we first survey the existing communication abstractions and algorithms

in MANETs and discuss the possibility of using them for proximity-based durable

broadcast. We then survey the existing neighbor detection abstractions and algo-

rithms in MANETs and discuss the possibility of using them for proximity-based

neighbor detection.
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1.2.1 Communication Abstractions and Algorithms

In the following, we discuss two main categories of communication abstractions and

algorithms in MANETs: the traditional communication abstractions and algorithms

that are time and location-oblivious and the time and/or location-aware communi-

cation abstractions and algorithms.

1.2.1.1 Traditional Communication Abstractions and Algorithms

The traditional communication abstractions and algorithms are originally designed

for the traditional distributed systems such as intranets and wired stationary net-

works. Here, we present a review of the most famous classes of the traditional commu-

nication abstractions and algorithms namely, Broadcast, Unicast, Multicast and Con-

sensus. For each class, we study its most notable implementations in MANETs. As

we describe, the implementation of these abstractions and algorithms in MANETs

causes some difficulties, which are due to their original design. Finally, in a discus-

sion section, we summarize the results of our review and discuss the possibility of

using these abstractions and algorithms for proximity-based durable broadcast.

Broadcast. The broadcast problem refers to the sending of a message by a source

process, called the broadcaster, to all processes in the system. There exist several

variants of the broadcast abstraction [28]. They mainly differ in their message de-

livery and ordering guarantees. These guarantees are defined assuming a traditional

wired network model. Thereby, implementing them in MANETs causes difficulties.

For instance, one of the basic guarantees offered by many broadcast variants is

reliability. A broadcast is said to be reliable if all correct processes in the system

deliver the broadcast message. In MANETs, guaranteeing reliability for a broad-

cast is challenging. Message loss in MANETs is more frequent than in traditional

networks because of collisions and radio interferences. Node mobility also results

in a frequently changing network topology that makes using stable structures such

as trees for broadcasting more critical. In addition, the broadcast message should

often be retransmitted by some nodes in order to reach all the nodes in the network.

However, retransmission is expensive (in terms of bandwidth and energy consump-

tion) and should be avoided if it is possible. Because of these reasons, several papers

assume that achieving full reliability for MANETs is impractical [53]. Therefore,

they consider reliable broadcasting in MANETs as the problem of minimizing the
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number of forwarding nodes (to optimize energy and bandwidth), while maximizing

the number of nodes that deliver the message (to increase reliability). Some of the

proposed algorithms for reliable broadcasting in MANETs use a type of contextual

information to choose the forwarding nodes. The contextual information enables

these algorithms to better deal with the constantly changing network topology and

mobility of nodes [27].

Unicast, Multicast. Unicast refers to sending a message from a source to a desti-

nation process. Multicast is the transmission of packets to a group of zero or more

hosts often identified by a single destination address. In MANETs, both unicast and

multicast are often performed in a multi-hop manner, since the radio transmission

range of the source node does not necessarily cover all the destinations. Multicast

routing tries to avoid multiple transmissions of the same message to receivers be-

longing to the same subset. Thus, in applications where subsets of nodes require

the same specific information, multicast is more resource efficient and consequently

preferable to unicast.

The routing problem in MANETs is different compared to wired networks. Firstly,

the routing is more difficult since the network topology changes frequently as a result

of node movement. Secondly, the resources such as bandwidth and devices battery

power are more limited. Therefore, the routing protocols developed for wired net-

works are not usually suitable for MANETs. For instance, Distance Vector routing

and Link State routing are two of the most popular dynamic routing algorithms

used in wired networks [69]. These algorithms assume predictable network proper-

ties, such as static link quality and network topology. In MANETs, the network

topology changes frequently and the link quality is variable. Thus, in these net-

works, using a Distance Vector or a Link State routing protocol designed for wired

networks results to a significant increase of the control overhead. The increase in the

control overhead may even overuse the limited network bandwidth. Routing infor-

mation inconsistency and route loops are other problems caused by using a Distance

Vector or a Link State routing algorithm designed for wired networks in MANETs.

Multicast routing, in particular, is difficult in MANETs. Node mobility excludes the

use of a fixed multicast topology and makes keeping track of the multicast group

membership more complicated than in wired networks.

In the literature, various unicast and multicast routing protocols have been pro-

posed for MANETs. However, there exists no unique routing solution that works well
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in all scenarios with different traffic overloads, link capacities, connectivity, network

sizes and node mobility models [49; 1].

One way to classify MANET-routing protocols is to consider the mechanism that

they use to acquire and update the routing information. In a proactive routing pro-

tocol, nodes keep a routing table with the next hop of every possible packet desti-

nation. Here, the challenge is to keep an up-to-date routing table given the frequent

changes in network topology. Wireless Routing Protocol (WRP) [59], the Destina-

tion Sequence Distance Vector (DSDV) [62] and the Fisheye State Routing (FSR)

are examples of proactive mobile ad hoc network routing protocols.

A reactive routing protocol discovers routes only when requested by the applica-

tion (i.e. on demand). In MANETs, reactive routing protocols have better scalability

than proactive routing protocols, since they result in less control overhead. However,

using reactive routing protocols can cause the source nodes to experience long de-

lays for route searching before they can send their data packets. Dynamic Source

Routing (DSR) [37] and Ad hoc On-demand Distance Vector routing (AODV) [63]

are examples for reactive routing protocols for mobile ad hoc networks.

Hybrid routing protocols combine both proactive and reactive routing to reduce

the drawbacks of both approaches. Hybrid routing usually relies on a hierarchical

network architecture where proactive and reactive routing are applied to different

levels of the hierarchy. Zone Routing Protocol (ZRP) [29] and Hybrid Ad hoc Rout-

ing Protocol (HARP) [60] are examples of hybrid routing protocols designed for

MANETs.

Contextual information such as node location is also exploited by some MANET

routing protocols. In a location-based routing protocol, the locations of nodes are

used by routing protocols to better deal with the highly dynamic environments of

MANETs. Location Aided Routing (LAR) [41] and Distance Routing Effect Algo-

rithm for Mobility (DREAM) [4] are examples of location-based routing protocols

designed for MANETs.

Consensus. In the consensus problem, processes in a system have to agree on a

common and irrevocable value called the decision value, which is the initial value of

one of the processes.

Consensus is a fundamental building block for many distributed applications. For

instance, it can be used to implement atomic broadcast [16; 28]. In fact consensus and

atomic broadcast are equivalent from a solvability point of view. Atomic broadcast

guarantees that all processes deliver the same set of messages in a common global
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order. One of the applications of atomic broadcast is to build fault-tolerant systems.

A fault tolerant system is a system which offers availability and reliability. Avail-

ability ensures that the system is ready to be used immediately. Reliability ensures

that the system can continue to run without failures. A service can be made fault-

tolerant by replicating its state to a group of servers, so that even if some servers

fail, the service remains available. Replication management can be ensured by the

state machine replication approaches [43; 44; 65; 66]. In these approaches, to main-

tain replica consistency, processes should receive and process the same sequence of

requests. This is achieved by using atomic broadcast [28; 9].

It is preferable to consider the consensus problem in MANETs as the consensus

problem in an asynchronous system. In fact, an asynchronous system model seems to

be more suitable for MANETs, where message latencies are usually unpredictable.

However, according to the FLP impossibility result [24], consensus cannot be solved

deterministically in an asynchronous system that is subject to even a single crash

failure. Intuitively, this result stems from the fact that in asynchronous systems it is

impossible to distinguish between a process crash and a process which is very slow.

To overcome this impossibility, some solutions were proposed in the literature.

One solution is to assume that the asynchronous system eventually becomes syn-

chronous (partial synchrony) [21; 17]. Another solution is to probabilistically guar-

antee the termination property of the consensus by using a random number gen-

erator (randomization) [5; 22]. Chandra and Toueg also proposed another solution

by augmenting the asynchronous system with unreliable failure detectors [10]. In

this solution, a system model is considered in which processes can crash but links

are reliable. This model was originally assumed in [24] and was later used (with

extensions in some cases) by a number of papers addressing the consensus problem.

In the traditional systems achieving link reliability is not usually hard. However, in

MANETs, link failures are more frequent than the traditional networks and achiev-

ing reliability is expensive. Therefore not only process failures but also link failures

should be considered for solving consensus in these networks [9].

In [18; 61], the consensus problem is considered in the presence of message losses.

To overcome message losses, each process periodically resends the latest message

that it has sent and a process skips the current round if it receives a message from

a higher round. These approaches require high message complexity and seem not to

be very suitable for MANETs.
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In [13], the consensus problem is considered for wireless ad hoc networks with

locally unknown participants and crash-stop model. The network is divided into

a series of non-overlapping grid squares. Every node knows a priori its location

in the grid and every grid square is assumed to be populated. First, single-hop

consensus is run for each grid square and then all nodes gossip the local decisions.

Once a node receives the values for each grid square decision, it can decide by

applying a deterministic function on the set of received values. The paper assumes

that inter-node communication is synchronous and nodes do not crash in the middle

of executing a broadcast. The various assumptions taken by the protocol seem to

make it restrictive for MANETs.

In [74], a consensus protocol for MANETs based on 3P failure detector [26] is

proposed. A two-layer hierarchy on the network is imposed by clustering and k

predefined nodes are chosen as clusterheads such that k < n where n denotes the

number of nodes in the network. Each mobile node is associated with a clusterhead.

The protocol tolerates f faulty nodes and requires one correct clusterhead. Thus,

f < min(k, n/2). If clusterheads change during the execution, another consensus

should be solved to agree on the clusterheads, which leads to circularity. Authors

also state that their solution can be used with lossy links if it undergoes complicated

design changes [9].

Discussion. As described in this section, there exist various implementations of the

traditional communication abstractions and algorithms in MANETs. However, we

believe that these abstractions and algorithms are not fully adequate for proximity-

based durable broadcast for two main reasons. Firstly, these abstractions and algo-

rithms are location and time-oblivious, whereas proximity-based durable broadcast

is a location-aware and time-aware communication. Secondly, traditional communi-

cation abstractions and algorithms usually aim to reach some sort of network-wide

information consistency such as reliability for message broadcast or agreement for

consensus, whereas in the case of proximity-based durable broadcast the main con-

cern is to disseminate a message to nodes which are in a given range during a given

time period. As we have discussed, the contextual information such as location of

nodes is used in some of existing implementations of traditional communication ab-

stractions and algorithms in MANETs. Note however that the purpose of this usage

is only to improve the performance in highly dynamic environment of MANETs and

is not related to the semantics of these abstractions and algorithms.
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1.2.1.2 Location-Aware and/or Time-Aware Communication

Abstractions and Algorithms

We present a review of the most famous classes of location-aware and/or time-

aware communication abstractions and algorithms namely, Geocast, Mobicast and

Location-Based Publish/Subscribe. Finally, in a discussion section, we summarize

the results of our review and discuss the possibility of using these abstractions and

algorithms for proximity-based durable broadcast.

Geocast. In a geocast routing protocol, a message is disseminated to all nodes which

are within a given geographic area called the geocast region. Thus, geocast is a type

of multicast in which group membership is defined with respect to a geographic area.

Various geocast routing protocols were proposed for ad hoc networks [40; 42; 8; 46;

45; 55; 54] and in particular, for vehicular ad hoc networks (VANETs) [2; 38; 75;

47; 48]. The classical geocast routing is semantically time-oblivious i.e., the geocast

message is assumed to be delivered as soon as possible. In abiding geocast [55], the

geocast message is disseminated in the geocast region for a time duration. Some

papers use abiding geocast to disseminate traffic warning messages or commercial

advertisement to a group of vehicles in a given zone for a given time [75; 47].

Mobicast. Mobicast is a class of multicast which is both location-aware and time-

aware. In mobicast, a message is disseminated in an area called the delivery zone for

a time duration T . Delivery zone can move during T and is denoted as Z[t], where t

is in T . As the delivery zone moves, some nodes enter the zone and some nodes leave

the zone. The ultimate goal of mobicast is to achieve just-in-time message delivery,

i.e., Z[t] represents the area where the mobicast message should be delivered at

time t [32]. Some mobicast protocols were proposed for wireless sensor networks

[32; 11; 33] and VANETs [12]. In some of these protocols, the delivery zone is not

associated to the source of the message e.g., in [32]. In [12], the delivery zone is an

elliptic area around the source of the message (a moving car).

Location-Based Publish/Subscribe. Some authors proposed high level com-

munication abstractions derived from the publish/subscribe paradigm, which in-

clude some type of constraint on messages in time and/or space [31; 57; 25]. In

STEAM [57], messages are constrained to a location around the sender. However,

there is no support for persistence and the specifications and underlying commu-

nication abstractions are not detailed. In [25], messages are persisted and can be
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localized. However, they are assigned to a fixed geographical zone and do not move

around with the sender. In [31], messages are persisted in a geographical zone around

the publisher for a certain duration.

Discussion. Geocast and mobicast satisfy some but not all requirements of PBM

applications for proximity-based durable broadcast. For instance, with geocast the

dissemination region of a message is generally not associated with the source of the

message and remains stationary, whereas the proximity-based durable broadcast

requires message dissemination zone to surround the source of the message and thus

move with the source of the message. Furthermore, for proximity-based durable

broadcast we need abstractions which guarantee the message delivery based on the

amount of time that the receiver spent in the proximity of the sender, whereas such

constraints are absent from both geocast and mobicast specifications. Finally, the

communication abstraction used in [31] to propagate messages around the publisher

is the closest to a desirable communication abstraction for proximity-based durable

broadcast, however it does not provide any guarantees.

1.2.2 Neighbor Detection Abstractions and Algorithms

In this section, we present a review of the main neighbor detection abstractions and

algorithms in MANETs. We then discuss the possibility of using these abstractions

and algorithms for proximity-based neighbor detection.

Hello Protocols. The majority of the existing neighbor detection algorithms in ad

hoc networks belong to the hello protocols family [56; 71; 20; 39; 3; 36; 30]. They

are based on the basic hello protocol first described in Open Shortest Path First

(OSPF ) routing protocol [58], which works as follows: each node in the network

periodically sends hello messages to announce its presence to close nodes, and main-

tains a neighbor set. The sending frequency is denoted by fhello. If a hello message

is not received from a neighbor for a predefined amount of time, then that neighbor

is discarded from the neighbor set. The problem with this approach is that if fhello

is too low (with respect to the speed of the nodes), then the neighbor set becomes

quickly obsolete. On the other hand, if it is too high, the neighbor set remains up to

date but it causes a significant waste of communication bandwidth and energy [36].
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However, finding the optimal fhello is not obvious and the existing solutions can only

approximately solve this problem.

Other Abstractions and Algorithms. Although, the hello protocols comprise

the majority of the existing neighbor detection algorithms for ad hoc networks, in

the literature there exist also schemes that use different approaches than the hello

broadcast for neighbor detection [14; 15]. For instance, in [15] Cornejo et al. define

a reliable neighbor detection abstraction that establishes links over which message

delivery is guaranteed. They present two region-based neighbor detection algorithms

which implement the abstraction with different link establishment guarantees. The

algorithms are implemented on top of a Medium Access Control (MAC) layer, which

provides upper bounds on the time for message delivery. The main idea behind the

first algorithm is that a node sends a join message some time after entering a new

region to establish communication links. It also sends a leave message some time

before leaving a region to inform the other nodes so that they can tear down their

corresponding link with that node. To guarantee that these notification messages

reach their destination in spite of the continuous motion of nodes, the authors define

the time limits for a node to send the join and the leave messages. These time

limits are obtained using the timing guarantees of the underlying MAC layer. Since

a node should send a leave message some time before it actually leaves a region,

the algorithm assumes that a node’s trajectory function is known to that node with

enough anticipation to communicate with other nodes before leaving the region. The

first algorithm does not guarantee the communication links when nodes are moving

quickly across region boundaries. Thus, the authors introduce a second algorithm. In

this new algorithm they apply a technique that overlays multiple region partitions,

associating with each region partition an instance of the first algorithm. The output

of each instance is then composed such that it guarantees the communication links

even when nodes are moving across region boundaries. The approach applied in [15]

for neighbor detection uses a relatively lower number of message broadcast compared

to the hello protocols.

Discussion. All neighbor detection abstractions and algorithms discussed in this

section detect the communication neighbors of a node, i.e., the nodes that can com-

municate with that node. More precisely, communication neighbors are determined

by physical factors such as the transmission range of the nodes and the environment

in which the algorithms are executed. However, neighbor detection in a PBM appli-
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cation concerns detection of the proximity neighbors of a node, i.e., the nodes which

are in the detection range of that node, where the detection range is a logical range

defined by the semantics of the PBM application. Thus, the algorithms discussed

in this section can be used for proximity-based neighbor detection if the transmis-

sion range of nodes fulfill some constraints. For instance, consider a hello protocol

that detects the single-hop neighbors of nodes. Then, in order for this protocol to

be able to detect the proximity neighbors in a PBM application, the transmission

range of nodes should be greater than or equal to the detection range of the PBM

application.

As already discussed, the choice of fhello has a direct influence on detection effec-

tiveness and energy efficiency of a hello protocol. Thus, if a hello protocol is used

to implement a PBM application, its fhello should be carefully chosen in order to

respect the detection effectiveness as well as the energy efficiency requirements of

proximity-based neighbor detection.

Finally, note that all neighbor detection abstractions and algorithms discussed in

this section, provide only the set of current neighbors and not the past or future

neighbors as it is specified in the requirements of proximity-based neighbor detection.

1.3 Problem Statement and Research Questions

The overall question that we address in this thesis is the following: which abstractions

and algorithms can be used to build PBM applications in MANETs? In Section 1.1.1,

we defined proximity-based durable broadcast and proximity-based neighbor detection

as the two main requirements of PBM applications. Thereby, we split the aforemen-

tioned question into two main research questions Q1 and Q2 where each question

is related to one of the requirements. In the following, we present each research

question and then give the intuition behind the way we address it in the thesis.

Q1 Which abstractions and algorithms can be used for proximity-based durable

broadcast?

As already discussed in Section 1.2, the existing communication abstractions and

algorithms for MANETs cannot entirely fulfill the requirements of PBM applications

for proximity-based durable broadcast. Thus, our goal is to design and implement

a new abstraction for proximity-based durable broadcast. Given the broadcast mes-

sage, the broadcast range and the broadcast duration, our abstraction should enable
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a node to broadcast the message in the defined range (around the sender) for the

given time duration. As already described in Section 1.1.1, the message delivery

guarantees of the proximity-based durable broadcast are not the same in all PBM

applications. Accordingly, the abstraction that we design for the proximity-based

durable broadcast can have more than one variant, such that the variants differ in

their message delivery guarantees.

Intuitively, our proximity-based durable broadcast service can be built using an

underlying proximity-based broadcast abstraction. This leads to the following sub-

question:

Q1.1 Which abstractions and algorithms can be used for proximity-based broad-

cast?

Intuitively, a proximity-based broadcast abstraction should be such that given

the broadcast message and the broadcast range, it enables a node to broadcast the

message in the defined range. Moreover, it should be implementable in both single-

hop and multi-hop cases. Finally, it can have different variants based on message

delivery guarantees required by the upper proximity-based durable broadcast layer.

Q2 Which abstractions and algorithms can be used for proximity-based neighbor

detection?

We consider two approaches to address this question: (1) using the hello proto-

cols for proximity-based neighbor detection; (2) designing and implementing a new

neighbor detection abstraction. In the following, we discuss the two approaches and

the research questions related to each approach.

(1) Using the hello protocols. Here, for simplicity’s sake we only consider the

hello protocols that detect the single-hop neighbors of a node. As already discussed

in Section 1.2, such hello protocols can be used to detect current neighbors of nodes

in a PBM application if the transmission range of nodes is greater than or equal

to the detection range of the PBM application. According to the characteristics

of proximity-based neighbor detection (defined in Section 1.1.1) we know that the

hello protocols are not the ideal neighbor detection algorithms for PBM applications

since they only detect the current neighbors. However, these protocols constitute the

majority of existing neighbor detection algorithms for MANETs and are easy to im-

plement (especially in the single-hop case). Thus, if one can adjust the input param-
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eters of the hello protocols so that they satisfy other requirements of proximity-based

neighbor detection such as effectiveness and efficiency, then these protocols can be

used to build those PBM applications that need only current neighbor detection.

This leads us to the following subquestion:

Q2.1 How can hello protocols be used for effective and efficient proximity-based

neighbor detection?

Intuitively, the effectiveness of neighbor detection can be increased by increasing

the transmission power and decreasing the time interval between two consecutive

broadcasts of the hello message. However, these methods can also increase the en-

ergy consumption of nodes and thus, decrease the efficiency of neighbor detection.

Therefore, we should find a tradeoff between effectiveness and efficiency.

(2) Designing and implementing a new neighbor detection abstraction.

Our goal is to design and implement a new abstraction that matches the charac-

teristics of proximity-based neighbor detection described in Section 1.1.1. In partic-

ular, it should enable a node to detect not only its current neighbors, but also its

past and future neighbors (up to some bounded time interval). Similar to a failure

detector, our neighbor detection abstraction should have a completeness property

and an accuracy property. The completeness property guarantees to detect all past,

present and future neighbors (up to some bounded time interval). This property

in fact guarantees the effectiveness of neighbor detection (defined in Section 1.1.1)

required by PBM applications. The accuracy property basically guarantees that no

false detection occurs. This leads us to the following subquestion:

Q2.2 How can our new abstraction for proximity-based neighbor detection be im-

plemented?

To build such a neighbor detector service, our intuition is to equip each node with

a mobility predictor service that can accurately predict the future locations of that

node up to some bounded time interval ∆predict in the future. We also use a moving

entity that travels through the network and collects the location predictions of nodes.

Then, there exist two methods: either the moving entity computes the list of current

and future neighbors of each node based on the location predictions and distributes

the lists to nodes or the moving entity directly distributes the location predictions

to nodes so that they can find their current and future neighbors based on the

distributed location predictions. Each node also stores the distributed information
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(the neighbor list or the location predictions, depending on the used method), so

that later it will be able to be queried about its past neighbors. This leads us to the

six following subquestions:

Q2.2.1 Which abstractions and algorithms can be used for the mobility predictor?

Our goal is to design a mobility predictor abstraction that guarantees accurate

location prediction up to ∆predict. Since in PBM applications mobile devices are

held by people, our intuition is that the mobility predictor abstraction can be prob-

abilistically implemented by one of the existing human mobility prediction algo-

rithms [68; 64].

Q2.2.2 Which abstraction and algorithm can be used for the moving entity?

In the literature of MANETs, there exist different types of moving entities such

as ferry nodes [76; 78; 77; 6], Data MULEs [67] and virtual mobile nodes [19], which

are used for different tasks such as routing, data collection or group communication.

The most important fact for choosing the proper moving entity is that its movement

should be programmable, however, it should not disrupt the normal movement of

the nodes. The reason is that in PBM applications the wireless devices are used by

ordinary people who are not amenable to following instructions as to where their

devices may travel.

Q2.2.3 What is the minimum value of ∆predict for which our new abstraction for

proximity-based neighbor detection can be correctly implemented?

In order for our neighbor detector service to be correctly implemented, ∆predict of

the mobility predictor service should be long enough so that the location predictions

or neighbor lists do not expire before they are distributed by the moving entity.

Intuitively, this value of ∆predict can be defined as a function of the time that the

moving entity spends to travel across the network.

Q2.2.4 Can the use of multiple moving entities improve the neighbor detection?

Our intuition is that if more than one moving entity is used to implement our

neighbor detector service, then each moving entity can be responsible for collection

and distribution in one part of the network. This reduces the traveling time of

each moving entity, which in turn reduces ∆predict required for the correct neighbor

detection.
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Q2.2.5 Can neighbor detection be performed despite the failure of moving enti-

ties?

Regardless of its nature (ferry node, Data MULE or virtual mobile node), a moving

entity can crash and loose all its stored information. This crash can be critical for

the neighbor detection process. Thus, one of the issues that should be investigated

is how the failure of the moving entities can be tolerated by our neighbor detector

algorithm.

Q2.2.6 How can the implementation of our new abstraction for proximity-based

neighbor detection be efficient?

One of the requirements of the proximity-based neighbor detection is efficiency

of neighbor detection in terms of energy consumption (see Section 1.1.1). Therefore,

the implementation of our new neighbor detector abstraction should also be energy

efficient. Intuitively, the energy efficiency of our implementation depends on the

nature of the moving entity as well as the number of messages exchanged between

the moving entity and the nodes.

1.4 Thesis Overview

The thesis is written in the thesis by publication format. More precisely, each core

chapter of the thesis corresponds to at least one article which is already published in

a highly-visible international conference or journal. The complete list of publications

related to this thesis can be found at the end of this chapter (see Section 1.5). We

also indicate the list of publications related to each chapter at the beginning of

that chapter. In particular, Chapter 3 corresponds to two articles: one conference

article and one journal article. However, since the journal article is the extended

version of the conference article, we only include the content of the journal article

for this chapter. The same principle is applied for Chapter 5 i.e., it only contains

the content of the journal article. The advantage of using the thesis by publication

format is that each chapter of the thesis can be read independently of the other

chapters. Note however that this format may result in some content redundancies.

The thesis is divided into two main parts where each part addresses a research

question and its subquestions stated in Section 1.3. More precisely, the first part of

the thesis focuses on introducing abstractions and algorithms that can be used for
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proximity-based durable broadcast. It addresses research question Q1 and its sub-

question. The second part focuses on abstractions and algorithms that can be used

for proximity-based neighbor detection. Thus, it addresses research question Q2 and

its subquestions. Note that the parts of the thesis are presented in the chronological

order i.e., the order in which they were completed during this research. The two parts

are related in the sense that some of abstractions and algorithms introduced in the

first part can be implemented using the abstractions and algorithms introduced in

the second part and vice-versa. For instance, the spotcast abstraction (introduced in

Chapter 2) can be implemented using the time-limited neighbor detector abstraction

(introduced in Chapter 4)1 and the time-limited neighbor detector abstraction (in-

troduced in Chapter 4) can be implemented using the scoped-broadcast abstraction

(introduced in Chapter 2). Below, we take a closer look at each part of the thesis

and its chapters.

Part I

This part introduces abstractions and algorithms that can be used for proximity-

based durable broadcast. It addresses research question Q1 and its subquestion. It

includes the following chapter:

Chapter 2. In this chapter, we address Q1 by introducing spotcast, which is a

new communication abstraction for proximity-based durable broadcast in MANETs.

Spotcast enables a node to disseminate a message for a given time duration to all

nodes located within a given range. Spotcast has three variants which differ in their

timing guarantees for message delivery. These guarantees are defined based on differ-

ent requirements of PBM applications. We also address Q1.1 by introducing scoped

broadcast abstraction, which enables a node to send a message to all nodes located

within a given range. Scoped broadcast has two variants: a synchronous variant and

asynchronous variant. We present a generic algorithm that can implement the three

spotcast variants using different scoped broadcast variants and different types of

message buffers. We present a proof of correctness for the algorithm. We also dis-

1 In Chapter 2, we only present a simple and generic algorithm that implements the spotcast

variants using different scoped broadcast variants. However, to implement the spotcast variants,

one can also think of using the time-limited neighbor detector abstraction introduced in Chapter 4,

which may result in a more resource efficient implementation.
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cuss how scoped broadcast variants can be implemented in single-hop and multi-hop

cases.

Part II

This part presents abstractions and algorithms that can be used for proximity-

based neighbor detection. It addresses research question Q2 and its subquestions.

It includes the following chapters:

Chapter 3. In this chapter, we address Q2 and in particular Q2.1 by trying to

adjust the parameters of hello protocols for effective and efficient proximity-based

neighbor detection. In order to do so, we perform a simulation-based study using

ns-2 network simulator. More precisely, we assume that nodes communicate using

the IEEE 802.11a technology [34] and we define a strategy as a pair of the trans-

mission power and the time interval between two consecutive broadcasts of the hello

message. Then, we consider a set of strategies defined based on the characteristics

of current smartphones. Moreover, since the quality of radio signals (and conse-

quently the effectiveness) is affected by the environment attenuation, for our study

we consider three typical urban environments where PBM applications are used

i.e., indoor with hard partitions (corresponding to offices with thick walls), indoor

with soft partitions (corresponding to indoor exhibitions with temporary partitions)

and outdoor urban areas (corresponding to a music festival in downtown). To sim-

ulate these environments, we use a radio propagation model known for modeling

the obstructed urban environments called Log-Normal Shadowing (LNS). Then, we

evaluate the effectiveness and efficiency of the set of strategies in each environment.

We deduce that the efficiency is independent of the environment. We also discuss

the impact of changing transmission power and broadcast interval on effectiveness

and efficiency. We identify the most effective strategy and the most efficient strat-

egy in each environment. We observe that we cannot find a strategy that maximizes

both effectiveness and efficiency in any environment. The reason is that, regardless

of environment, effectiveness and efficiency are in conflict with each other. We then

propose an approach to make a tradeoff between effectiveness and efficiency. Ac-

cordingly, we find the tradeoff strategy in each environment and we show that it has

a relatively good effectiveness and efficiency compared to other strategies.
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Chapter 4. In this chapter, we address Q2 by introducing a new abstraction called

the time-limited neighbor detector for proximity-based neighbor detection. It enables

a node to detect its neighbors in the past, present and up to some bounded time

interval in the future. It has a completeness property that guarantees to detect all

past, present and future neighbors (up to some bounded time interval). It has also

an accuracy property which guarantees that no false detection occurs. We address

Q2.2 and some of its subquestions by presenting an algorithm that implements the

time-limited neighbor detector. We assume that each node has access to a mobility

predictor service that accurately predicts its locations up to some bounded time

interval∆predict in the future. Thus, we address Q2.2.1 by introducing an abstraction

for the mobility predictor service, we also give some hints on its implementability (we

give a more detailed discussion regarding the implementability of this abstraction

in Chapter 5). Our algorithm uses a single virtual mobile node that travels through

the network, collects the location predictions of nodes and distributes the neighbor

lists, which it creates based on the collected location predictions, to nodes. Thus,

we address Q2.2.2 by using a virtual mobile node as the moving entity. We also

present an algorithm (first introduced in [19]) that implements the virtual mobile

node abstraction using a set of real nodes based on a replicated state machine

approach. The reason behind our choice of a virtual mobile node as the moving

entity is that among all the existing moving entities in the literature, virtual mobile

node is the only moving entity that does not disrupt the node mobility and at the

same time its movement can be predefined. We prove the correctness of the neighbor

detector algorithm under certain conditions. In particular, the algorithm is correct

if the virtual mobile node is correct i.e., it never fails. As already described, in this

chapter we address two subquestions of Q2.2 namely, Q2.2.1 and Q2.2.2. The

other subquestions of Q2.2 are addressed in the next chapter that is, Chapter 5.

Chapter 5. In this chapter, we address Q2 and in particular Q2.2 by introducing an

algorithm that implements the time-limited neighbor detector abstraction (defined

in Chapter 4) using n = 2k virtual mobile nodes, where k is a non-negative integer.

The algorithm implements the neighbor detector for nodes located in a circular

region. We also assume that each node has access to the mobility predictor service

defined in Chapter 4. The key idea of the algorithm is that the virtual mobile nodes

regularly collect location predictions of nodes from different subregions, meet to

share what they have collected with each other and then distribute the collected

location predictions to nodes. Thus, each node can find its neighbors at current
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and future times based on the distributed location predictions. It can also store the

location predictions so it can be queried about its past neighbors. We show that

our algorithm is correct in periodically well-populated regions. Compared to the

algorithm proposed in Chapter 4, this algorithm has two advantages: (1) it tolerates

the failure of one to all virtual mobile nodes; (2) as n grows, it correctly implements

the neighbor detector with smaller values of ∆predict. Intuitively, this is because as n

grows, the circular region is divided into more and consequently smaller subregions

and each virtual mobile node spends less time to travel through its subregion. This

feature makes the real-world deployment of the neighbor detector easier since with

the existing prediction methods, location predictions usually tend to become less

accurate as ∆predict increases. As already described, in Chapter 4 we only give some

hints on how the mobility predictor service can be implemented. Thus, in this chapter

we address Q2.2.1 by discussing in detail how the mobility predictor service can

be implemented by one of the existing human mobility prediction methods. We also

address Q2.2.3 by defining the minimum value of ∆predict for which the algorithm is

correct. We address Q2.2.4 by showing that increasing the number of virtual mobile

nodes can decrease the minimum value of ∆predict required for the correctness of the

algorithm. We address Q2.2.5 by proving that the algorithm is correct despite of

failure of one to all virtual mobile nodes. Finally, we address Q2.2.6 by showing

that the cost of the algorithm (in terms of communication) scales linearly with

the number of virtual mobile nodes. In fact, communication is the main cause of

energy consumption in a network executing the algorithm. Thus, communication

cost influences the efficiency of the algorithm in terms of energy. We also propose a

set of optimizations which reduce the communication cost of the algorithm.
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Chapter 2

Spotcast – A Communication Abstraction

for Proximity-Based Mobile Applications

Abstract We introduce spotcast, a new communication abstraction specifically

aimed at the development of mobile proximity-based applications running in mo-

bile ad hoc networks (MANETs). Our motivation lies in the fact that traditional

communication abstractions, typically broadcast primitives with strong consistency

guarantees, do not adequately capture the intrinsic here-and-now nature of such ap-

plications. Rather, developers need a communication abstraction offering the notion

of proximity-based diffusion and some level of message durability, which is precisely

what spotcast provides. We illustrate how spotcast can be used to implement mobile

applications and we shortly discuss the correctness and the implementability of the

spotcast abstraction in MANETs.

Publication:

B. Bostanipour, B. Garbinato and A. Holzer, Spotcast – A communication abstrac-

tion for proximity-based mobile applications, In Proceedings of The 11th IEEE In-

ternational Symposium on Network Computing and Applications (IEEE NCA’12),

pp. 121–129, Cambridge, Massachusetts, USA, IEEE, 2012.

2.1 Distributed Systems: Evolution or Revolution?

The importance of distributed systems has grown dramatically in the past 20 years,

due to the exponential increase in the number of computers of all sizes interconnected

via the Internet. Driven by this growth, distributed applications broke free from

intranets where they tended to be strictly confined until the mid-nineties. As a

natural consequence, they became ubiquitous, as testified by today’s omnipresence of
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communication-oriented applications in our daily lives, typically running on mobile

devices such as smartphones.

2.1.1 First Evolution

Examples of this evolution are the strong interests for peer-to-peer file sharing in

the late nineties and the growing interest for cloud computing today. To address

the evolving challenges posed by such open and potentially large-scale distributed

systems, the research community has been constantly adapting the same communi-

cation abstractions it originally devised for intranet-oriented applications (database

applications, n-tier services, etc). Such communication abstractions typically include

various flavors of reliable broadcast and multicast [14], as well as different variants

of consensus [23; 10; 5].

2.1.2 Then Paradigm Shift

When looking at how computer systems are being used today, particularly in the

mobile arena, it is becoming more and more obvious that the evolution of distributed

system is now reaching a breaking point. That is, deep changes are no longer oc-

curring along the line of how we do things in distributed systems (client/server,

peer-to-peer, cloud computing, etc.) but rather along the line of what we do with

distributed systems (mobile online gaming, location-based services, mobile multime-

dia and interactive entertainment, etc.).

A good example of this ongoing paradigm shift can be found in the exploding

number of social networking applications available on mobile devices: almost 10,000

such applications can be found in Apple’s AppStore today,1 and probably as many

in the corresponding Android market. When put in perspective, mobile social net-

working is a particular case of an even larger set of mobile distributed applications

known as proximity-based mobile applications. Contrary to typical distributed appli-

cations that flourished in the past two decades, this new blend of mobile applications

tend to exhibit an intrinsic and somehow elastic here-and-now nature, as illustrated

hereafter with concrete examples.

1 March 2012.
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2.1.2.1 On-the-spot Survey

The notion of on-the-spot survey, proposed by mobile applications such as SpotMe (www.

spotme.com), iSurvey (www.isurveysoft.com), or Voxco Mobile (www.voxco.com),

is a good example of mobile proximity-based applications. Here the idea is for a

user to ask questions to other nearby users, e.g., a teacher surveying students in the

classroom, a speaker surveying customers at a marketing event, etc. This applica-

tion requires a rather strict here-and-now semantics, since it is important for the

surveyor to get feedback from the audience in a timely manner.

2.1.2.2 Social Radar

The concept of social radar, proposed by various mobile applications such as

FourSquare (www.foursquare.com), FriendThem (www.friendthem.com) or Blendr

(www.blendr.com), is another example of proximity-based mobile application. In-

tuitively, a social radar provides mobile device users with the ability to spot other

users around them. This application can live with a somehow more elastic here-and-

now semantics, since it is sufficient that users staying close enough for long enough

eventually detect each other.

2.1.2.3 Mobile Photo Sharing

The idea behind mobile photo sharing, proposed by applications such as Insta-

gram (www.instagram.com), Streamzoo (www.streamzoo.com), or Picplz (www.

picplz.com), is to allow users participating in some social event to take photos

with their mobile devices and to share them with other users present at that event.

This application exhibits a rather loose here-and-now semantics: even if it might not

be possible for two users to share all their photos while at the event, e.g., because

one has to leave earlier, as soon as they get together again (possibly long after the

event), the sharing can resume.
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2.1.3 Spotcast: A New Communication Abstraction

Traditional communication abstractions, such as atomic broadcast or consensus,

were devised long before mobile proximity-based applications became ubiquitous.

For this reason, we advocate that this new blend of distributed applications de-

mands a new communication paradigm, i.e., one that appropriately captures their

here-and-now nature. To address this need, this paper introduces spotcast, a new

communication abstraction that enables a mobile entity to disseminate a message

in a defined range around it (here) for a defined duration (now). To be more precise,

we actually present three variants of the spotcast abstraction, with slightly different

delivery guarantees, in order to support various communication semantics required

by mobile proximity-based applications.

2.1.4 Roadmap

This paper is organized as follows. In Section 2.2, we describe our system model.

In Section 2.3, we introduce our novel spotcast communication abstraction. In Sec-

tion 2.4, we present the implementation of spotcast, together with a discussion on

its implementability. In Section 2.5, we discuss the implementability of the underly-

ing scoped broadcast service. Finally, we discuss related work in Section 2.6 before

concluding in Section 2.7 with a perspective on future work.

2.2 System Model

We consider a mobile ad-hoc network (MANET) consisting of a finite set of n pro-

cesses P = {p1, ..., pn}. We use the terms process and node interchangeably. Pro-

cesses are in a two-dimensional plane. Each process has a unique identifier. Processes

are mobile i.e., their geographic location can change unpredictably over time. Pro-

cesses can experience crash failures. A crash faulty process stops prematurely. Prior

to stopping, it behaves correctly.2

2 Since we do not consider Byzantine behaviors, issues related to information security and privacy

are beyond the scope of this paper.
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Processes exchange messages over a wireless radio network and all processes have

the same radio transmission range. We assume the existence of a discrete global

clock, i.e., the range T of the clock’s ticks is the set of non-negative integers. We

also assume the existence of a known bound on the relative speed of processes in the

system. Finally, let pi, pj be two processes in P , we introduce the definitions given

hereafter in order to capture proximity-based semantics.

• loci(t) denotes the geographic location of mobile process pi at time t ∈ T .

• Zi(∆r, t) denotes all the points inside or on the circle centered at loci(t) with

radius ∆r. We call Zi(∆r, t), the mobile circular zone of radius ∆r around pi.

Thus, we use the term mobile circular zone to capture the notion of neighborhood.

• We say pj is in Zi(∆r, t) if locj(t) ∈ Zi(∆r, t).

• We say pj follows pi within a radius ∆r during a time interval [t1, t2], with

t1, t2 ∈ T and t1 ≤ t2, if pj remains permanently in the mobile circular zone of

radius ∆r around pi during the time interval. This can be expressed as follows:

∀t ∈ [t1, t2] : locj(t) ∈ Zi(∆r, t) (2.1)

If t1 = t2, stating that pj follows pi within a radius ∆r during a time interval

[t1, t2] is equivalent to say that locj(t) ∈ Zi(∆r, t) at time t = t1 = t2.

• We say pj follows pi within a radius ∆r after time t, if pj remains permanently

in the mobile circular zone of radius ∆r around pi after time t ∈ T . This can be

expressed as follows:

∀t′ ∈ T : t′ ≥ t⇒ locj(t
′) ∈ Zi(∆r, t

′) (2.2)

• We say pj eventually follows pi within a radius ∆r, if there exists a time after

which pj remains permanently in the mobile circular zone of radius ∆r around

pi. This can be expressed as follows:

∃t ∈ T : ∀t′ ∈ T : t′ ≥ t⇒ locj(t
′) ∈ Zi(∆r, t

′) (2.3)

2.3 The Spotcast Abstraction

In this section, we introduce the spotcast communication abstraction in three vari-

ants. Intuitively, by using the spotcast service a mobile process can disseminate a

message for a given time to all mobile processes located in its proximity. The name
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“spotcast” is chosen by analogy with a spotlight following the source of the message

(the spotcaster). Formally, the spotcast service supports the following functional

interface:

• spotcast(m, ∆r, ∆t): disseminates a message m in Zi(∆r, t) for all t ∈ E =

[ts, ts + ∆t], where pi is the process that invokes the spotcast and ts is the time

when the spotcast is invoked.

• deliver(m, pi): callback delivering a message m spotcast by process pi.

The time interval E is called the spotcast epoch. All spotcast variants share a set of

properties called the core spotcast properties listed hereafter.

2.3.1 Core Spotcast Properties

Non-triviality. If some process pj delivers a message m with sender pi, then

there exists a time tE in E such that locj(tE) ∈ Zi(∆r, tE).

No Duplication. No message is delivered more than once.

No Creation. If some process pj delivers a message m with sender pi, then m

was previously spotcast by process pi.

2.3.2 Spotcast Variants and their Validity Properties

In addition to the core properties, each spotcast variant satisfies a specific validity

property. Hereafter, we present each variant and its validity property, together with

an example of its usage (see Figure 2.1).

2.3.2.1 Timely Spotcast

This variant provides the strictest here-and-now semantics among the three spotcast

variants. Intuitively, it guarantees that there exists a time limit after which a message

is delivered to all processes in the neighborhood of the process who spotcast that

message. The corresponding formal validity property is given hereafter.
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Fig. 2.1: Validity Properties of Spotcast Variants.

Validity. If a correct process pi spotcasts a message m, there exists a bounded

time duration ∆m such that every correct process pj delivers m in E ′=[ts, ts +

∆t +∆m], if pj follows pi within radius ∆r during [tE, tE +∆m] with tE in E.

The time interval E ′=[ts, ts +∆t +∆m] is called the delivery epoch. The on-the-spot

survey application discussed in Section 2.1 is an example of Timely Spotcast usage:

the person launching such a survey is interested in disseminating questions to the

audience in a timely manner.

2.3.2.2 Eventual Spotcast

This variant provides a somehow more elastic here-and-now semantics. Intuitively,

it guarantees that any process staying long enough in the neighborhood of some

process who is spotcasting a message, will eventually receive that message. The

corresponding formal validity property is given hereafter.

Validity. If a correct process pi spotcasts a message m, every correct process

pj eventually delivers m, if there exists a time tE in E after which pj follows pi

within the radius ∆r.

The social radar application discussed in Section 2.1 is an example of Eventual Spot-

cast usage: each user regularly spotcasts her location, so that users in her neighbor-

hood will eventually learn about her nearby presence.
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2.3.2.3 Exhaustive Spotcast

Finally, this variant provides the most elastic here-and-now semantics. Intuitively, it

guarantees that any process who was in the neighborhood of some other process when

the latter is spotcasting a message, will eventually receive that message, provided

both processes eventually get the chance to stay close enough for long enough. The

corresponding formal validity property is given hereafter.

Validity. If a correct process pi spotcasts a message m, every correct process pj

eventually delivers m, if there exists a time tE in E when locj(tE) ∈ Zi(∆r, tE)

and also pj eventually follows pi within the radius ∆r.

The mobile photo sharing application discussed in Section 2.1 is an example of

Exhaustive Spotcast usage: consider Alice, who is spotcasting a URL pointing to the

photos she is taking while at a party. The exhaustive delivery property allows another

participant in that party, say Bob, to receive the URL, even if Alice has to leave

before Bob can actually receive the URL. The delivery will occur as soon as Alice

and Bob get together again, possibly after the party, and stay in the neighborhood

of each other long enough.

2.4 A Spotcast Algorithm

We provide an architecture overview of our algorithm for the spotcast communica-

tion abstraction in Figure 2.2. At the top, a mobile proximity-based application uses

the spotcast service, which itself relies on two lower-level services for its implemen-

tation, namely a global positioning service and a scoped broadcast service.

GETLOCATIONS

spotcast

scoped broadcast global positioning

mobile context-aware application
SPOTCAST DELIVER

BROADCAST RECEIVE GETTIME

mobile proximity-based application

Fig. 2.2: Spotcast – Architecture Overview.
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2.4.1 Global Positioning Service

This service allows each mobile process pi to know its position in space and time,

via the following functions:3

• getTime: returns the current global time. Formally, this implies that each pro-

cess pi has access to the global clock modeled in Section 2.2.

• getLocations(t1, t2): returns the set of locations occupied by pi during time

interval [t1, t2]. If t1 < getTime and t2 > getTime, only locations occupied

during time interval [t1,getTime] are returned. If t1 > getTime or if t1 > t2,

no location is returned.

2.4.2 Scoped Broadcast Service

This communication service allows processes to send messages to all processes lo-

cated within a given radius. Formally, the scoped broadcast service exposes the

following primitives:

• broadcast(m, ∆r): broadcasts a message m in Zi(∆r, tb), where pi is the sender

and tb is the time when the broadcast is invoked.

• receive(m, pi): callback delivering a message m broadcast by process pi.

In terms of safety, the scoped broadcast service satisfies the no duplication property

and the no creation property given hereafter.

No Duplication. No message is delivered more than once.

No Creation. If some process pj delivers a message m with sender pi, then m

was previously broadcast by process pi.

When it comes to liveness, we consider two alternatives of the delivery property,

namely fair-loss delivery and timely delivery ; these two alternatives are presented

below. As discussed in Section 2.4.4, the implementability of the various flavors of

spotcast closely depends on which delivery property is being considered.

3 In practice, such a service would typically be implemented using NASA’s GPS or ESA’s Galileo

space-based satellite navigation technologies.
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Fair-Loss Delivery. If a correct process pi broadcasts a message m an infinite

number of times, any correct process pj eventually delivers m, if pj eventually

follows pi within the radius ∆r.

Timely Delivery. If a correct process pi broadcasts a message m, there exists

a bounded time duration ∆bcast such that every correct process pj delivers m in

interval [tb, tb+∆bcast], if pj follows pi within the radius ∆r during [tb, tb+∆bcast].

Note that it is beyond the scope of this paper to provide an implementation of

scoped broadcast service. However, we discuss its implementability in Section 2.5.

2.4.3 Generic Spotcast Algorithm

Algorithm 2.1 presents our implementation of the spostcast communication abstrac-

tion. It is generic in the sense that it serves as basis for implementing any of the

three variants introduced in Section 2.3. Its genericity is captured by function is-

BoundedBuffer and by procedure broadcast. That is, depending on how they

are defined, Algorithm 2.1 implements a specific variant of spotcast. Specifically,

broadcast relies on an implementation of the Scoped Broadcast Service ensuring

either fair-loss delivery or the timely delivery, while isBoundedBuffer returns

true if an implementation with bounded buffer is possible, false otherwise. Al-

gorithm 2.1 can be divided in three parts, namely initialization, spotcasting and

delivering, which are discussed hereafter.

1. Initialization (lines 3-5). The algorithm relies on two message sets: msgset for

storing messages to be broadcast and delivered for storing the delivered spotcast

messages.

2. Spotcasting (lines 6-17). Spotcasting entails a setup and a running phase. The

setup phase (lines 6-13) starts when spotcast primitive is called with following

parameters: a message m to be spotcast in a radius ∆r during a time duration

∆t. This call creates a msg that encapsulates m and some other parameters.

Among these parameters the hash map locs is used to store the location of the

sender at each time t in the spotcast epoch. The msg is then added to the set

msgset. The running phase (lines 14-17) periodically goes through each msg in

msgset. Thus, all the locations of the process during the spotcast epoch are first

assigned to the msg’s locs. Then, msg is broadcast within the msg’s radius using
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Algorithm 2.1 Generic Spotcast Algorithm at Process pi
1: implements: spotcast

2: uses: broadcast, isBoundedBuffer {generic procedure/function}

3: initialisation:

4: msgset← ∅
5: delivered← ∅

6: upon spotcast(m,∆r, ∆t) do

7: msg←⊥ {creates msg to encapsulate m plus some additional parameters}
8: msg.m← m {assigns m}
9: msg.∆r ← ∆r {assigns the radius}

10: msg.tstart ← getTime {assigns the start of the spotcast epoch}
11: msg.tend ← msg.tstart +∆t {assigns the end of the spotcast epoch}
12: msg.locs← [ ] {locs is a hash map to store (t, loci(t)) for all t in the spotcast epoch}
13: msgset← msgset ∪ {msg} {adds msg to msgset}

14: do every ∆period for each msg in msgset {broadcasts periodically}
15: msg.locs← getLocations(msg.tstart,msg.tend)

16: trigger broadcast(msg,msg.∆r)

17: if isBoundedBuffer ∧ getTime > msg.tend then

18: msgset← msgset \ {msg} {removes msg from the msgset}

19: upon receive(msg, pj) do

20: if locationMatch(msg) ∧msg.m /∈ delivered then

21: trigger deliver(msg.m, pj)

22: delivered← delivered ∪ {msg.m} {adds m to delivered messages}

23: function locationMatch(msg) returns boolean is

24: for all t ∈ [msg.tstart, msg.tend] do

25: if distance(getLocations(t, t),msg.locs.get(t)) ≤ msg.∆r then

26: return true {returns true if a location match occurred during the epoch}
27: return false
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the scoped broadcast service’s broadcast primitive. After the broadcast, if it

is possible (line 17), msg is removed from msgset.

3. Delivering (lines 19-22). When a broadcast msg is received, receive callback of

the underlying scoped broadcast is triggered. Then m of msg is delivered by the

sptocast service via the deliver callback if it has not been already delivered

and if the receiving process meets the requirement of a location match. This is

done by calling the locationMatch function. For a location match to occur

(lines 23-27), the distance between the sender and the receiver must have been

less than or equal to the msg.∆r at least for some time during the spotcast epoch.

2.4.4 Correctness and Implementability

The no creation property of spotcast follows directly from the no creation property

of the underlying scoped broadcast service. As for the no duplication property of

spotcast, it follows from the no duplication property of scoped broadcast service

and from the management of the delivered set (lines 19 to 22). The non-triviality

property of spotcast is ensured by calling the function locationMatch (lines 23

to 27) and delivering the message if and only if a location match occurs. Besides these

three core properties, each spotcast variant comes with a distinct validity property.

We separately discuss their respective correctness and implementability hereafter.

Table 2.1 summarizes this discussion.

2.4.4.1 Validity of Timely Spotcast

Algorithm 2.1 implements Timely Spotcast if generic procedure broadcast guar-

antees timely delivery. Indeed, recall that a timely spotcast message m must be

delivered in the delivery epoch E ′=[ts, ts + ∆t + ∆m], with ∆m bounded. Note also

that we can express ∆m = ∆period+∆exec+∆bcast, where ∆exec is the execution time

of (lines 14-17), and ∆bcast is the communication delay introduced by the underlying

scoped broadcast. ∆period is a constant. Since there exists a known upper bound on

the relative processing speed in the system, we already know that ∆exec is bounded.

So for ∆m to be bounded, we only need to be sure that ∆bcast is also bounded.

This is precisely what the timely delivery property guarantees. Now, since deliv-
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ery is required only during bounded delivery epoch E ′, a bounded message buffer

is sufficient, i.e., function isBoundedBuffer can return true, allowing msgset to

be purged (line 18). On the other hand, Algorithm 2.1 can not implement Timely

Spotcast if the procedure broadcast guarantees fair-loss delivery. The reason is

that the fair-loss delivery property only guarantees an eventual message delivery.

2.4.4.2 Validity of Eventual Spotcast

Algorithm 2.1 implements Eventual Spotcast if the generic procedure broadcast

guarantees fair-loss delivery and if isBoundedBuffer returns false (hence requires

unbounded buffer). Indeed, Eventual Spotcast guarantees an eventual message de-

livery. This is offered by the fair-loss delivery property of the underlying scoped

broadcast. Moreover, since fair-loss delivery requires the message to be broadcast

infinitely often, an unbounded message buffer is necessary.

Algorithm 2.1 also implements Eventual Spotcast in the case that the generic

procedure broadcast guarantees timely delivery. In this case however, a bounded

message buffer is sufficient. Indeed, recall that the validity of Eventual Spotcast

guarantees the message delivery to a correct pj which follows the spotcaster pi within

the radius ∆r after tE. This means that the latest possible time for pj to start to

follow pi is tE = ts +∆t (end of the spotcast epoch). According to the algorithm, if

function isBoundedBuffer returns true, the message msg containing the spotcast

message m is broadcast for the last time after the termination of the spotcast epoch

(lines 14 to 17). The timely delivery property guarantees the delivery of this last

Table 2.1: Spotcast – Correctness and Implementability.

Scoped Broadcast

Spotcast fair-loss delivery timely delivery

timely
not implementable implementable

with bounded buffer

eventual
implementable implementable

with unbounded buffer with bounded buffer

exhaustive
implementable implementable

with unbounded buffer with unbounded buffer
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broadcast of msg to any pj following pi after tE even for tE = ts + ∆t. This means

that msg can be safely removed from msgset after its last broadcast which implies

using a bounded buffer.

2.4.4.3 Validity of Exhaustive Spotcast

Algorithm 2.1 implements Exhaustive Spotcast if the generic procedure broadcast

guarantees fair-loss delivery or timely delivery and if isBoundedBuffer returns

false (hence requires unbounded buffer). Indeed, recall that the validity property of

Exhaustive Spotcast guarantees an eventual message delivery to all correct processes

which were within the radius ∆r for some time tE in the spotcast epoch, and which

eventually follow the spotcaster process pi within the radius ∆r. Since the time when

a process starts to eventually follow pi is unknown, pi should continue to broadcast

the message infinitely often. This means that regardless of the underlying scoped

broadcast service, Algorithm 2.1 can only implement Exhaustive Spotcast using an

unbounded message buffer.

2.5 Implementability of Scoped Broadcast Service

The correctness of our spotcast algorithm relies on the existence of the scoped broad-

cast service, whose implementability in turn depends on the properties of the under-

lying MAC layer. So, in order to discuss the implementability of the scoped broadcast

service over wireless ad hoc networks, we rely on the MAC layer models described

in [8] and [18], which have been shown to realistically model the 802.11 MAC layer

[1]. Since both these MAC layer models guarantee that no message is created or du-

plicated, the no duplication and the no creation properties of our scoped broadcast

service are trivially ensured. So in the following, we focus on the implementability

of the delivery property of each scoped broadcast variant. That is, we use the model

described in [8] to show the implementability of the fair-loss delivery property, while

the model described in [18] is used to show the implementability of the timely de-

livery property. For each delivery property, the discussion distinguishes two cases:

(1) the single-hop case, where the radio transmission range is greater than or equal

to the ∆r radius of the scoped broadcast, and (2) the multi-hop case, where the

radio transmission range is smaller than ∆r.
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2.5.1 Implementability of the Fair-Loss Delivery Property

In [8], the MAC Layer model assumes that the communication medium is prone to

collisions but guarantees an eventual collision freedom property. In addition, node

clock skews and inter-node communication delays are assumed to be bounded by

known constants. Processing is then conceptually divided into synchronous rounds

and at each round each node broadcasts at most one message. Nodes can fail by

crashing but cannot crash while broadcasting. A node that does not crash through-

out an entire execution is said to be correct.

2.5.1.1 Single-hop Case

The fair-loss delivery property guarantees an eventual delivery of a message if it is

broadcast infinitely often. In the single-hop case, one way to achieve the fair-loss

delivery property is to assume that eventually the communication medium becomes

collision-free.4 This is precisely the property ensured by the eventual collision free-

dom property of the considered MAC layer. According to this property, there exists

a positive integer b, such that in each execution, there exists a round recf , so that for

every round r ≥ recf , if at most b nodes broadcast in r, then every message broadcast

in r is reliably delivered by all correct nodes. To eventually reach a round in which at

most b nodes broadcast, a wake-up service is used. This service reduces contention

by determining which nodes should broadcast in a given round. The wake-up service

eventually stabilizes, i.e., it eventually recommends that at least one, and no more

than b, correct nodes can broadcast in a round. Thus, in executions which satisfy the

eventual collision freedom property, this allows the messages to be delivered without

collision. The wake-up service can be implemented by using a simple approximation

of a well-known back-off strategy [12; 32; 31; 35].

2.5.1.2 Multi-hop Case

When the radio transmission range is smaller than the radius ∆r of the scoped

broadcast, a scoped broadcast protocol can guarantee the fair-loss delivery property

if the two following conditions are satisfied: a) the underlying MAC layer satisfies

the fair-loss delivery property and b) a route is established between each correct

4 We assume that collisions are the major source of message losses.
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node pi and any other correct node pj which is in radius ∆r around pi. As just

discussed, the MAC layer modeled in [8] satisfies the fair-loss delivery property, so

Condition a) can be fulfilled by using such a MAC layer. For Condition b) to hold,

the scoped broadcast can use for instance a proactive routing protocol (e.g., [33]) as

sub-protocol, provided of course that there exists a path between pi and pj where

the distance between any two direct neighbors along the path does not exceed the

transmission range.

2.5.2 Implementability of the Timely Delivery Property

To discuss the implementability of the timely delivery property, we rely on the

MAC layer modeled in [18]. Intuitively, this MAC layer provides the ability to reli-

ably broadcast messages and to receive acknowledgments when those messages have

been successfully delivered to all nearby nodes, with timing guarantees. In practice,

such a MAC layer is implementable with very high probability5, by using contention-

management mechanisms such as carrier sensing and back-off [1], receiver-side col-

lision detection with negative acknowledgment [9], or network coding methods [13].

2.5.2.1 Single-hop Case

An implementation of the timely delivery property in the single-hop case must guar-

antee a finite upper bound ∆bcast on the duration between the broadcast and the

delivery of a message, provided the receiver remains in the transmission range of

the sender during ∆bcast. This can be ensured thanks to the guaranteed communica-

tion property of the discussed MAC layer. This property can be stated as follows:

let process pi be the sender of a message m, then any process pj which remains

in the communication range of pi for all time between the broadcast and the ac-

knowledgment of m, receives m before the acknowledgment of m at pi. In addition,

the guaranteed communication property comes with a timing guarantee on m’s re-

ception, defined as function F+
ack. This function expresses an upper bound on the

elapsed time between the broadcast of m and the reception of its acknowledgment

at sender pi in the worst case, which corresponds to the maximum contention level.

The contention level is defined as the number of distinct senders in the neighborhood

5 In practice, synchronous assumptions are always probabilistic.

48



of m’s receivers and m’s sender, and whose broadcast overlaps the broadcast and

acknowledgment of m. Thus, assuming ∆bcast = F+
ack, the timely delivery property

is trivially ensured by the considered MAC layer for the single-hop case.

2.5.2.2 Multi-hop Case

When the radio transmission range is smaller than the radius ∆r of the scoped

broadcast, a scoped broadcast protocol can guarantee the timely delivery property

if the two following conditions are satisfied: a) the underlying MAC layer satisfies the

timely delivery property and b) a route is established between each correct node pi

and any other correct node pj which is in radius ∆r around pi. As just discussed, the

MAC layer modeled in [18] satisfies the timely delivery property for the single-hop

case with ∆bcast = F+
ack, so Condition a) is fulfilled. For Condition b), we can follow

the same reasoning we did in Section 2.5.1.2 for the fair-loss delivery property: to

find a route between any pair of correct nodes pi and pj, provided there exists a path

between pi and pj. In addition, we must show that the routing of any message is

time bounded. For this, let d(i, j) be the length of the shortest path between any two

pairs of correct nodes pi and pj, and let k be the maximum of such d(i, j) lengths.

By observing that ∆bcast = O(k × F+
ack) for the considered MAC layer, we can say

that the timely delivery property can be ensured for the multi-hop case.

2.6 Related Work

Among location-aware or time-aware communication services proposed for mobile

ad hoc networks, geocast and mobicast are the closest to our work. In this section,

we discuss these services and compare them to spotcast. We then compare spotcast

to higher level services such as location-based publish/subscribe.

2.6.1 Geocast

In a geocast routing protocol, a message is disseminated to all nodes which are within

a given geographic area called the geocast region. Thus, geocast is a type of multicast

in which group membership is defined with respect to a geographic area. Geocast
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was initially proposed for the Internet [19]. Then, various geocast routing protocols

were proposed for ad hoc networks [21; 22; 4; 25; 24; 29; 28; 3] and in particular, for

vehicular ad hoc networks (VANETs) [2; 20; 34; 26; 27]. The classical geocast routing

is semantically time-oblivious i.e., the geocast message is assumed to be delivered as

soon as possible. In abiding geocast [29], the geocast message is disseminated in the

geocast region for a time duration. Some papers use abiding geocast to disseminate

traffic warning messages or commercial advertisement to a group of vehicles in a

given zone for a given time [34; 26]. There exist several differences between geocast

and spotcast, depending on the geocast variant. With spotcast, the zone in which

the message is disseminated is a disk centered at the source of the message and

that zone moves with the source of the message. With geocast on the contrary, the

dissemination region is generally not associated with the source of the message and

remains stationary. Furthermore, the delivery guarantees of our different spotcast

variants require the receiver to follow the source within some range for some amount

of time, whereas such a requirement is absent from the geocast specification.

2.6.2 Mobicast

Mobicast is a class of multicast which is both location-aware and time-aware. In

mobicast, a message is disseminated in an area called the delivery zone for a time

duration T . Delivery zone can move during T and is denoted as Z[t], where t is in

T . As the delivery zone moves, some nodes enter the zone and some nodes leave the

zone. The ultimate goal of mobicast is to achieve just-in-time message delivery, i.e.,

Z[t] represents the area where the mobicast message should be delivered at time t

[16]. Some mobicast protocols were proposed for wireless sensor networks [16; 6; 17]

and VANETs [7]. In some of these protocols, the delivery zone is not associated

to the source of the message e.g., in [16]. In [7], the delivery zone is an elliptic

area around the source of the message (a moving car). Contrary to spotcast, mobi-

cast does not require the nodes to follow the message source in order to guarantee

the message delivery. Instead, mobicast protocols usually assume the existence of

a forwarding zone to ensure the implementation of the strong just-in-time message

delivery property.

50



2.6.3 Location-Based Publish/Subscribe

Some authors proposed high level communication abstractions derived from the

publish/subscribe paradigm, which include some type of constraint on messages in

time and/or space [15; 30; 11]. In STEAM [30], messages are constrained to a location

around the sender. However, there is no support for persistence and the specifications

and underlying communication abstractions are not detailed. In [11], messages are

persisted and can be localized. However, they are assigned to a fixed geographical

zone and do not move around with the sender. In [15], messages are persisted in a

geographical zone around the publisher for a certain duration. The communication

abstraction used in [15] to propagate messages is the closest to spotcast, however

it does not provide any guarantees. This lack of guarantees is one of the main

motivations for the present work.

2.7 Conclusion

In this paper, we presented spotcast, a communication abstraction specifically de-

vised for proximity-based mobile applications. Spotcast allows processes to send

messages to peers located within a defined range in a defined time frame. We pre-

sented three variants of spotcast offering different levels of delivery guarantees. By

proposing an interface and formal properties for a novel communication abstraction

in MANETs, this paper aims at filling a current gap in communication support for

emerging proximity-based mobile applications. However, several issues remain open,

which we intend to address in future work. For instance, we will consider Byzan-

tine processes in order to model security and privacy issues, which are inherent to

proximity-based mobile applications.

Moreover, the partial requirement for unbounded buffers needs to be further ad-

dressed from a realistic, application-driven perspective. For instance, a discussion

on what might be the finite size of a buffer to still be considered as unbounded de-

pending on application might be useful. Another issue which could be investigated

is the feasibility of spotcast variants, particularly exhaustive spotcast, based on real

applications, the network size and the number of broadcasting nodes.
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Chapter 3

Effective and Efficient Neighbor

Detection for Proximity-Based Mobile

Applications

Abstract We consider the problem of maximizing both effectiveness and efficiency

of the detection of a device by another device in a mobile ad hoc network, given a

maximum amount of time that they remain in the proximity of each other. Effective-

ness refers to the degree to which the detection is successful, while efficiency refers

to the degree to which the detection is energy saving. Our motivation lies in the

emergence of a new trend of mobile applications known as proximity-based mobile

applications which enable a user to communicate with other users in some defined

range and for a certain amount of time. The highly dynamic nature of these appli-

cations makes neighbor detection time-constrained, i.e., even if a device remains in

proximity for a limited amount of time, it should be detected with a high proba-

bility as a neighbor. In addition, the limited battery life of mobile devices requires

the neighbor-detection to be performed by consuming as little energy as possible. To

address this problem, we perform a realistic simulation-based study in mobile ad hoc

networks and we consider three typical urban environments where proximity-based

mobile applications are used, namely indoor with hard partitions, indoor with soft

partitions and outdoor urban areas. In our study, a node periodically broadcasts a

message in order to be detected as a neighbor. Thus, we study the effect of parame-

ters that we believe could influence effectiveness and efficiency, i.e., the transmission

power and the time interval between two consecutive broadcasts. Our results show

that regardless of the environment, effectiveness and efficiency are in conflict with

each other. Thus, we propose a metric that can be used to make good tradeoffs

between effectiveness and efficiency.

57



Publication:

B. Bostanipour and B. Garbinato, Effective and efficient neighbor detection for

proximity-based mobile applications, In Elsevier Computer Networks Journal, vol.

79, pp. 216–235, 2015.

The primary version of this work is published as a conference paper:

B. Bostanipour and B. Garbinato, Improving neighbor detection for proximity-based

mobile applications, In Proceedings of The 12th IEEE International Symposium on

Network Computing and Applications (IEEE NCA’13), pp. 177–182, Cambridge,

Massachusetts, USA, IEEE, 2013.

3.1 Introduction

With the increasing use of mobile devices and particularly smartphones, we face

the emergence of a new blend of distributed applications known as Proximity-Based

Mobile (PBM ) applications [10; 11; 12]. These applications enable a user to interact

with others in a defined range and for a given time duration e.g., for social networking

(WhosHere [53], LoKast [31]), gaming (Bluetooth gaming apps [8]) and driving

(Waze [52]).

Discovering who is nearby is a basic requirement of various PBM applications. In

a simple usage scenario of social networking applications such as WhosHere [53] or

LoKast [31], a user can discover other users in a defined range, view their profiles

and chat with a user or a group of users with her phone. Usually, the highly dynamic

nature of these applications (which is basically due to the mobility of devices) makes

neighbor detection time-constrained, i.e., even if a device remains in proximity for a

limited amount of time, it should be detected with a high probability as a neighbor.

In addition, the limited battery life of mobile devices requires the neighbor-detection

to be performed by consuming as little energy as possible.

In this paper, we consider the following problem: how can a device be detected by

another device with both maximum effectiveness and maximum efficiency, given a

maximum amount of time that they remain in proximity of each other? If not, how

can an effectiveness-efficiency tradeoff be made? Effectiveness refers to the degree

to which the detection is successful and is measured by the detection probability,

while efficiency refers to the degree to which the detection is energy saving and is
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measured by the inverse of energy consumption per device. To address this prob-

lem, we evaluate effectiveness and efficiency in a single-hop mobile ad hoc network

(MANET). The evaluations are performed under realistic assumptions and based

partly on simulations using the ns-2 [37] network simulator.1

There are two main reasons behind our choice of a MANET as the underlying

network architecture. Firstly, MANETs seem to be the most natural existing tech-

nology to enable PBM applications. In fact, similarly to PBM applications, in a

MANET two nodes can communicate if they are within a certain distance of each

other (to have radio connectivity) for a certain amount of time. Secondly, mobile de-

vices are increasingly equipped with ad hoc communications capabilities (e.g., WiFi

in ad hoc mode or Bluetooth) which increases the chance of MANETs to be one of

the future mainstream technologies for PBM applications.

Since the quality of radio signals (and consequently the detection probability) is

affected by the environment attenuation, for our study we consider three typical ur-

ban environments where PBM applications are used, i.e., indoor with hard partitions

(corresponding to offices with thick walls), indoor with soft partitions (corresponding

to exhibitions with temporary partitions) and outdoor urban areas (corresponding

to a music festival in downtown). To simulate these environments, we use a radio

propagation model known for modeling the obstructed urban environments called

Log-Normal Shadowing (LNS).

In our study, a node periodically broadcasts a hello message during a fixed time

interval in order to be detected as a neighbor. We assume that the nodes use the

IEEE 802.11a standard for the physical and mac layer. Thus, we study the impact of

two key parameters that influence effectiveness and efficiency, i.e., the transmission

power and the time interval between two consecutive broadcasts. In performing the

evaluations, we are particularly interested to answer the following questions:

• In each environment, when does a change in the value of any of the above men-

tioned parameters increase effectiveness and efficiency, or on the contrary, when

does it deteriorate them?

• In each environment, is there a unique combination of these parameters that could

maximize both effectiveness and efficiency? If not, how could a tradeoff between

effectiveness and efficiency be made?

1 The version 2.35 (the latest version), released on November 4, 2011.
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3.1.1 Contributions and Roadmap

This paper is, to the best of our knowledge, the first study on the impact of trans-

mission power and broadcast interval on effectiveness and efficiency of neighbor de-

tection for MANETs in urban environments. It provides a detailed simulation study

and defines the metrics that can be used to interpret the results. In order for our

results to be close to reality, the study is performed under realistic assumptions. For

one thing, we use 802.11a technology for communication between nodes and we as-

sume a probabilistic radio propagation model for urban environments. Furthermore,

we calculate the energy consumption using the specification of typical smartphones.

The remainder of the paper is as follows. In Section 3.2, we describe our system

model. In particular, we define the neighbor detection algorithm, which takes trans-

mission power and broadcast interval (this pair constitutes a strategy) as input. In

Section 3.3, we formulate the problem studied in this paper. It basically consists

of finding the most effective and the most efficient strategy in each environment.

If these strategies are not equal in an environment, we intend to find a strategy

that makes a reasonable tradeoff between effectiveness and efficiency. We also de-

fine the set of strategies for which the effectiveness and efficiency are evaluated. In

Section 3.4, we evaluate the effectiveness for the set of predefined strategies. We

also discuss the impact of changing transmission power and broadcast interval on

effectiveness. Finally, we identify the most effective strategy in each environment. In

Section 3.5, we evaluate the efficiency for the set of predefined strategies. We show

that efficiency is independent of the environment and we discuss the impact of chang-

ing transmission power and broadcast interval on efficiency. Finally, we identify the

most efficient strategy. In Section 3.6, we compare the results of Sections 3.4 and 3.5.

We observe that we cannot find a strategy that maximizes both effectiveness and

efficiency in any environment. The reason is that, regardless of environment, effec-

tiveness and efficiency are in conflict with each other. We then propose an approach

to make a tradeoff between effectiveness and efficiency. Using this approach, we find

the tradeoff strategy in each environment and we show that it has a relatively good

effectiveness and efficiency compared to other strategies. Finally, we discuss related

work in Section 3.7 before concluding in Section 3.8 with a perspective on future

work.
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3.2 System Model

In this section, we present the system model, and whenever necessary, we describe

the reasons behind our modeling choices.

3.2.1 Processes

We consider a mobile ad-hoc network (MANET) consisting of a finite set of n pro-

cesses P = {p1, ..., pn}. We use the terms process and node interchangeably. Pro-

cesses are in a two-dimensional plane. Each process has a unique identifier and is

aware of its own geographic location at any time. Processes can experience crash

failures. A crash faulty process stops prematurely. Prior to stopping, it behaves

correctly. Since we do not consider Byzantine behaviors, information security and

privacy issues are beyond the scope of this paper.

3.2.2 Time

We assume the existence of a discrete global clock, i.e., the clock’s tick range is the

set of non-negative integers. Every process has a local clock which has the same

clock’s tick range as the global clock and runs at the same rate as the global clock,

but its time value has some offset from the global time.

3.2.3 Communication

We consider a single-hop network i.e., without any message routing mechanism.

Processes communicate by broadcasting messages using the IEEE 802.11a MAC and

physical layers [2; 28]. The current WiFi technology used in mobile devices is based

on three IEEE standards, i.e., 802.11a, 802.11b, 802.11g. There are two main reasons

for our choice of 802.11a over the other standards: (1) 802.11b/g operate in the 2.4

GHz frequency band which is heavily used not only by WiFi devices but also by

other devices such as microwave ovens and DECT phones whereas, 802.11a operates

in the relatively unused 5 GHz frequency band. Thus, using 802.11a results in less
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interference and better throughput. This makes 802.11a an appealing technology

for ad hoc communication in urban areas where PBM applications are mostly used;

(2) the most recent IEEE 802.11 standard, i.e., 802.11ac also operates in 5 GHz

frequency band [3] and uses some similar modulation schemes and coding rates for

broadcast as 802.11a. Thus, using 802.11a allows us to have the results which are

close to those that could be obtained with the new standard.

Finally, we assume that each process has a buffer (a queue) that stores messages

after their generation and before their broadcast. The size of the queue and the

messages are such that the queue never remains full long enough to cause it to drop

a message.

3.2.4 Environment

We consider three typical urban environments where PBM applications are used,

namely indoor with hard partitions (corresponding to offices with thick walls), indoor

with soft partitions (corresponding to exhibitions with temporary partitions) and

outdoor urban areas (corresponding to a music festival in downtown). In our study,

we use a probabilistic model called the Log-Normal Shadowing (LNS) for the radio

propagation in an urban environment [40]. LNS uses a log-normal random variable

to describe the variations of the received power and has two parameters, i.e., the path

loss exponent (β) and the shadowing deviation (σ) to characterize each environment.

The path loss exponent (β) captures the average signal attenuation due to effects

such as absorption, refraction, diffraction, reflection, etc. The shadowing deviation

(σ) captures the radio irregularity. If (σ = 0), the radio propagation range is a perfect

circle, but as σ grows, its shape changes from a circle to a more random and irregular

shape which reflects what happens in reality, i.e., in the presence of not perfectly

isotropic antennas and the obstacles that cut the transmission range [36]. For our

Table 3.1: Values of LNS Parameters for each Environment.

Environment β σ (dB)

Indoor-hard partitions 5.5 7

Indoor-soft partitions 5 9.6

Outdoor-urban 4 5.5
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evaluations, we consider a distinct pair of (β, σ) values for each environment (see

Table 3.1). These pairs are chosen based on the measurements in the literature [40].

3.2.5 Neighbor Detection Algorithm

Each process pi executes the neighbor detection algorithm. The algorithm has two

input parameters: the time duration ∆period and the transmission power powtx. There

is also a constant R which defines the detection range. The algorithm divides time

into rounds of ∆period. At the beginning of each round, pi broadcasts a hello message

containing the tuple (i, roundNo, loc) where roundNo is the number of the current

round and loc is the location of pi at time when hello is sent.

When a process pj receives a hello message sent by pi, it verifies if its distance

to pi is less than or equal to R. If it is the case, pi is detected as a neighbor at its

round roundNo by pj. This means that if pi is in the neighborhood of pj since its

first round of broadcasting the hello message, we can say that pi is detected after

being in the neighborhood of pj for time duration of roundNo × ∆period. Note that

here we ignore the elapsed time between the sending and the reception of the hello

message, which obviates the use of a time synchronization algorithm. Also, since we

consider a single-hop network, pj can only detect pi as a neighbor if R is smaller

than or equal to the actual transmission range of pi.

In what follows, for simplicity’s sake, we designate by the term strategy an ordered

pair (powtx, ∆period) which can be considered as a possible input of the neighbor

detection algorithm.

3.3 Problem Statement

We characterize neighbor detection by two main aspects:

• Effectiveness is defined as the degree to which the neighbor detection is successful

and is measured by the detection probability. Thereby, maximizing effectiveness

boils down to maximizing the detection probability.

• Efficiency is defined as the degree to which the detection is energy saving and is

measured by the inverse of energy consumption per process. Thereby, maximizing

efficiency boils down to minimizing the energy consumption per process.
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Thus, the problem we consider in this paper can be specified as follows. Let

∆neighborhood be the maximum amount of time that a node pi remains continuously

within the detection range R of a node pj, then, for each environment, our goal is

to find:

• the most effective strategy, i.e., the strategy that maximizes the effectiveness of

detection of pi by pj;

• the most efficient strategy, i.e., the strategy that maximizes the efficiency of de-

tection during ∆neighborhood;

• the tradeoff strategy, i.e., the strategy that makes a tradeoff between effectiveness

and efficiency in the case that the most effective strategy is not the same as the

most efficient strategy.

We address the problem by evaluating the effectiveness and the efficiency for a

set S of predefined strategies and ∆neighborhood = 4 seconds.

Since the majority of current PBM applications run on smartphones, for defining

the strategies in S and later in our evaluations, we use the characteristics of current

smartphones. For instance, regarding power consumption, we use the specifications

of Broadcom’s wireless network interface cards [13]. In fact, in a mobile device, a

wireless network interface card (denoted by WNIC ) is the component that imple-

ments the MAC and the physical layers of the OSI model. Broadcom’s WNICs are

one of the most used WNICs in the current mobile devices and specially smart-

phones, e.g., Broadcom’s BCM 4330 WNIC is used in both Samsung Galaxy S II

and iPhone 4S [4].

Thus, let strategy s = (powtx, ∆period) be an element of S. Then, powtx can take a

value of 15 dBm, 19 dBm or 25 dBm. The first two values are based on specifications

of Broadcom’s BCM 4329 and BCM 4330 WNICs, whereas the last value presents

the possible performance gain of more powerful radio transmitters [49]. Also, ∆period

can take a value of 1 second, 1/2 second, 1/4 second or 1/12 second. These values

have been selected after our preliminary tests which show that they can present our

results in a useful manner. Considering all the combinations of the above mentioned

values of powtx and ∆period, the set S contains 12 strategies.

The reason behind the choice of 4 seconds for ∆neighborhood is that current PBM

applications usually guarantee the detection of a person even if she remains in neigh-

borhood for a very limited amount of time. Therfore, we choose ∆neighborhood to be

reasonably short.
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We also assume that each hello message has a size of 500 bytes. This value is

chosen by considering the possibility that each message can be digitally signed and

accompanied by a certificate to authenticate the sender (i.e., using a similar mech-

anism for message authentication as the one used for safety messages in vehicular

ad hoc networks [41]). As stated earlier, in this paper we do not study the security

and privacy issues. However, we choose the messages to be large enough so that our

results remain valid for more general cases.

3.4 Evaluation of Effectiveness

Effectiveness is measured by the neighbor detection probability. Thus, in this section

we first describe our approach to calculate the detection probability of each strategy,

which is based on simulations. Then, we present our simulation setup and the results.

In particular, while presenting the results, we discuss how a change in powtx or

∆period can affect the detection probability in each environment. We also define two

packet dropping metrics that we use to interpret the results. Finally, we compare

the effectiveness of the strategies and present the most effective strategy in each

environment.

3.4.1 Approach to Calculate the Neighbor Detection

Probability

We calculate the resulting detection probability of each strategy by performing sim-

ulations with ns-2 simulator. Each simulation takes a strategy s and an environment

e as the input and produces as the output the detection probability at time t for all

t ∈ [0, ∆neighborhood].

More precisely, let s = (powtx, ∆period) and e = (β, σ), at the beginning of a

simulation we initialize the neighbor detection algorithm at all nodes with powtx

and ∆period. We also initialize the radio propagation model with β and σ. Since

the value of ∆neighborhood is the same while testing different strategies, instead of

using nodes with movement, we consider static nodes which broadcast the hello

message only during ∆neighborhood. However, since each node’s local clock has some

offset with respect to the global clock, nodes do not start and finish broadcasting
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at the same time. We only verify the detection probability at certain predefined

nodes called Reference Nodes or RNs. Intuitively, the longer a node remains in the

neighborhood, the more it broadcasts the hello message, and thus it has more chance

to be detected. Therefore, the neighbor detection probability at each RN is calculated

as a cumulative probability and is an increasing function of time during which a node

remains in the neighborhood. More precisely, given time t ∈ [0, ∆neighborhood], the

neighbor detection probability at t for a RN is equal to the number of all nodes that

are detected by RN after being in the neighborhood for time t, divided by the number

of all nodes that are in the neighborhood. Finally, since we use a probabilistic radio

propagation model, for each t ∈ [0, ∆neighborhood], we take the average of the detection

probability at t over all RNs. As the result, we have the values of the average of

the detection probability during [0, ∆neighborhood] which constitute the output of the

simulation.

Note that since we use a probabilistic radio propagation model, two simulations

that have the same strategy and environment as the input do not necessarily result in

the same output. Thereby, to have a good estimation of the corresponding detection

probability of a strategy s in an environment e, we take the average of the outputs

of five simulations which have s and e as the input. We explain this in more detail

in Section 3.4.2 after defining the simulation setup.

3.4.2 Simulation Setup

We choose the total number of nodes and the location of RNs such that we can

estimate the detection probability in the worst case, i.e., where the communication

interference and collisions are at the maximum. In fact, if a strategy maximizes the

neighbor detection probability in the worst case, we can assume that it maximizes

the neighbor detection probability in all cases.

Thus, we consider a square of 100 m width filled with 1000 static nodes located

using a uniform random distribution.2 RNs are the nodes located at the distance

2 In urban environments, a node’s movement may depend on another node’s movement (e.g., if

they move in a group). A node can also move on predefined paths or sidewalks [5]. Therefore,

topology changes are not always random. However, using a distribution that characterizes such

behaviors, requires a particular deployment scenario, i.e., the physical properties of the terrain,

the points of interest, etc. Thus, we believe that a random distribution gives a good generic basis

for the evaluation.

66



30m$

Refrence Node (RN)! Normal Node!

R = 30m!
15m!

100m!

10
0m

!
Fig. 3.1: Simulation Map

less than or equal to 5 m from the center of the square. The reason is that the nodes

that are close to the center, usually experience the maximum radio interference.

The total number of nodes is chosen after studying the occupancy load factors of

urban surfaces [16]. In architecture and urbanism, the occupancy load factor of a

given urban surface defines the maximum number of persons which can occupy one

unit area of that surface. The occupancy load factor of an urban surface is mainly

defined based on its usage (e.g., residential, office, public assembly, etc...). Although,

the occupancy load factors of the urban environments that we consider in this paper

are slightly different from one another, 1000 seems to be a good approximation of

the maximum number of persons that usually occupy these environments.

For the radio propagation model, we use the implementation of LNS model in

ns-2. In a simulation, all nodes have the same idealized transmission range3 since

they are all initialized with a given value of powtx. Moreover, even with our lowest

powtx choice, the idealized transmission range is large enough so that all nodes are

within the idealized transmission range of each other. Each RN has the detection

range of 30 m. This value is chosen such that even using our lowest powtx choice,

the detection range is less than the idealized transmission range. Fig. 3.1 depicts the

simulation map with only one RN.

For the implementation of 802.11a in ns-2, we use the implementation performed

by a team from Mercedes-Benz Research and Development North America and Uni-

versity of Karlsruhe [15]. This implementation includes a completely revised and

3 The idealized transmission range corresponds to the deterministic transmission range calculated

for idealized deterministic channel conditions i.e., with no node movement and no obstacles between

the sender and the receiver(s).
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enhanced architecture for physical and MAC layers to improve the drawbacks of the

802.11 default support in ns-2. In particular, this implementation for the physical

layer comprises cumulative received signal power over noise (SINR) computation.

Its mac layer also accurately implements the CSMA/CA (Carrier Sense Multiple

Access with Collision Avoidance) mechanism.

Thus, we use the default values of this implementation for physical and mac

layers [15], however, we disable both preamble and frame body capture features.4 For

data rate, we consider 6 Mbps using Binary Phase-Shift Keying (BPSK ) modulation

scheme and 1/2 coding rate. In fact, more advanced schemes imply higher data rates

but also require better received signal quality which reduces the number of receivable

packets in the case of 802.11 broadcasts where no acknowledgment or RTS/CTS

(Request to Send/Clear to Send) mechanism exist to cope with interferences and

collisions.

Based on our assumptions in Section 3.3, the size of a hello packet is set to 500

bytes. If messages are generated while previously generated messages are not yet

transmitted, the new messages are stored in an interface queue that is capable of

storing up to 100 packets. This queue size is chosen such that regardless of the used

strategy, no message is dropped by the queue.

To obtain the detection probability for a strategy s in an environment e, we

perform five simulations with s and e as the input and with five different pairs of

seeds. In fact, in each simulation one seed is used to initialize the random number

generator of the LNS model and the other is used to initialize the random number

generator responsible for the randomness of topologies. Thereby, for each simulation,

we have a different topology (with different RNs) and a LNS model which is seeded

differently. Then, we take the average of the five simulations’ outputs. The result

is considered as the detection probability for the strategy s in the environment e.

Recall that the output of a simulation is the average (over all RNs in that simulation)

of the neighbor detection probability at time t for all t ∈ [0, 4] seconds. Therefore,

4 Capture feature, which is present in some WNICs, can mitigate the effect of collisions to some

degrees. Roughly speaking, when a packet collision happens, the capture feature enables the receiver

to capture one of the collided packets if certain conditions are fulfilled. The existing WNICs differ

in the extent of supporting capturing techniques [29; 15]. There exist two variants of the capture

feature (i.e., the preamble and the frame body capture) in the simulator that we use. However,

according to our preliminary tests, enabling these features only increases the chance of packet

reception with the same percentage across different strategies and thus, does not influence our

conclusions.
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the detection probability for the strategy s in the environment e is the average (over

all RNs in the five simulations) of the neighbor detection probability at time t for

all t ∈ [0, 4] seconds.

Note that according to our preliminary tests, with five simulations we already

achieve an average that accurately presents the detection probability in each setting.

In fact, with five simulations the resulting standard deviation in all cases is very low

(in order of 10−2).

3.4.3 Results

According to our simulation results, a node which is situated at a maximum distance

of 15 m from a RN, is detected with a high probability (at least 0.8) in all environ-

ments. The reason is that at close distances (i.e., up to 15 m), in all environments,

the signal strength of a received packet is usually high enough to resist interferences.

Therefore, in this section we only discuss the detection of the nodes situated at a

distance between 15 m to 30 m from a RN (see Fig. 3.1 on page 67).

Fig. 3.2 on page 71, depicts, as an example, the results for Strategy (15 dBm,

1/4 Sec) in different environments. As shown in the figure and already described in

Section 3.4.1, the neighbor detection probability is an increasing function of time.

We also observe that for the same strategy, the detection probability increases as

we change the environment from the indoor with hard partitions to indoor with soft

partions and then to outdoor urban. This is because the radio signals are attenuated

the most in indoor with hard partitions and the least in outdoor urban.

The fact that the neighbor detection probability is calculated as a cumulative

probability and is an increasing function of time enables us to only take into account

its last value (i.e., the value at second 4) when comparing the effectiveness of different

strategies. Thereby, for the sake of simplicity, we use henceforth the term neighbor

detection probability while referring to the neighbor detection probability at second

4.

Intuitively, in a given environment increasing powtx and decreasing ∆period should

lead to the most effective strategy. In fact, by increasing powtx, the packets are

transmitted with a more powerful signal and accordingly they better survive the

interferences and environmental attenuations. Also, decreasing ∆period increments

the total number of sent hellos and thus increases the chance of reception. However,
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simulations show that this is not always true i.e., changing the values of powtx and

∆period, will not always affect the detection probability in all environments in the

same way. However, in certain cases we observe similar behaviors for some range

of values, e.g., increasing powtx for a given ∆period seems to increase the detection

probability for the majority of cases (see Fig. 3.4 on page 71), whereas decreasing

∆period for a given powtx might result in unpredictable behaviors (see Fig. 3.5 on

page 71). To understand the reason behind these similarities and differences, we

study the mechanism of packet drops by 802.11 physical layer. Based on our study,

we define two metrics that can be used to interpret the results in each environment.

In the following, we first present the metrics and we show, as an example, how

they can be used to interpret the results in one particular environment, i.e., indoor

with hard partitions. Then, based on the interpretation of the results of different

environments using our metrics, we present our general observations on how a change

in powtx or ∆period can affect the detection probability.

3.4.3.1 Packet Dropping Metrics

Before defining our metrics, we present an overview of the packet dropping mecha-

nism by 802.11 physical layer. When a packet arrives from the channel to the physical

layer of the receiver, its received signal power over noise (SINR) is compared to a

constant threshold called SINR threshold.5 The threshold value depends on the mod-

ulation scheme and the coding rate.6 If there is only one sender, the noise is equal

to the noise floor, which is the sum of the thermal noise of the system plus some

additional noise caused by losses in the receiver hardware (e.g. in the antenna cables

or electronic parts) [44; 15]. However, if there are other senders which send at the

same time, their packets could be sensed by the receiver and increase the noise. If

5 The packet dropping mechanism described in this section is drawn from the SINR-based reception

model which is adopted by many network simulators (including the simulator that we use). In this

model the SINR threshold values are obtained by experimental measurements using real hardware.

For more information about this model see [7; 15].
6 Different modulation schemes and coding rates can be used while transmitting the PLCP (Phys-

ical Layer Convergence Procedure) header and the data frame of a 802.11a physical layer packet.

Accordingly, the SINR threshold used at the reception can be different for the PLCP header and

the data frame. However, since in our simulations we use the same modulation scheme (i.e., BPSK)

and coding rate (i.e., 1/2) for both the PLCP header and the data frame, in our description we

only consider one SINR threshold.
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the SINR of a packet is less than the threshold, no reception process is triggered and

the packet is dropped. A packet could also be dropped due to collisions. In this case,

a packet is in the reception process, but another packet arrives. If the second packet

is strong enough to corrupt the first packet by augmenting the background noise,

both the first and the second packets are dropped, otherwise the second packet is

dropped and the first packet reception continues. Thus, to explain our simulation

results we define two following metrics.

• Weak Packets Percentage (WPP). This is the average percentage of all weak pack-

ets that arrive to a RN’s physical layer out of all sent packets by nodes in a distance

of 15 m to 30 m through a simulation. By weak packets, we mean packets which

have a low power when they arrive to the physical layer such that even without

any interference from other nodes, their SINR is lower than the SINR threshold.

• Interfered or Collided Packets Percentage (ICPP). This is the average percentage

of all interfered or collided packets out of all sent packets by nodes in a distance

of 15 m to 30 m to a RN through a simulation. By interfered packets, we mean

all packets which have an acceptable SINR for reception if there is no interference

but their SINR is lower than the SINR threshold because of the interference of

other nodes. By collided packets, we mean all packets which are dropped due to

collision.

WPP and ICPP are not disjoint i.e., there are packets which are weak but have

collided with the reception of another packet. WPP is a function of powtx and the

environment attenuation (characterized by LNS parameters). ICPP is a function of

∆period, powtx and the environment attenuation. A sent packet could also be dropped

if it arrives when the receiver’s physical layer is in transmission state. However,

according to our preliminary evaluations, the percentage of such packets is very low,

so we simply ignore them. In addition, in our preliminary experiments, we defined

other metrics which are not related to the packet dropping, e.g., average backoff

time at senders, however WPP and ICPP seem to interpret the results in a more

clear way.

3.4.3.2 Metrics-based Interpretation of the Results

We now interpret the results for indoor with hard partitions environment using our

defined metrics. By using this example, we show how these metrics can help us
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to understand the behavior of the detection probability under different strategies.

Our discussion is based on the measurements depicted in Fig. 3.3, Fig. 3.4–A and

Fig. 3.5–A (all the figures can be found on page 71). In particular, in Fig. 3.3, the

values of the defined metrics for different strategies in indoor with hard partitions

environment are presented.

• Increasing powtx for a given ∆period. As shown in Fig. 3.3, as we increase powtx from

15 dBm to 19 dBm and then to 25 dBm, the value of WPP decreases, which means

that the percentage of weak (non-receivable) packets that arrive to the physical

layer of the receiver decreases. On the other hand, as we increase powtx, for the

same ∆period, the value of ICPP increases. The reason is that increasing powtx

results in more powerful packets arriving to the physical layer, which can interfere

or collide with other packets’ reception. So, we observe that when we increase

powtx considerably, i.e., from 15 dBm or 19 dBm to 25 dBm (recall that dBm is

a logarithmic scale), the detection probability increases regardless of the value of

∆period (see Fig. 3.4–A). However, when we increase powtx from 15dBm to 19dBm,

the detection probability improves differently under different values of ∆period. For

instance, as shown in Fig. 3.4–A, when ∆period = 1/12 second, increasing powtx

from 15 dBm to 19 dBm does not improve the detection probability as much

as it improves under ∆period = 1 second. The reason is that under small values

of ∆period, the value of ICPP is high i.e., many packets are dropped because of

collisions and interferences and therefore a small increase in powtx cannot improve

the detection probability significantly.

• Decreasing ∆period for a given powtx. As depicted in Fig. 3.3, the value of WPP

remains the same when decreasing ∆period. This is not surprising since WPP is

a function of powtx and the environment attenuation and is independent from

∆period. On the other hand, when decreasing ∆period, the value of ICPP increases

since more packets arrive per second to the physical layer of the receiver, which

increases the chance of collisions and interferences. However, collisions do not have

the same impact in the presence of different values of WPP. For instance, as shown

in Fig. 3.3, when powtx = 15 dBm the value of WPP = 96%. In this case, even if

the number of collisions increases, a large number of collided packets will be weak

(non-receivable) packets. Therefore, decreasing ∆period increments the reception

chance of the powerful packets. As depicted in Fig. 3.5–A, with powtx = 15 dBm,

the detection probability at ∆period = 1/12 second is greater than the detection

probability at ∆period = 1 second and almost equal to the detection probability at
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∆period = 1/4 second. However, when the value of WPP is relatively low, collisions

have a more significant impact and can decrease the detection probability e.g., as

shown in Fig. 3.3, when powtx = 25 dBm, the value of WPP=75%. In this case,

the detection probability at ∆period = 1/12 second is even less than the detection

probability at ∆period = 1 second (see Fig. 3.5–A).

3.4.3.3 Impact of Changing powtx and ∆period on Neighbor Detection

Probability

After interpreting all results by using the packet dropping metrics, we reach the fol-

lowing general observations regarding the impact of increasing powtx and decreasing

∆period on the detection probability.

• Increasing powtx for a given ∆period. For a fixed ∆period, increasing powtx consider-

ably, i.e., from 15 dBm or 19 dBm to 25 dBm, increases the detection probability

in all environments (see Fig. 3.4 on page 71). Increasing powtx from 15 dBm to 19

dBm, improves the neighbor detection under high values of ∆period (e.g., for 1 sec-

ond), but under low values of ∆period (e.g., for 1/12 second), it has less effect and

can even lead to no improvement. For instance, as shown in Fig. 3.4–B, in indoor

with soft partitions environment, under ∆period = 1 second, increasing power from

15 dBm to 19 dBm increases the detection probability from 0.4612 to 0.6539 (i.e.,

about 41.78% increase), whereas under ∆period = 1/12 second, increasing powtx

from 15 dBm to 19 dBm has almost no influence on the detection probability. This

is because under low values of ∆period, the number of collisions and interferences

is relatively high.

Furthermore, although in all environments, increasing powtx improves the detec-

tion probability, in general, the improvement becomes less significant as we move

from a more obstructed environment to a less obstructed environment. For in-

stance, under ∆period = 1 second, increasing powtx from 15 dBm to 25 dBm in the

indoor with hard partitions environment increases the detection probability by a

factor of 5.66 (see Fig. 3.4–A), whereas, in the outdoor-urban environment, it in-

creases the detection probability by a factor of 1.13 (see Fig. 3.4–C). In fact, as the

environment becomes less obstructed, packets do not need to be transmitted with

a very powerful signal to resist the environmental attenuation, thus, increasing

powtx results in a less significant improvement of the detection probability.
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• Decreasing ∆period for a given powtx. For a fixed value of powtx, decreasing ∆period

could have different impacts on the detection probability depending on the envi-

ronment (see Fig. 3.5 on page 71). For instance, in indoor environments, decreasing

∆period down to a certain value (e.g., 1/4 second in indoor with hard partitions)

can increase the detection probability. However, below this value the detection

probability starts to decrease due to the increase in collisions and interferences.

In outdoor urban, decreasing ∆period generally decreases the detection probability.

This is because the packets are less attenuated by the environment (compared to

indoor environments) and a good percentage of them arrive to the receiver’s phys-

ical layer with acceptable SINR. Thus, decreasing ∆period only increases collisions

and prevents the reception of the acceptable packets.

3.4.3.4 The Most Effective Strategy

Fig. 3.6 on page 76, depicts the strategies ranked in descending order with respect to

their resulting detection probability in different environments. As shown, the most

effective strategy is not the same in all environments. More precisely, Strategy (25

dBm, 1/4 Sec), Strategy (25 dBm, 1/2 Sec) and Strategy (25 dBm, 1 Sec) are respec-

tively the most effective strategies in indoor with hard partitions, indoor with soft

partitions and outdoor urban areas. These results are justified by our observations

in Section 3.4.3.3.

Based on the detection probability comparisons, for a given strategy s and envi-

ronment e, we defined the following metrics:

• Effectiveness rank. This rank is out of 12 strategies in set S and is based on the

ranking in Fig. 3.6, i.e., in descending order with respect to detection probability.

The effectiveness rank of the most effective strategy is 1.

• Effectiveness ratio. This is the ratio of the detection probability of s to the de-

tection probability of the most effective strategy in environment e. Informally

speaking, it compares the effectiveness of s to the maximum effectiveness that can

be achieved in environment e. The effectiveness ratio of the most effective strategy

is 1.

Table 3.2 on page 76, depicts the effectiveness ranks and ratios of the strategies

in different environments. We use these metrics later in Section 3.6 when discussing

the tradeoff between effectiveness and efficiency.
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Fig. 3.6: Strategies ranked in the descending order with respect to their corresponding detection prob-

ability in different environments

Table 3.2: Effectiveness rank and ratio of the strategies in different environments
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3.5 Evaluation of Efficiency

Efficiency is measured by the inverse of energy consumption per process. Therefore,

in this section we first define a model of energy consumption and then design an

algorithm that, based on the model, calculates for each strategy the energy con-

sumption per process. After describing the algorithm, we present the results and we
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discuss how a change in powtx or ∆period can affect the energy consumption. Finally

we compare the efficiency of the strategies and present the most efficient strategy.

3.5.1 Energy Consumption Model

Communication is the primary cause of energy consumption of a node executing the

neighbor detection algorithm. Since 802.11 (or WiFi) communication is considered

one of the main causes of the battery discharge in mobile devices [33; 30], in this

section we only consider the energy consumption of the 802.11a wireless network

interface card (or WNIC). As already described in Section 3.3, WNIC is the com-

ponent that implements the MAC and the physical layers of the OSI model in a

mobile device. To calculate the energy consumption of the WNIC for each strategy,

we first define its energy consumption model as below.

Power is defined as the amount of energy consumed per unit of time. It is known

that a 802.11 WNIC exhibits different power consumptions at different radio modes.

Therefore, in order to define the energy consumption model of the WNIC, we should

first identify its different radio modes.

In this paper, we assume that the WNIC does not use any power saving mechanism

for the IEEE 802.11 distributed coordination function (DCF). In fact, according to

the power saving mechanism of the 802.11 standard, the WNIC sleeps most of the

time and wakes up periodically to check whether there are some packets that it

should transmit or receive. During the sleep mode no transmission or reception is

possible and the power consumption is extremely low. Thus, If a node has a packet to

transmit, it should buffer the packet and waits until the next wake-up time [1]. In this

paper, we do not use the power saving mechanism for two main reasons. First, waking

up at the right moment requires the nodes to have synchronized clocks. Second, the

power saving mechanism is known to perform poorly when the number of nodes is

high. In fact, at the wake-up time, a sender node should first announce the list of the

buffered packets to destinations. The announcement is performed by sending an ad-

hoc traffic indication map (ATIM ) packet. As the number of nodes increases, more

ATIM transmissions could take place at the same time which result in more collisions

and hence lower performance [43]. Although some researchers proposed new power

saving mechanisms without some of these limitations (for instance, schemes that

work with asynchronous clocks [25; 55]), in this paper for simplicity’s sake we do
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not use any of these mechanisms. We might consider their potential use in our future

work.

Thus, we assume that the WNIC can only operate in one of three radio modes,

namely, transmit, receive and idle [1]. As their names suggest, the transmit and the

receive modes correspond respectively to the cases where the WNIC transmits or

receives a packet. In general, power consumption in the transmit mode is different

from power consumption in the receive mode, since different circuits are used in

these modes [38]. In the idle mode, the WNIC is required to continuously sense

the medium. Thus, intuitively the power consumption in the idle mode should be

similar to the power consumption in the receive mode. The experimental results

in [19] confirm this fact and show that the power consumption in the idle mode is

only slightly different from the power consumption in the receive mode. Therefore,

we assume that in the idle mode, the WNIC consumes the same amount of power

as in the receive mode. This assumption results in two general radio modes:

• Active mode. This mode is characterized by power consumption powactive and

corresponds to the cases where WNIC is in the transmit mode.

• Passive mode. This mode is characterized by power consumption powpassive and

corresponds to the cases where the WNIC is either in the idle or the receive modes.

Knowing these two general radio modes, the energy consumption model can be

specified as follows. Let Ttotal be the time duration for which the energy consump-

tion of WNIC is defined. Then, Ttotal can be split into Tactive and Tpassive, which

denote respectively the duration spent in the active and passive modes. Since power

consumption of each mode is known, the energy consumption of each mode can be

calculated separately. Let Etotal denote the total energy consumption of WNIC dur-

ing Ttotal, then Etotal can be found by summing Epassive and Eactive, where Epassive

and Eactive denote respectively the energy consumption in the active and passive

modes [14].

3.5.2 Energy Consumption Calculation Algorithm

To obtain the energy consumption of the WNIC for different strategies, we devise an

algorithm called energy consumption calculation algorithm. It is based on the energy

consumption model described in Section 3.5.1. It calculates the active, passive and
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total energy consumption of the WNIC for a given strategy and for a given time

duration. The algorithm calculates the energy consumption independently of the

environment. The main reason is that the time that the WNIC of a node (executing

the neighbor detection algorithm) spends in each radio mode is independent of the

environment attenuation.

Moreover, in order for the algorithm to characterize accurately the energy con-

sumption of a current smartphone’s WNIC, we use the power consumption specifi-

cations of Broadcom’s BCM 4328 WNIC which is also used as a reference in [39] to

devise power consumption equations.

The algorithm has three input parameters: the transmission power powtx, the time

duration ∆period (these two parameters form Strategy (powtx, ∆period)), and the time

duration Ttotal for which the energy consumption is calculated. The algorithm has

three output parameters: the energy consumption in the active mode Eactive, the

energy consumption in the passive mode Epassive and the total energy consumption

Etotal.

The algorithm has two main steps:

1. For m ∈ {active, passive}, perform the following:

a. Calculate powm, where powm is the power consumption of m mode.

b. Calculate Tm, where Tm is the amount of time out of Ttotal that is spent in m

mode.

c. Set Em= powm×Tm, where Em is the amount of energy consumed in m mode.

2. Set Etotal=
∑

m∈{active,passive} Em, where Etotal is the total energy consumed during

Ttotal and return Eactive, Epassive and Etotal as output.

In the following, we describe two Substeps 1a and 1b.

1a) Calculate powm : depending on the value of m, there exist two cases:

• If m is equal to active, powactive should be calculated. To do so, we use Equa-

tion 3.1 where all quantities are in milliwatts (mWs). This equation was intro-

duced in [39]. As discussed in Section 3.5.1, powactive is the power consumed

by WNIC while transmitting packets. Equation 3.1 shows how powactive can be

defined in terms of transmission power powtx.
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powactive = 305 +
powtx

0.02× 5
[
2

3
×log10(powtx)]

(3.1)

The first term of the equation, i.e., 305 mW, represents the common power

consumed by the circuitry independent of powtx. This value is obtained based

on Broadcom’s BCM 4328 WNIC specifications [13]. The second term of the

equation represents the total power consumed by the RF power amplifier of the

WNIC, which is active during transmissions.

• If m is equal to passive, powpassive should be calculated. In [39], power consumed

by WNIC during the reception is assumed to be always equal to 295 mW based

on Broadcom’s BCM 4328 WINC specifications. This assumption seems to be

correct since the experimental results in [18] show that the amount of power con-

sumed by the WNIC during the reception is not influenced by the transmission

power powtx. Thus, we also adopt this assumption in our algorithm and set the

value of powpassive to 295 mW.

1b) Calculate Tm : depending on the value of m, there exist two cases:

• If m is equal to active, Tactive should be calculated.

Intuitively, Tactive is the sum of transmission times of all packets that are trans-

mitted by WNIC during Ttotal. Thus, let Ttx be the transmission time of a packet

and n be the number of packets transmitted during Ttotal, Tactive can be defined

as:

Tactive = n× Ttx =

⌊
Ttotal

∆period

⌋
× 0.000728 (3.2)

where all quantities are in seconds. Note that in Equation 3.2, n and Ttx are

respectively replaced by

⌊
Ttotal

∆period

⌋
and 0.000728. Below we explain how these

values are obtained.

We find the value of Ttx using Equation 3.3. This Equation was introduced in

[38]. It calculates the transmission time of an 802.11a data frame in seconds
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given its payload size L in bytes and the Bytes-per-Symbol information ( BpS)

which is itself a function of data rate R.

Ttx = 0.00002 +

⌈
30.75 + L
BpS(R)

⌉
× 0.000004 (3.3)

In our case, i.e., with data rate of 6 Mbps, BpS = 3. Since L = 500 bytes, we

find Ttx = 0.000728 seconds.

To find the value of n, we should find the number of messages transmitted during

Ttotal. According to the neighbor detection algorithm, a message is sent by the

application layer every ∆period. So, by setting the value of n to

⌊
Ttotal

∆period

⌋
, we

make three assumptions. First, we assume that one application layer message

results in one MAC frame. This assumption conforms to our simulation study

in Section 3.4.7 Second, we assume that no message is dropped by the interface

queue. This assumption conforms to our system model. Third, we assume that

the amount of time spent by a message between its sending by the application

layer until the end of its transmission from the physical layer is smaller than

∆period. This assumption is also reasonable considering the values of ∆period of

the studied strategies and is also confirmed by our simulation study described

in Section 3.4. Based on these assumptions, we know that a message sent by the

application layer is always transmitted to the channel before the sending of the

next message by the application layer. Hence, all messages sent by the application

layer during Ttotal are transmitted during Ttotal + ε, with ε being negligible (ε

accounts for limit conditions where the last message is sent very close to the end

of the measurement period).

• If m is equal to passive, Tpassive should be calculated. Tpassive is the part of Ttotal

that the WNIC spends in the reception or the idle modes, i.e., it is the part

of Ttotal that WSN does not spend in the active mode. Therefore, Tpassive is

calculated using Equation 3.4 where Tactive is replaced by Equation 3.2. Note

that all quantities in Equation 3.4 are in seconds.

7 In real world applications, this assumption is not always true. However, to prevent a high number

of packet collisions and network congestion, the hello packets are usually small packets resulting

in few MAC frames. In addition, Tactive is a linear function of number of transmitted frames.

Therefore, this assumption does not influence our observations in Section 3.5.3.
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Tpassive = Ttotal − Tactive = Ttotal − (n× Ttx)

= Ttotal − (

⌊
Ttotal

∆period

⌋
× 0.000728)

(3.4)

3.5.3 Results

Using the energy consumption evaluation algorithm, we calculated Eactive, Epassive

and Etotal for each strategy during Ttotal = ∆neighborhood = 4 seconds. Based on

these calculations, we reached some observations described below. Note that these

observations are valid for any value of Ttotal since the output energies of the energy

consumption algorithm are linear functions of Ttotal.

• Regardless of strategy, the majority of Etotal consists of Epassive. The results of

different strategies show that, on average, 98.9% of Etotal consists of Epassive and

only 1.08% consists of Eactive. Roughly speaking, the reason is that regardless

of the used strategy, the WNIC spends much more time in the passive mode

than in the active mode. In fact, among all tested strategies, Strategy (25 dBm,

1/12 Sec) is the one that has the maximum value for Eactive and at the same time

the minimum value for Epassive.
8 When we compare Tactive and powactive of this

strategy with its corresponding Tpassive and powpassive, we realize that its powactive

is 4.69 times greater than powpassive (recall that powpassive is always equal to 295

mW). However, its corresponding Tactive is still about 113.46 times smaller than

its Tpassive. That is why its resulting Eactive is still much smaller than its Epassive.

• Eactive has a high variation between different strategies while Epassive remains

more or less constant. Our results reveal that by changing strategy, Eactive

varies a lot whereas Epassive tends to remain more or less the same. In fact,

let Emax
active and Emin

active denote respectively the maximum and minimum of Eactive

8 A strategy can maximize Eactive if it can maximize at the same time Tactive and powactive.

Roughly speaking, it is the strategy that results in the maximum number of transmitted packets

and the maximum transmission power. On the other hand, a strategy can maximize Epassive if

it can just maximize Tpassive, since powpassive is constant and not a function of transmission

power. In other words, all strategies that result in the minimum number of transmitted packets,

maximize Epassive. A similar reasoning can be applied to find the strategies that minimize Eactive

and Epassive.
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for the tested strategies, and Emax
passive and Emin

passive denote respectively the maxi-

mum and minimum of Epassive for the tested strategies. Then, Emax
active is 26.7821

times greater than Emin
active, whereas Emax

passive is more or less equal to Emin
passive since

Emax
passive/E

min
passive = 1.0080 (see Fig. 3.7 on page 84).

• Variation of Etotal between different strategies is mainly due to variation of Eactive.

This observation is the direct consequence of the observation described in the pre-

vious point. Intuitively, since Eactive varies a lot between strategies while Epassive

remains more or less constant, the variation of Etotal is mainly due to Eactive. For

instance, among the tested strategies, Strategy (25 dBm, 1/12 sec) is the one that

maximizes Etotal and Strategy (15 dBm, 1 sec) is the one that minimizes Etotal.

Thus, if we change the strategy from (25 dBm, 1/12 Sec) to (15 dBm, 1 Sec) we

save 3.05% in Etotal. This is the result of saving 3.82% in Eactive and at the same

time losing 0.77% in Epassive.

Based on these observations, we directly consider the active energy consumption

instead of the total energy consumption while measuring the efficiency of each strat-

egy. As shown in Fig. 3.7, under Ttotal = ∆neighborhood = 4 seconds, the amount of

energy saved by applying the strategy with minimum Eactive instead of other strate-

gies is very low ( i.e., at most 47 milliJoules (mJ) ). However, since Eactive is a linear

function of time, this amount becomes more and more significant as Ttotal increases

(see Fig. 3.8 on page 84). In other words, choosing a strategy that minimizes the

active energy consumption will not result in saving much energy in the short-term

but in the long-term. Note that, henceforth, we use the term energy consumption

instead of active energy consumption for simplicity’s sake.

3.5.3.1 Impact of Changing powtx and ∆period on Energy Consumption

In this section, we discuss the impact of increasing powtx and decreasing ∆period on

energy consumption.

• Increasing powtx for a given ∆period. According to the energy consumption calcu-

lation algorithm, for a given ∆period, when we increase powtx, we in fact, increase

the power consumption in the active mode or powactive which in its turn increases

the energy consumption. Thus, powactive is about 621.22 mW, 822.13 mW and

1386.48 mW when transmitting with powtx of 15 dBm, 19 dBm and 25 dBm,

respectively. This means that at a given ∆period, energy consumption is slightly
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Fig. 3.7: Variation of Eactive and Epassive over different strategies when Ttotal = ∆neighborhood = 4 seconds
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Fig. 3.8: Variation of Eactive and Epassive over different strategies for high values of Ttotal (different hours)
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increased (by 1.3 times) when we increase powtx from 15 dBm to 19 dBm and is

almost doubled when we increase powtx from 15 dBm or 19 dBm to 25 dBm (see

Fig. 3.9-A on page 84).

• Decreasing ∆period for a given powtx. According to the energy consumption calcu-

lation algorithm, Eactive is a linear function of 1/∆period. Thus, for a given powtx,

decreasing ∆period increases the energy consumption in a linear manner. This in-

crease is at least twice. Recall that by increasing powtx, the energy consumption is

at most doubled. Thereby, the impact of decreasing ∆period on energy consumption

is usually more significant than the impact of increasing powtx (see Fig. 3.9-B on

page 84).

3.5.3.2 The Most Efficient Strategy

Fig. 3.10 on page 86, depicts the strategies ranked in ascending order with respect to

their corresponding energy consumption. As discussed in Section 3.5.3.1, compared

to increasing powtx, decreasing ∆period (which accordingly increases the number of

transmitted packets) has generally a more significant impact on the increase of

energy consumption. That is why for instance, Strategy (15 dBm, 1/2 Sec) consumes

more energy than Strategy (19 dBm, 1 Sec) in spite of the fact that Strategy (15

dBm, 1/2 Sec) uses a lower transmission power compared to Strategy (19 dBm, 1

Sec).

As depicted in Fig. 3.10, among all tested strategies, Strategy (15 dBm, 1 Sec)

and Strategy (25 dBm, 1/12 Sec) consume the minimum and maximum amount

of energy, respectively. Therefore, the most efficient strategy is Strategy (15 dBm,

1 Sec). Note that the most efficient strategy is the same in all environments since

energy consumption is calculated independently of environment.

Based on the energy consumption comparisons, for a given strategy s, we defined

the two following metrics:

• Efficiency rank. This rank is out of 12 strategies in set S and is based on the

ranking in Fig. 3.10 i.e., in ascending order with respect to energy consumption.

Efficiency rank of the most efficient strategy is equal to 1.

• Efficiency ratio. This is the ratio of energy consumption of the most efficient

strategy to the energy consumption of s. Informally speaking, it compares the

efficiency of s to the maximum efficiency that can be achieved. The efficiency

ratio of the most efficient strategy is 1.
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Table 3.3: Efficiency rank and ratio of the strategies
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Rank 1 3 6 10 2 5 8 11 4 7 9 12

Ratio 1 0.5 0.25 0.08 0.75 0.37 0.18 0.06 0.44 0.22 0.11 0.03

Table 3.3, depicts the efficiency ranks and ratios of the strategies. We use these

metrics later in Section 3.6 when discussing the tradeoff between effectiveness and

efficiency.

3.6 Effectiveness-Efficiency Tradeoff

In this section, we first compare the results of effectiveness and efficiency evaluations

to find the strategy that maximizes both effectiveness and efficiency for each envi-

ronment. We show that there is a conflict between effectiveness and efficiency. Hence,

such a strategy does not exist in any environment. We then propose an approach to

make a tradeoff between effectiveness and efficiency and we find the tradeoff strat-

egy for each environment. Finally, to show how good the tradeoff strategy is, for
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each environment, we compare its effectiveness and its efficiency to the maximum

effectiveness and efficiency that can be achieved in that environment.

3.6.1 Conflict

A summary of the results of the effectiveness and efficiency evaluations can be found

in Tables 3.4 and 3.5 on page 92.9 As depicted in Table 3.4, the most effective strategy

and the most efficient strategy are not the same in any environment.

In fact, there is a conflict when we try to maximize both effectiveness and effi-

ciency. The reason is that, most of the time, a change in powtx or ∆period does not

influence effectiveness and efficiency similarly and in some cases it results in opposite

behaviors (see Table 3.5). For instance, consider powtx. Based on the evaluations,

we know that regardless of environment, increasing powtx increases effectiveness,

whereas it decreases efficiency. That is why the most effective strategy has the high-

est powtx (i.e., 25 dBm) in all environments whereas the most efficient strategy has

the lowest powtx (i.e., 15 dBm). Also, regarding ∆period, we know that decreasing

∆period (down to some degree) increases effectiveness in indoor environments and de-

creases effectiveness as the environment becomes less obstructed. At the same time,

decreasing ∆period decreases efficiency. Thereby, ∆period of the most effective strategy

increases from 1/4 second to 1/2 second and then to 1 second as we change the en-

vironment from indoor with hard partitions to indoor with soft partitions and then

to outdoor urban areas, respectively. On the other hand, the most efficient strategy

has the highest ∆period (i.e., 1 second).

Note however that the conflict becomes less severe as the environment becomes

less obstructed. For instance, as we change the environment from the indoor with

hard partitions to indoor with soft partitions and then to outdoor urban areas, the

efficiency ratio of the most effective strategy increases from 0.11 to 0.22 and then to

0.44, respectively. As a result, its efficiency rank increases from 9th to 7th and then

to 4th (see Table 3.4). In fact, as already discussed, the impact that a change in

∆period has on effectiveness and efficiency becomes similar as we move from indoor

environments to outdoor. Therefore, ∆period of the most effective strategy becomes

9 Tables 3.4 and 3.5 summarize the results of different sections of this paper. In this section, we

do not discuss the results in rows or columns corresponding to tradeoff strategy or BCR.
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higher (and closer to ∆period of the most efficient strategy) in less obstructed envi-

ronments.

Similarly, the most efficient strategy becomes more effective as the environment

becomes less obstructed. More precisely, as depicted in Table 3.4, as we change

the environment from the indoor with hard partitions to indoor with soft partitions

and then to outdoor urban areas, the effectiveness ratio of the most efficient strategy

increases from 0.16 to 0.54 and then to 0.88, respectively. As a result, its effectiveness

rank increases from 12th position to 6th position (see Table 3.4). In fact, compared

to other strategies, the most efficient strategy has the lowest powtx (i.e., 15 dBm) and

the highest ∆period (i.e., 1 second). As already discussed, the positive impact of a high

∆period on effectiveness becomes more significant as the environment becomes less

obstructed. At the same time, based on the results in Section 3.4.3.3, we know that

the negative impact that a low powtx has on effectiveness becomes less considerable

as the environment becomes less obstructed.

3.6.2 Approach to Make the Tradeoff

Up to this point, our goal was to find, for each environment, the strategy that has

both maximum effectiveness and efficiency among all other strategies. In order to

achieve our goal, we evaluated the effectiveness and the efficiency of each strategy

separately. However, due to the conflict described in Section 3.6.1, such strategy

does not exist. Moreover, in a given environment, the strategy that has the high-

est effectiveness usually has a low efficiency and the strategy that has the highest

efficiency is not always very effective. Therefore, we need to find a tradeoff strat-

egy, that is a strategy that on one hand does not consume a lot of energy and on

the other hand results in a high (but maybe not the highest) detection probability

compared to other strategies.

The main idea for making the tradeoff comes from the concept of cost–benefit

analysis in the field of economy [9]. Thus, we identify the resulting detection prob-

ability of a strategy as its benefit and its resulting energy consumption as its cost.

Then, for each strategy, the benefit–cost ratio (BCR) is calculated. Finally, the strat-

egy that results in the highest ratio is chosen as the tradeoff strategy. This means

that the tradeoff strategy is the one that makes the best use of energy for neighbor

detection.
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3.6.3 Benefit–Cost Ratio (BCR)

Let e be the environment in which we apply a strategy s. Also, let Prdetect(s, e)

denote the neighbor detection probability obtained by applying s in e and E(s)

denote the energy consumption due to applying s. Then, BCR achieved by applying

s in e or BCR (s, e) is defined as:

BCR (s, e) =
Prdetect(s, e)

E(s)
(3.5)

3.6.4 Impact of changing powtx and ∆period on BCR

We use Fig. 3.11 and Fig. 3.12 on page 90 to discuss the impact of changing powtx

and ∆period on BCR . Intuitively, changing the value of powtx or ∆period can only

improve BCR if the resulting gain in the detection probability is more significant

than the loss of energy. More precisely, suppose that a change in the value of one of

these parameters, changes the detection probability by a factor of x and the energy

consumption by a factor of y. Then, BCR is increased if x/y > 1. If x/y = 1,

BCR does not change. Finally, if x/y < 1, BCR decreases. In the following, we use

this observation to interpret the results.

• Increasing powtx for a given ∆period. We know that for a fixed value of ∆period,

increasing powtx increases the detection probability in all environments. It also

increases the energy consumption. However as shown in Fig. 3.11, it can have dif-

ferent impacts on the value of BCR depending on the environment. For instance,

under ∆period = 1 second, increasing powtx from 15 dBm to 25 dBm increases

BCR in the indoor with hard partitions environment and decreases BCR in the

outdoor-urban environment. In fact, in both cases the energy consumption is in-

creased by a factor of 2.23 (recall that the energy consumption is independent of

environment). However, in the indoor with hard partitions environment the de-

tection probability is increased by a factor of 5.66, whereas, in the outdoor urban

environment, it is only increased by a factor of 1.13.

To summarize the results we can say that increasing powtx improves BCR only in

indoor environments, under high values of ∆period and for certain ranges of powtx

(see Fig. 3.11). In fact, as already discussed in Section 3.4.3.3, although in all

environments increasing powtx improves the detection probability, in general, the
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Fig. 3.11: Impact of increasing powtx on BCR in different environments
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environments
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improvement becomes less significant as the environment becomes less obstructed.

Accordingly, increasing powtx can lead to a decrease in BCR in less obstructed

environments.

• Decreasing ∆period for a given powtx. For a fixed value of powtx, decreasing ∆period

decreases the value of BCR regardless of the environment (see Fig. 3.12). In fact,

we know that decreasing ∆period increases the energy consumption considerably.

We also know that decreasing ∆period can have different impacts on the detection

probability depending on the environment. In particular, in indoor environments,

decreasing ∆period down to some value ( such as 1/4 second in indoor with hard

partitions environment ) can improve the detection probability. However, in all

these cases the loss in energy consumption is so significant that it mitigates the

potential gain in detection probability.

3.6.5 The Tradeoff Strategy

Fig. 3.13 on page 90, shows the strategies ranked in descending order with respect

to their corresponding BCR in different environments. As already discussed in Sec-

tion 3.6.4, decreasing ∆period decreases BCR in all cases. That is why the tradeoff

strategy has ∆period = 1 second in all environments. Moreover, increasing powtx

improves BCR only when the environment is obstructed and as the environment

becomes less obstructed it can even decrease BCR. That is why the tradeoff strat-

egy in indoor with hard partitions, indoor with soft partitions and outdoor urban

environments has respectively powtx of 25 dBm, 19 dBm and 15 dBm.

3.6.6 How Effective and Efficient is the Tradeoff Strategy?

A summary of the results of BCR evaluation can be found in Tables 3.4 and 3.5 on

page 92. As shown in Table 3.4, in all environments, the effectiveness ratio of the

tradeoff strategy is high and close to 1. More precisely, the effectiveness ratio of the

tradeoff strategy is equal to 0.90, 0.76 and 0.88 in indoor with hard partitions, indoor

with soft partitions and outdoor urban areas, respectively. Accordingly, the tradeoff

strategy has a relatively good effectiveness rank i.e., 3rd, 6th and 6th in indoor with

hard partitions, indoor with soft partitions and outdoor urban areas, respectively.

91



Table 3.4: Comparison of the most effective strategy, the most efficient strategy and the tradeoff strategy

in different environments

Environment Strategy
Detection

Probability

Energy

Consumption

(mJ)

BCR

(1/mJ)

Effectiveness

Ratio

Efficiency

Ratio

Effectiveness

Rank

Efficiency

Rank

Indoor-hard
The Most Effective Strategy

(25 dBm, 1/4 Sec) 0.5722 16.15 0.035 1 0.11 1 9

The Most Efficient Strategy

(15 dBm, 1 Sec) 0.0910 1.809 0.050 0.16 1 12 1

The Tradeoff Strategy

(25 dBm, 1 Sec) 0.5157 4.037 0.127 0.90 0.44 3 4

Indoor-soft
The Most Effective Strategy

(25 dBm, 1/2 Sec) 0.8536 8.07 0.105 1 0.22 1 7

The Most Efficient Strategy

(15 dBm, 1 Sec) 0.4612 1.809 0.254 0.54 1 12 1

The Tradeoff Strategy

(19 dBm, 1 Sec) 0.6539 2.39 0.273 0.76 0.75 6 2

Outdoor-urban
The Most Effective Strategy

(25 dBm, 1 Sec) 0.9679 4.04 0.239 1 0.44 1 4

The Most Efficient Strategy

(15 dBm, 1 Sec) 0.8532 1.809 0.471 0.88 1 6 1

The Tradeoff Strategy

(15 dBm, 1 Sec) 0.8532 1.809 0.471 0.88 1 6 1

Table 3.5: Impact of changing powtx or ∆period on effectiveness, efficiency and BCR in different environ-

ments

Environment Increasing powtx Decreasing∆period

Impact on effectiveness Impact on efficiency Impact on BCR Impact on effectiveness Impact on efficiency Impact on BCR

Indoor-hard Improves Deteriorates

Improves only un-

der ∆period = 1

second.

Generally improves

if ∆period is de-

creased down to

1/4 second.

Deteriorates Deteriorates

Indoor-soft Improves Deteriorates

Improves only un-

der ∆period = 1

second and when

powtx is increased

up to 19 dBm.

Generally improves

if ∆period is de-

creased down to

1/2 second.

Deteriorates Deteriorates

Outdoor-urbant Improves Deteriorates Deteriorates Deteriorates Deteriorates Deteriorates
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Moreover, the efficiency ratio of the tradeoff strategy is equal to 0.44, 0.75 and

1 in indoor with hard partitions, indoor with soft partitions and outdoor urban ar-

eas, respectively (see Table 3.4). In fact, ∆period of the tradeoff strategy is equal

to 1 second in all environments and we know that a high value of ∆period results

in low energy consumption. At the same time, powtx of the tradeoff strategy de-

creases as the environment becomes less obstructed which causes the decrease of

its energy consumption in less obstructed environment and increase of its efficiency

ratio. Thereby, the tradeoff strategy has a relatively good efficiency rank i.e., 4th,

2nd and 1st in indoor with hard partitions, indoor with soft partitions and outdoor

urban areas, respectively. Note that in the outdoor urban environment, the tradeoff

strategy is the same as the most efficient strategy, and therefore it has the lowest

energy consumption compared to other strategies.

3.7 Related Work

The existing studies on transmit power control in ad hoc networks [27], for the most

part, consider the unicast communications and therefore are not relevant to our

work. Also, most of the papers which study the problem of reliable broadcast in

MANETs, consider one-shot broadcast and not periodic broadcast [21]. For these

reasons, in this section we only discuss the works performed in the two fields which

we believe are the closests to our work, i.e., enhancements of the hello protocol ; and

beacon broadcast for VANET safety applications.

3.7.1 Enhancements of the hello Protocol

Neighbor detection in ad hoc networks is usually studied as a building block for ap-

plications such as routing, leader election, group management and localization. The

neighbor detection algorithm introduced in this paper is inspired by the basic hello

protocol first described in Open Shortest Path First (OSPF ) routing protocol [35]. It

works as follows. Nodes periodically send hello messages to announce their presence

to close nodes, and maintain a neighborhood table. The sending frequency is denoted

by fhello. Thus, in the case of our neighbor detection algorithm fhello = 1/∆period.
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In the literature, there exist several works that attempt to improve the basic hello

protocol performance especially with regards to energy consumption. These works

can be classified into two categories described below.

The first category consists of the algorithms that aim at minimizing the energy

consumption by keeping the nodes in the sleep radio mode most of the time and thus,

reaching neighbor detection with as few transmission and/or reception attempts as

possible [34; 42; 51; 17; 48; 26; 6]. The majority of the enhancements of the hello

protocol belongs to this category. However, as described in Section 3.5.1, we do not

consider the sleep radio mode in this paper. Therefore, we do not discuss the works

in this category here.

The second category (which is more relevant to our work) consists of the

algorithms that aim at minimizing the energy consumption of neighbor detec-

tion by (regularly) adapting fhello and/or the transmission power to the network

changes [22; 24; 23]. For instance, in the protocol proposed in [22], the value of fhello

is adapted based on link connectivity. More precisely, the authors define two met-

rics: Time to Link Failure (TLF) and Time Without link Changes (TWC). Thus,

each node regularly evaluates these metrics and compares them with some given

thresholds. Then, based on the comparisons, the node can switch fhello from a high

value (fhigh) to a low value (flow) and vice-versa. The drawback of this approach is

that the thresholds may need to evolve over time and finding the correct thresholds

is not obvious.

The protocols in [24; 23] adapt fhello to the variations of node speed. They are

based on the existence of an optimal hello frequency denoted by fopt. The equation

for fopt was first introduced in [47] where it is calculated based on the relative speed

of nodes. In [24], the authors proposed a Turnover based Adaptive hello Protocol

(TAP). According to TAP, each node evaluates the changes of its neighborhood

table periodically (i.e., before sending each hello) and calculates the turnover. The

turnover (also dented by r) is, in fact, the ratio between the number of new neigh-

bors (i.e., nodes detected during the last period) and the current total number of

neighbors. Once the turnover r is calculated, it is compared to ropt where ropt is the

turnover corresponding to fopt. If r < ropt, this means that fhello is too high and

there are not enough changes in the table. Therefore, fhello should be decreased.

On the contrary, if r > ropt, this means that fhello is too low and that there are

too many changes. Therefore, fhello should be increased. In this way, TAP keeps the

value of fhello always close to fopt. In [23] a Turnover based Frequency and transmis-
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sion Power Adaptation algorithm (TFPA) is presented. TFPA applies a similar (but

slightly improved) approach as TAP to dynamically adapt fhello. Moreover, TFPA

calculates an optimal value for transmission range based on the energy consump-

tion model presented in [20]. Then, it dynamically adapts the transmission power so

that the resulting transmission range remains close to the optimal value. Compared

to TAP, TFPA has a lower energy consumption since it dynamically adapts both

fhello and the transmission power. However, both protocols have assumptions which

are less realistic compared to the assumptions in our work. More precisely, they

consider the unit disk graph and a deterministic radio propagation model whereas

we use a probabilistic radio propagation model. Moreover, the energy consumption

model assumed by TFPA, corresponds to sensor nodes and does not realistically

reflect the energy consumption of WNICs used in today’s mobile devices whereas

we model the energy consumption based on specifications of current smartphones.

Finally, both protocols use fopt which is basically determined by the relative speed of

nodes. As a result, they essentially adapt fhello according to the speed changes and

neglect the other factors such as the environment attenuation or congestions. In our

work, on the other hand, we take into account the environment attenuations as well

as interferences and collisions and neglect the relative speed of the nodes. In fact

this choice is justified by the fact that in our case the devices are usually used by

pedestrians. Hence, they have a slow movement especially during the neighborhood

time of 4 seconds.

3.7.2 Beacon Broadcast for VANET Safety Applications

In vehicular ad hoc networks (VANETs), safety applications aim at minimizing acci-

dent levels. One type of safety messages are beacons. A beacon usually contains the

vehicle’s position, speed, direction, etc and is periodically broadcast in a single-hop

manner. By using beacons, safety applications gain knowledge of the surroundings

and can prevent dangerous situations for the drivers. The safety applications usually

require the beacon delivery up to a certain distance and have some guarantees for

message reliability and latency. Thus, many papers study the impact of parameters

such as transmission power, packet generation rate or packet size on fulfillment of

applications’ guarantees [54; 45; 46; 32].
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For instance, in [45] authors present a simulation-based study in ns-2.28 to analyze

the impact of transmission power and packet generation rate on the reception of

beacon messages. Authors consider 1800 nodes uniformly distributed in a circular

map. All nodes broadcast messages with common transmission power and packet

generation rate. The broadcast reception is only studied for messages of senders

located at 40 m from a receiver which is located at the center of the map. Regarding

the impact of transmission power on broadcast reception, authors state that the

transmission power should be strong enough to resist the interferences but not so

strong as to increase the load on the medium. Regarding the impact of packet

generation rate on broadcast reception, they state that increasing packet generation

rate can increase the number of received packets significantly, as long as the channel

busy time (or the time ratio a node determines the channel as busy) has not reached

its maximum. There are several differences between this study and ours: firstly, this

study is performed for VANETs. Thus, the 802.11 physical layer parameters are

set to the specific values of the 802.11p standard whereas we use the values of the

802.11a standard. Secondly, this study uses the Nakagami radio propagation model

known to model signal attenuation in VANETs, whereas we use LNS to model

obstructed urban areas. Thirdly, this study uses different metrics (such as channel

busy time) than our metrics to interpret the results. Finally, this study does not

consider the impact of transmission power or packet generation rate on the energy

consumption.

In [46], authors show that periodic beacon transmission can result in the chan-

nel saturation which in turn, causes a high number of packet collisions and low

reception rates. They also show that simply increasing the packet generation rate

or the transmission power can exacerbate the channel conditions. Therefore, they

propose an algorithm called Distributed Fair Power Adjustment for Vehicular envi-

ronments (D-FPAV). The algorithm limits the beaconing load on the channel below

a predefined threshold while ensuring a high probability of beacon delivery at close

distances from the sender. Similarly to the work in [45], this work also considers the

802.11p physical and MAC layers and the Nakagami radio propagation model and

thus has a different system model compared to our work. However, the basic idea

behind the D-FPAV algorithm is to fix the packet generation rate at the minimum

required by safety applications, and to adjust the transmission power of beacons in

case of congestion. This means that the way that the D-FPAV algorithm adapts the

transmission power and the packet generation rate somehow resembles the way that
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our tradeoff strategy is adapted in different environments. In fact, for the tradeoff

strategy we keep ∆period at its highest value and we decrease the transmission power

in less obstructed environments i.e., where the collisions and interferences are high.

3.8 Conclusion

To the best of our knowledge, this is the first paper that studies the impact of

transmission power and broadcast interval on effectiveness and efficiency of neighbor

detection for MANETs in different urban environments. Our results can be used as

a basis to design adaptive neighbor detection algorithms for urban environments.

Such algorithms can adapt the transmission power and broadcast interval based on

environment and application guarantees on effectiveness and efficiency. To deploy

such algorithms on a smartphone, one can use lightweight sensing services such as

the one introduced in [56] which can detect the indoor/outdoor environment in a

fast, accurate, and efficient manner.

Relying on a realistic simulation-based study, we showed that the most effective

strategy is not the same as the most efficient strategy in any environment. In fact, in

all environments, there is a conflict between effectiveness and efficiency such that the

most effective strategy is usually not very efficient and the most efficient strategy is

not always very effective. However, we showed that the conflict becomes less severe

as the environment becomes less obstructed. When discussing our results, we also

described how a change in transmission power and broadcast interval can influence

the effectiveness and efficiency. We then proposed an approach to make a tradeoff

between effectiveness and efficiency. Accordingly, we identified the tradeoff strategy

in each environment and we showed that it has a relatively good effectiveness and

efficiency compared to other strategies.

The conclusions drawn in this paper could still be more realistic if our evalua-

tions could be performed on a real prototype. In fact, we are currently developing,

ManetLab, a modular and configurable software framework for creating and running

testbeds to evaluate MANET-specific protocols [50]. Thus, as a potential future

work, we consider to deploy the neighbor detection algorithm on ManetLab and

compare the results of our evaluations with the ones performed using the Manet-

Lab.
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There are also some issues which remain open and we might consider as future

work. For instance, the possibility to detect nodes using an underlying multi-hop

network should be investigated. Moreover, in this paper we did not consider the sleep

radio mode for 802.11 communication. Since for energy consumption we only took

into account the active energy, it seems that our results could still be valid for the

case when the sleep radio mode is enabled. Thus, this issue can also be investigated

as future work.
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[48] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh. Power-saving protocols for IEEE

802.11-based multi-hop ad hoc networks. In Proc. IEEE INFOCOM’02, 2002.

[49] W. Vandenberghe, I. Moerman, and P. Demeester, On the feasibility of utilizing

smartphones for vehicular ad hoc networking, In Proc. IEEE ITST’11, pp. 246–

251, 2011.
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Chapter 4

Using Virtual Mobile Nodes for Neighbor

Detection in Proximity-Based Mobile

Applications

Abstract We introduce a time-limited neighbor detector service for mobile ad hoc

networks, which enables a mobile device to detect other nearby devices in the past,

present and up to some bounded time interval in the future. Our motivation lies in

the emergence of a new trend of mobile applications known as proximity-based mo-

bile applications, which enable a user to communicate with other users within some

defined range and for a certain amount of time. Neighbor discovery is a fundamental

requirement for these applications and is not restricted to the current neighbors but

can include past or future neighbors. To implement the time-limited neighbor detec-

tor service, we apply an approach based on virtual mobile nodes. A virtual mobile

node is an abstraction that is akin to a mobile node that travels in the network in

a predefined trajectory. In practice it can be implemented by a set of mobile nodes

based on a replicated state machine approach. In this paper, we assume that each

node can accurately predict its own locations up to some bounded time interval in

the future. Thus, we present a time-limited neighbor detector algorithm that uses a

virtual mobile node that continuously travels in the network, collects the predicted

locations of all nodes, performs the neighborhood matching between nodes and sends

the list of neighbors to each node. We show that our algorithm correctly implements

the time-limited neighbor detector service under a set of conditions.

Publication:

B. Bostanipour and B. Garbinato, Using virtual mobile nodes for neighbor detection

in proximity-based mobile applications, In Proceedings of The 13th IEEE Interna-

tional Symposium on Network Computing and Applications (IEEE NCA’14), pp.

9–16, Cambridge, Massachusetts, USA, IEEE, 2014.
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4.1 Introduction

With the ubiquitous use of mobile devices and particularly smartphones, we face

the emergence of a new type of distributed applications known as Proximity-Based

Mobile (PBM ) applications [5; 6]. These applications enable a user to interact with

others in a defined range and for a given time duration e.g., for social networking

([26; 21; 1; 20]), gaming ([4]) and driving ([25]).

Discovering who is nearby is at the core of the PBM applications. It is the pre-

liminary step for the further interactions between users. It also provides users with

the opportunity to extend their social network from the people that they know to

the people that they might not know but who are in their proximity. For instance,

in a simple usage scenario of social networking applications such as WhosHere [26]

or LoKast [21], a user first discovers other users in her proximity and then decides

to view their profiles, start a chat with a user or a group of users or add them

as friends. The discoverability, however, may not always be limited to the current

neighbors. For instance, with the social networking applications such as iGroups [1]

or LocoPing [20], a user can discover other users who were in her vicinity during a

past event (e.g., concert, tradeshow, wedding) or simply during a past time interval

(e.g., the past 24 hours). One can also think of applications that provide the user

with the list of people who will be in her proximity up to some time interval in

future and thus create the potential for new types of social interactions.

In this paper, we introduce a time-limited neighbor detector service that enables a

user to discover the set of its neighbors in the past, present and up to some bounded

time interval in the future in a mobile ad hoc network (MANET). We also present an

algorithm that implements the time-limited neighbor detector using a virtual mobile

node. A virtual mobile node is an abstraction that is already introduced in the

literature and used for tasks such as routing or collecting data in MANETs [10; 11].

It is akin to a mobile node that travels in the network in a predefined trajectory

known in advance to all nodes. In practice a virtual mobile node is emulated by a

set of nodes in the network based on a replicated state machine approach. In this

paper, we assume that each node can accurately predict its own locations up to

some bounded time interval in the future. Thus, in the algorithm we use the virtual

mobile node to continuously travel in the network, collect the the predicted locations

of all nodes, perform the neighborhood matching between nodes and then send back

to each node the list of its neighbors at current and future times. Each node also
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stores its neighbor set at any time so that later it will be able to be queried about

its past neighbors.

In order to show that our algorithm correctly implements the time-limited neigh-

bor detector service, we present a proof of correctness. In particular, we define the

conditions under which the service can be correctly implemented by the algorithm.

To the best of our knowledge, this is the first paper that introduces a neighbor

detector service that can detect future neighbors (although up to some time interval)

in a MANET. It is also the first paper that uses an approach based on virtual mobile

nodes for neighbor discovery.

The remainder of the paper is as follows. In Section 4.2, we describe our system

model and present some definitions. In Section 4.3, we introduce the neighbor de-

tector abstraction in two variants: the perfect variant which presents the ideal case

of neighbor detection and is rather impractical and the time-limited variant. In Sec-

tion 4.4, we present the implementation of the time-limited variant of the neighbor

detector service. In order to do so, we first describe what is a virtual mobile node

and how it can be used for the implementation of the time-limited neighbor detector.

We then introduce an algorithm that implements the time-limited neighbor detector

and we present a proof of correctness for the algorithm. In Section 4.5, we discuss

the related work. Finally, in Section 4.6, we discuss open problems and future work.

4.2 System Model and Definitions

We consider a mobile ad-hoc network (MANET) consisting of processes that move

in a bounded region R of a two-dimensional plane. We use the terms process and

node interchangeably. Each process is assigned a unique identifier. Processes can

move on any continuous path, however there exists a known upper bound on their

movement speed. A process is prone to crash-reboot failures: it can fail and recover

at any time, and when the process recovers, it returns to its initial state. Moreover,

a process may join or leave the system at any time (where a leave is treated as a

failure). A process is correct if it never fails. Since we do not consider Byzantine

behaviors, the information security and privacy issues are beyond the scope of this

paper.

We assume the existence of a discrete global clock, i.e., the range T of the clock’s

ticks is the set of non-negative integers. We also assume the existence of a known
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bound on the relative processing speed. Each process in the system has access to a

global positioning service, a timely scoped broadcast service and a mobility predictor

service. In the following, we first introduce some definitions that are used throughout

the paper. We then present each of the above mentioned services.

4.2.1 Definitions

Let pi be a process in the network, we introduce the definitions given hereafter in

order to capture proximity-based semantics.

• location denotes a geometric point in the two dimensional plane where region R

is situated and can be expressed as tuple (x, y).

• loci(t) denotes the location occupied by process pi at time t ∈ T .

• Zi(r, t) denotes all the locations inside or on the circle centered at loci(t) with

given radius r.

• rd is called neighbor detection radius. It is a constant known by all processes in

the network. Thus, Zi(rd, t) presents the neighborhood region of pi at time t.

4.2.2 Timely Scoped Broadcast Service

This communication service allows a process to send messages to all processes lo-

cated within a given radius around it. Formally, the timely scoped broadcast service

exposes the following primitives:

• broadcast(m, r): broadcasts a message m in Zi(r, tb), where pi is the sender

and tb is the time when the broadcast is invoked.

• receive(m, pi): callback delivering a message m broadcast by process pi.

The service satisfies the following properties.

Timely Delivery. If a correct process pi broadcasts a message m, there exists

a bounded time duration ∆bcast such that every correct process pj delivers m in

interval [tb; tb +∆bcast], if locj(t) ∈ Zi(r, t) for all t ∈ [tb; tb +∆bcast].

No Duplication. No message is delivered more than once.

No Creation. If some process pj delivers a message m with sender pi, then m

was previously broadcast by process pi.
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For a detailed discussion regarding the implementability of this service in both the

single-hop and the multi-hop cases see [5].

4.2.3 Global Positioning Service

This service allows each mobile process pi to know its current location and the

current time via the following functions:

• getCurrentTime: returns the current global time. Formally, this implies that

each process pi has access to the global clock modeled in Section 4.2.

• getCurrentLocation: returns the location occupied by pi at the current

global time.

In this paper, we do not provide any formal properties for this service. However,

we assume that the outputs of its functions are exact. In practice, such a service

would typically be implemented using NASA’s GPS or ESA’s Galileo space-based

satellite navigation technologies.

4.2.4 Mobility Predictor Service

This service allows each mobile process pi to predict its future locations up to some

bounded time ∆predict via the following function:

• predictLocations: returns a hash map containing the predicted locations

for pi at each time t in the interval [tc; tc + ∆predict] where tc is the time when

predictLocations is invoked.

The service satisfies the following property.

Strong Accuracy. Let t ∈ [tc; tc+∆predict] and l be a location, if pi is predicted

to be at l at time t, then loci(t) = l.

In order for the service to predict the locations of the process in the future, we

assume that the mobility model applied by the processes is such that the future

locations of a process can be predicted up to a certain ∆predict. For instance, if

a process moves according to a mobility model with temporal dependency (such
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as Gauss-Markov Mobility Model or Smooth Random Mobility Model), its future

locations can be predicted using its past locations [2]. In practice, the future location

prediction can be achieved for example by taking into account the current trajectory

(direction, speed,...) of the mobile device, possibly coupled with maps information.

4.3 The Neighbor Detector Abstraction

In this section, we introduce the neighbor detector abstraction in two variants. For-

mally, the neighbor detector service exposes the following primitive:

• present(t): returns Ni(t) i.e., the set of processes detected as neighbors of pi at

time t, where pi is the process that invokes present.

4.3.1 Neighbor Detector Variants

4.3.1.1 Perfect Neighbor Detector

By querying this variant of neighbor detector service, a mobile process is able to

know the set of its neighbors at any time in the past, present or the future.

Perfect Completeness. Let pi and pj be two correct processes, if locj(t) ∈
Zi(rd, t), then pj ∈ Ni(t).

Perfect Accuracy. Let pi and pj be two correct processes, if pj ∈ Ni(t), then

locj(t) ∈ Zi(rd, t).

Roughly speaking, the perfect completeness property requires a neighbor detector

to detect any node that is in the neighborhood region at any time in the past,

present or future. At the same time, the perfect accuracy property guarantees that

no false detection occurs. Since in practice implementing the perfect completeness

property requires an infinite knowledge of nodes’ locations in the future, we consider

a more practical variant of the neighbor detector abstraction called the time-limited

neighbor detector. We introduce this variant hereafter.
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4.3.1.2 Time-limited Neighbor Detector

Compared to the perfect neighbor detector, this variant has a different completeness

property. However, its accuracy property is the same. We define its properties, below.

Time-limited Completeness. Let pi and pj be two correct processes and

∆future be a bounded time interval such that ∆future > 0, if locj(t) ∈ Zi(rd, t)
and t ≤ tc + ∆future, then pj ∈ Ni(t), where tc is the time when present is

invoked at pi.

Perfect Accuracy. Let pi and pj be two correct processes, if pj ∈ Ni(t), then

locj(t) ∈ Zi(rd, t).

Similarly to the perfect completeness property, the time-limited completeness

property requires a neighbor detector to detect any node that is in the neighbor-

hood region at any time in the past or present. However, its ability to detect future

neighbors is limited by a bounded time duration ∆future. More precisely, it only

detects a node that is in the neighborhood region at any time from the time when

present is invoked up to ∆future. The perfect accuracy property also guarantees no

false detection.1

4.4 Implementing The Time-Limited Neighbor Detector

To implement the time-limited neighbor detector, our intuition is as follows: since

each node knows its own locations up to ∆predict in the future, we can think of a

moving entity that travels through the network, collects the predicted locations of

all nodes, performs the neighborhood matching between nodes and then sends back

to each node the list of its neighbors at current and future times. For this reason,

we rely on the concept of Virtual Mobile Node (VMN) introduced in [10].

In what follows we first describe what is a VMN and we add a VMN to the

system model. We then introduce an algorithm that implements the time-limited

neighbor detector in the new system model. Finally, we discuss the correctness of

the algorithm.

1 For simplicity’s sake, we do not assume a time bound on the availability of the past neighborhood

information at this point.
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4.4.1 Virtual Mobile Node (VMN)

A VMN is an abstraction that is akin to a mobile node that travels in the network

in a predefined trajectory. It is first introduced in [10]. One of the main motivations

behind the design of a VMN abstraction is that if the motion of a mobile node could

be predefined and known to all nodes in the network, the task of designing various

algorithms for mobile ad hoc networks would be significantly simplified. Therefore,

a VMN is designed such that it can execute any distributed algorithm that a node

can execute, however, its movement can be predefined and be known in advance to

all nodes in the network.

In [10] an algorithm called Mobile Point Emulator (MPE ) is introduced which

implements the VMN abstraction in a system model equivalent to the system model

defined in this paper. Its approach to implement the VMN is based on a replicated

state machine technique similar to the one originally presented in [19]. The algorithm

defines a mobile point to be a circular region of a radius rmp, that moves according

to the predefined path of the VMN, i.e., at time t the center of the mobile point

coincides with the preplanned location of the VMN at time t. The MPE replicates

the state of the VMN at every node within the mobile point’s region, modifying the

set of replicas as the nodes move in and out of the mobile point’s region. MPE uses

a total-order broadcast service to ensure that the replicas are updated consistently.

The total order broadcast service is built using a synchronous local broadcast service

(equivalent to our timely scoped broadcast) and the synchronized clocks (obtained

by using a service equivalent to our global positioning service).

Similarly to a node, the VMN can communicate with other nodes using the timely

scoped broadcast service (or its equivalents). Moreover, the VMN is prone to crash-

reboot failures. It can crash if and only if its trajectory takes it into a region unpop-

ulated by any nodes (i.e., where there are no nodes to act as replicas), however, it

recovers to its initial state as soon as it renters a dense area. A VMN is correct if it

never fails.

4.4.2 Adding a VMN to the System Model

In this section, we add a VMN to the system model defined in Section 4.2. The

movement trajectory of this VMN is such that it can be used by our algorithm for the
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Fig. 4.1: VMN scans the region R

implementation of the time-limited neighbor detector. Note that we do not provide

an implementation for the VMN, however, we assume that it can be implemented

by the MPE algorithm sketched in Section 4.4.1.

The VMN communicates with the nodes in the network using the timely scoped

broadcast service where the broadcast radius equals to a constant rcom known to all

nodes. This constant is, in fact, defined by the VMN implementation (see [10]).

The movement of the VMN is defined by a predetermined trajectory function

locVMN which maps every t in T to a location in region R. This function is known

to all nodes in the network. According to locVMN, the VMN continuously scans the

region R. The scans are arranged in the form of outward-returns. More precisely,

let lA, lB be two distinct locations in R, then an outward scan starts at lA and ends

at lB and a return scan starts at lB and ends at lA (see Fig. 4.1). Outward and

return scans alternate and the VMN uses exactly the same path in the outward and

the return scans. The amount of time that the VMN spends in the outward scan is

equal to the amount of time that it spends in the return scan. This time duration

is denoted by ∆scan.

In order for a scan to cover the entire region (and thus be useful for our time-

limited neighbor detector algorithm), the trajectory function of the VMN ensures

the following property.

Scan Completeness. Let s be a scan (outward or return) and let tstart be the

time when s is started, then the path traversed by the VMN during s is such that

∀location ∈ R, ∃t ∈ [tstart; tstart+∆scan[ such that distance(locVMN(t), location) ≤
rcom.
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4.4.3 A Time-limited Neighbor Detector Algorithm

The basic idea behind the algorithm is as follows: time is divided into rounds of

duration ∆scan. At each round k, the VMN scans the entire network, collects the

predicted locations maps of all nodes, and also sends to each node the neighbors

map of that node. The neighbors map is, in fact, generated by the VMN based on

the predicted locations maps that are collected at round k− 1. Note, however, that

in the first round the VMN only collects the predicted locations maps and does not

send any neighbors maps to the nodes.

The algorithm includes two parts: (1) a part that is executed on each real node

pi in the network (Algorithm 4.1); (2) a part that is executed on the VMN (Algo-

rithm 4.2). In the following, we discuss the algorithm in more detail.

Since the trajectory function of the VMN is globally known, each node pi knows

the value of ∆scan and can determine when a new round begins (line 7). It can also

calculate its distance to the VMN at any time. Thus, at each round pi waits until

its distance to the VMN becomes less than or equal to rcom. Then, if it has not

already sent a message to the VMN in that round, it creates a message msg to send

to the VMN (lines 9-11). This message encapsulates some parameters. Among these

parameters the hash map locs (also referred as the predicted locations map) is used

to store the output of predictLocations primitive of the mobility predictor service

(line 12). The parameters tstart and tend of msg store, respectively, the beginning and

the end of the time interval for which the locations are predicted (lines 13-14).2 In

what follows, for simplicity’s sake, we refer to the time interval [msg.tstart; msg.tend]

as the epoch of msg or Emsg. Once all parameters of msg are assigned their values,

msg is broadcast within the radius rcom, so it can be received by the VMN (line 16).

When the VMN receives msg sent by pi, it adds msg to currentRoundCollectedMsgs

set (lines 31-32). If the VMN is not in the first round and if it has collected a

message from pi in the previous round, then it creates a message VMNmsg to reply

to pi (lines 33-34). The message VMNmsg encapsulates a hash map neighbors (also

referred as the neighbors map) and some other parameters. To obtain neighbors, first

pmsg or the message collected from pi in the previous round is found (line 35). Then,

the function getNeghbors is called (line 36), which uses the parameters of pmsg

and messages collected from other nodes in the previous round to find neighbors of

pi during Epmsg (lines 46-52). Thus, neighbors contains the set of detected neighbors

2 We assume no clock tick between lines 12-13.
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Algorithm 4.1 Time-limited Neighbor Detector Algorithm at Process pi
1: initialisation:

2: noMsgSentInThisRound← true

3: for all t ∈ T do

4: N(t)←⊥

5: present(t)

6: return N(t)

7: every ∆scan do {pi knows the function locVMN and can calculate ∆scan}
8: noMsgSentInThisRound← true

9: upon distance(getCurrentLocation, locVMN(getCurrentTime)) ≤ rcom do

10: if noMsgSentInThisRound then

11: msg←⊥ {a message msg is created to encapsulate some parameters}
12: msg.locs← predictLocations

13: msg.tstart ← getCurrentTime

14: msg.tend ← msg.tstart +∆predict

15: msg.sender ← pi

16: trigger broadcast(msg, rcom)

17: noMsgSentInThisRound← false

18: upon receive(VMNmsg, V MN) do

19: if VMNmsg.destination = pi then

20: for all t ∈ [VMNmsg.tstart, VMNmsg.tend] do

21: if N(t) =⊥ then

22: N(t)← VMNmsg.neighbors(t)

Algorithm 4.2 Time-limited Neighbor Detector Algorithm at the VMN
23: initialisation:

24: k ← 1 {k stores the round number}
25: currentRoundCollectedMsgs← ∅
26: previousRoundCollectedMsgs← ∅

27: every ∆scan do {the VMN knows the function locVMN and can calculate ∆scan}
28: k ← k + 1

29: previousRoundCollectedMsgs← currentRoundCollectedMsgs

30: currentRoundCollectedMsgs← ∅

31: upon receive(msg, pi) do

32: currentRoundCollectedMsgs← currentRoundCollectedMsgs ∪ {msg}
33: if k > 1 ∧ getPreviousMsg(pi) 6=⊥ then

34: VMNmsg←⊥
35: pmsg← getPreviousMsg(pi)

36: VMNmsg.neighbors← getNeghbors(pmsg)

37: VMNmsg.tstart ← pmsg.tstart

38: VMNmsg.tend ← pmsg.tend

39: VMNmsg.destination← pi

40: trigger broadcast(VMNmsg, rcom)

41: function getPreviousMsg(pi)

42: for all m ∈ previousRoundCollectedMsgs do

43: if m.sender = pi then

44: return m

45: return ⊥

46: function getNeghbors(pmsg)

47: for all t ∈ [pmsg.tstart, pmsg.tend] do

48: neighbors(t)← ∅
49: for all m ∈ previousRoundCollectedMsgs do

50: if m.sender 6= pmsg.sender ∧ distance(m.locs(t), pmsg.locs(t)) ≤ rd then

51: neighbors(t)← neighbors(t) ∪ {m.sender}
52: return neighbors



of pi at each time t during Epmsg. The parameters tstart and tend of VMNmsg store,

respectively, the values of pmsg.tstart and pmsg.tend (lines 37-38). Hence, EVMNmsg

is equal to Epmsg. Finally, pi is specified as the destination of VMNmsg and it is

broadcast within the radius rcom so it can be received by pi (lines 39-40). The

process pi has a hash map N that is used to store the set of its detected neighbors

at any time t in T . Thus, when pi receives a VMNmsg that is addressed to it, it

looks through EVMNmsg to find a time t at which N(t) is undefined i.e., equals to ⊥
(lines 18-21). Then, it assigns VMNmsg.neighbors(t) to N(t) (line 22).

4.4.4 Proof of Correctness

In this section we prove that the time-limited neighbor detector algorithm correctly

implements the time-limited neighbor detector abstraction under certain conditions.

In order to do so, we prove hereafter that the algorithm guarantees the properties

of the time-limited neighbor detector abstraction defined in Section 4.3.1.2.

Note that in the following we use the notation ts,k to refer to the beginning time

of a round k in the algorithm. Thus, for instance ts,3 and ts,1 denote, respectively,

the beginning of round 3 and round 1 in the algorithm.

Theorem 4.1. The time-limited neighbor detector algorithm satisfies the time-limited

completeness property if the following conditions hold:

(a) ∀t ∈ T , at least one correct node resides in the circular region of radius rmp

around locVMN(t). This condition, in fact, guarantees that the VMN is correct.

(b) In each round, the time elapsed from the sending of the predicted locations map

to the VMN by a process pi until the reception at pi of the neighbors map sent by

the VMN, is negligible.

(c) ∆predict ≥ ∆future + 3×∆scan − 2.

(d) Let present(t), then tc ≥ ts,3. Recall that tc is the time when present(t) is

invoked. Thus, this condition guarantees that present(t) is called in a round k

such that k ≥ 3.

(e) Let present(t), then t ≥ ts,1 +∆scan − 1.

Proof. We show that with the worst case scenario the algorithm satisfies the time-

limited completeness property if Conditions (a), (b), (c), (d), (e) hold.

114



round = k-2

round = k-1

round = k

t s,k-2

t s,k-1

t s,k t s,k + ∆ scan - 1t c

pi is at distance ≤ rcom 
to the VMN

Fig. 4.2: The worst case scenario

Let present(t) be invoked at process pi in a round k i.e., tc be in round k. We

consider the worst case scenario according to which in round k the distance between

pi and the VMN becomes less than or equal to rcom only at the last clock tick of the

round i.e., at ts,k + ∆scan − 1 and tc = ts,k + ∆scan − 2 (see Fig. 4.2). In addition,

for this scenario we assume that ∆predict = ∆future + 3×∆scan − 2. Thus, we show

the proof in the two following cases: (1) for tc ≤ t ≤ tc + ∆future; and (2) for

ts,1 +∆scan − 1 ≤ t < tc.

1. For tc ≤ t ≤ tc +∆future. In the described scenario, the neighbors map sent

by the VMN at round k cannot be used by pi for the neighbor detection at time

tc. The reason is that this neighbors map is only received by pi at ts,k+∆scan−1,

i.e., after tc. According to Condition (d), k is at least equal to 3. Thereby, at time

tc, the process pi can rely on the neighbors map that it has received in round

k − 1 for neighbor detection.3 According to the algorithm, the neighbors map

that pi has received in round k−1 is made based on the predicted locations maps

collected at round k − 2.

Since ∆predict = ∆future + 3 × ∆scan − 2, predicted locations maps of pi and

pj collected at round k − 2 contain the predicted locations for time interval

[tc; tc + ∆future]. In fact, according to the scan completeness property of the

VMN scans, in a round, for each node there exists a time when its distance to

the VMN becomes less than or equal to rcom. According to the algorithm, as

soon as a node realizes that it is within distance rcom to the VMN, it sends

3 Note that according to the algorithm, no neighbors map is distributed by the VMN in round 1.
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its predicted locations map to the VMN. Thus, in round k − 2 both pi and pj

send their predicted locations maps to the VMN. Moreover, in round k − 2, if

a node is within distance rcom to the VMN at the earliest possible time (i.e., at

time ts,k−2 which is the beginning of the round), its predicted locations map is

defined for time interval [ts,k−2; ts,k−2+∆predict] = [ts,k−2; tc+∆future]. Therefore,

regardless of the time when pi and pj are within distance rcom to the VMN, their

predicted locations maps in round k − 2 contain predictions for time interval

[tc; tc + ∆future]. Considering Conditions (a) and (b), plus the timely delivery

property of the underlying timely scoped broadcast, the communication between

the VMN and a node is reliable and with negligible delay. Therefore, the messages

sent by pi and pj in round k − 2 are received by the VMN in round k − 2.

The scan completeness property of the VMN scans guarantees that the VMN

would be within rcom of pi at some time in round k − 1. At this time, the VMN

sends to pi its neighbors map which is made based on the predicted locations

maps collected at round k−2. The strong accuracy property of the mobility pre-

dictor service guarantees that the location predictions of pi and pj in their cor-

responding predicted locations maps are accurate. The function getNeghbors

(lines 46-52) also guarantees the correct neighbor matching between nodes. Ac-

cording to the algorithm, the neighbors map sent to pi at round k−1 is defined for

the same time interval as the predicted locations map collected from pi at round

k − 2. This means that the neighbors map has the information for time interval

[tc; tc +∆future]. Thus, based on the arguments above, if locj(t) ∈ Zi(rd, t), pj is

indicated as a neighbor of pi at time t in the neighbors map sent to pi in round

k − 1. Again Conditions (a), (b) and the timely delivery property of the timely

scoped broadcast guarantee that the neighbors map sent to pi by the VMN in

round k − 1 is received by pi in round k − 1. Then, according to the algorithm,

the values of the neighbors map for time interval [tc; tc + ∆future] are assigned

to N at pi (line 22). Hence, if locj(t) ∈ Zi(rd, t), then pj ∈ Ni(t).

2. For ts,1 +∆scan − 1 ≤ t < tc. We prove this case by induction.

Basis. We start with the smallest possible value for k, which according to Con-

dition (d) is k = 3. If k = 3, pi can only rely on the neighbors map that it

has received in round 2 for neighbor detection. According to the algorithm the

neighbors map sent to pi at round 2 is defined for the same time interval as

the predicted locations map collected from pi at round 1. So, even if at round

1, pi is within distance rcom to the VMN at the latest possible time (i.e., at
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time ts,1 +∆scan − 1 which is the end of the round), its neighbors map in round

2 is defined for time interval [ts,1 + ∆scan − 1; ts,1 + ∆scan − 1 + ∆predict] =

[ts,1 +∆scan−1; ts,1 + 4×∆scan+∆future−3]. Thus, the neighbors map contains

the neighborhood information for time interval [ts,1 + ∆scan − 1; tc[ and by the

same reasoning that in the case (1) above, we conclude that when k = 3, the

time-limited completeness is guaranteed for ts,1 +∆scan − 1 ≤ t < tc.

Inductive Step. We consider some round k > 3. Then, we show that if the time-

limited completeness is guaranteed for ts,1 +∆scan − 1 ≤ t < tc in round k, then

it is also guaranteed in round k + 1. From the case (1) above, we know that in

round k the time-limited completeness is guaranteed for t = tc. Considering this

fact and the induction hypothesis, we can say that in round k, the time-limited

completeness is guaranteed for ts,1 +∆scan−1 ≤ t ≤ tc which is equivalent to say

that it is guaranteed for ts,1 +∆scan−1 ≤ t ≤ ts,k+∆scan−2 by replacing tc with

ts,k +∆scan− 2. Thus, since the algorithm continuously stores the neighborhood

information (lines 21-22), in round k+1 the time-limited completeness is already

guaranteed for ts,1 + ∆scan − 1 ≤ t ≤ ts,k + ∆scan − 2. Also, we know that in

round k, pi receives a new neighbors map at time ts,k + ∆scan − 1. This new

neighbors map is made based on the predicted locations map collected at round

k − 1 and in the worst case contains the neighborhood information for the time

interval [ts,k−1; ts,k−1 +∆predict]. The time interval [ts,k−1; ts,k−1 +∆predict] can be

written as [ts,k−1; tc+∆future] where tc is the tc of round k+1. Thus, the neighbors

map contains the neighborhood information for time interval [ts,k+∆scan−1; tc[.

Thereby, by the same reasoning that in the case (1) above, we know that in round

k+1, the time-limited completeness is also guaranteed for ts,k+∆scan−1 ≤ t < tc.

Finally, since we showed that in round k + 1, the time-limited completeness is

guaranteed for ts,1+∆scan−1 ≤ t ≤ ts,k+∆scan−2 and for ts,k+∆scan−1 ≤ t < tc,

we conclude that it is guaranteed for ts,1 +∆scan − 1 ≤ t < tc.

ut

Theorem 4.2. The time-limited neighbor detector algorithm satisfies the perfect ac-

curacy property.

Proof. According to the algorithm, if pj ∈ Ni(t), there exists a round during

which pi has received a VMNmsg with a neighbors map parameter such that

pj ∈ VMNmsg.neighbors(t). Since pi verifies the destination of each VMNmsg that

it receives (line 19), we know that pi ignores a VMNmsgs that is not addressed to
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it. Also, according to the no creation property of the timely scoped broadcast ser-

vice, we know that the VMNmsg is in fact broadcast by the VMN. According to

the algorithm, the neighbors map of the VMNmsg is created by calling the function

getNeghbors (lines 46-52). This function performs the neighbor matching based

on locs (or the predicted locations maps) parameter of msg messages collected from

nodes in the previous round. The parameter sender of each msg guarantees that

there is no error regarding the sender of a msg. The strong accuracy property of

the mobility predictor service guarantees that the location predictions in locs are

accurate. In addition, the function getNeghbors only detects pj as a neighbor of

pi at time t if the distance between their predicted locations at t is less than or equal

to rd (lines 50-51). Finally, the no creation property of the timely scoped broadcast

service guarantees that each msg collected by the VMN from a node is indeed sent

by that node. Therefore if pj ∈ Ni(t), then locj(t) ∈ Zi(rd, t). ut

Theorem 4.3. The time-limited neighbor detector algorithm correctly implements

the time-limited neighbor detector abstraction if the following conditions hold:

(a) ∀t ∈ T , at least one correct node resides in the circular region of radius rmp

around locVMN(t). This condition, in fact, guarantees that the VMN is correct.

(b) In each round, the time elapsed from the sending of the predicted locations map

to the VMN by a process pi until the reception at pi of the neighbors map sent by

the VMN, is negligible.

(c) ∆predict ≥ ∆future + 3×∆scan − 2.

(d) Let present(t), then tc ≥ ts,3. Recall that tc is the time when present(t) is

invoked. Thus, this condition guarantees that present(t) is called in a round k

such that k ≥ 3.

(e) Let present(t), then t ≥ ts,1 +∆scan − 1.

Proof. According to Theorem 4.1, the algorithm guarantees the time-limited com-

pleteness property of the time-limited neighbor detector if Conditions (a), (b), (c),

(d), (e) hold. In addition, according to Theorem 4.2, the algorithm guarantees the

perfect accuracy property of the time-limited neighbor detector. Therefore, the algo-

rithm correctly implements the time-limited neighbor detector abstraction if Con-

ditions (a), (b), (c), (d), (e) hold. ut
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4.5 Related Work

Neighbor detection in ad hoc networks is usually studied as a building block for

applications such as routing, leader election, group management and localization.

Many of the existing neighbor detection algorithms belong to the hello protocols

family [22; 24; 13; 17; 3; 16; 15; 6]. They are based on the basic hello protocol

first described in Open Shortest Path First (OSPF ) routing protocol [23]. It works

as follows: nodes periodically send hello messages to announce their presence to

close nodes, and maintain a neighbor set. The sending frequency is denoted by

fhello. If a hello message is not received from a neighbor for a predefined amount of

time, then that neighbor is discarded from the neighbor set. The problem with this

approach is that if fhello is too low (with respect to the speed of the nodes), then

the neighbor set becomes quickly obsolete. On the other hand, if it is too high, the

neighbor set remains up to date but it causes a significant waste of communication

bandwidth and energy [16]. However, finding the optimal fhello is not obvious and

the existing solutions cannot ideally solve this problem. Moreover, the hello protocols

usually provide only the set of current neighbors and they do not satisfy any formal

guarantees.

Nevertheless, in the literature there exist schemes that use different approaches

than the hello broadcast for neighbor detection [8; 9]. For instance, in [9], a reliable

neighbor detection abstraction is defined that establishes links over which message

delivery is guaranteed. The authors present two region-based neighbor detection

algorithms which implement the abstraction with different link establishment guar-

antees. The algorithms are implemented on top of a Medium Access Control (MAC)

layer which provides upper bounds on the time for message delivery. The main idea

behind the first algorithm is that a node sends a join message some time after en-

tering a new region to establish communication links. It also sends a leave message

some time before leaving a region to inform the other nodes so that they can tear

down their corresponding link with that node. To guarantee that these notification

messages reach their destination despite the continuos motion of nodes, the authors

define the time limits for a node to send the join and the leave messages. These time

limits are obtained using the timing guarantees of the underlying MAC layer. Since

a node should send a leave message some time before it actually leaves a region,

the algorithm assumes that a node’s trajectory function is known to that node with

enough anticipation to communicate with other nodes before leaving the region. The
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first algorithm does not guarantee the communication links when nodes are moving

quickly across region boundaries. Thus, the authors introduce a second algorithm.

In this new algorithm they apply a technique which overlays multiple region parti-

tions, associating with each region partition an instance of the first algorithm. The

output of each instance is then composed such that it guarantees the communication

links even when nodes are moving across region boundaries. The approach applied

in [9] for neighbor detection is interesting because it uses a relatively lower num-

ber of message broadcast compared to the hello protocols. Similarly to our work,

this approach also uses the knowledge of nodes about their future locations for the

neighbor detection. However, contrary to our work, no future neighbor detection is

defined and only the current neighbor detection is guaranteed.

We believe that our work is the first attempt to use a virtual node for neighbor

detection. The idea of using mobile entities with predefined trajectory to facilitate

the design of algorithms for mobile networks was first introduced by Hatzis et al.

in [14]. They define the notion of a compulsory protocol which requires a subset of the

mobile nodes to move in a predefined way. They also present an efficient compulsory

protocol for leader election. In [7] and [18] routing protocols for MANETs using

compulsory protocols are introduced. In [10; 11], several basic algorithms that use a

VMN to solve various problems are briefly presented. These algorithms address the

problems such as routing, collecting and evaluating data in mobile ad hoc sensor

networks and some other general problems such as group communication and atomic

memory.

4.6 Conclusion

We have introduced a time-limited neighbor detector service for MANETs. By query-

ing this service a mobile process can know the set of its neighbors at any time in

the past, present and up to some bounded time interval in the future. We presented

an algorithm that implements this service using a virtual mobile node. Our algo-

rithm is shown to implement correctly the neighbor detector service under certain

conditions.

To the best of our knowledge, this is the first work that introduces a neighbor

detector service that can detect future neighbors of a node in MANETs. It is also

the first paper that uses an approach based on virtual nodes for neighbor detection.
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Yet, some issues remain open, which we might consider as future work. For in-

stance, in this work we assumed the strong accuracy property for the mobility pre-

dictor service. However, in practice such predictions are approximative. Thus, it is

interesting to devise an algorithm that can guarantee a certain percentage of correct

neighbor detection based on the approximative location predictions. Moreover, one

of the conditions for correctness of our algorithm is the correctness of the VMN

which is guaranteed if the circular region of radius rmp around the location of the

VMN remains populated all the time. In fact, as also claimed in [11], in the real

world this density assumption is reasonable in many cases. For instance, there ex-

ist regions (specially in urban areas) that are almost always populated—such as

main squares in a downtown area. However, to guarantee the neighbor detection

even in less populated regions, we can think of using another type of virtual nodes

called autonomous virtual mobile nodes [12]. This type of virtual nodes can move

autonomously, choosing to change their path based on their own state and inputs

from the environment. For instance, if the area in their paths appears deserted, they

can change their path to the more populated areas.

Finally, as also claimed in [10], implementing a VMN is expensive. Therefore, it

would be interesting to experiment our neighbor detection algorithm with a real

implementation to know if the utility outweighs the implementation overhead and

possibly to come up with optimizations.
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Chapter 5

A Neighbor Detection Algorithm Based

on Multiple Virtual Mobile Nodes for

Mobile Ad Hoc Networks

Abstract We introduce an algorithm that implements a time-limited neighbor de-

tector service in mobile ad hoc networks. The time-limited neighbor detector enables

a mobile device to detect other nearby devices in the past, present and up to some

bounded time interval in the future. In particular, it can be used by a new trend

of mobile applications known as proximity-based mobile applications. To implement

the time-limited neighbor detector, our algorithm uses n = 2k virtual mobile nodes

where k is a non-negative integer. A virtual mobile node is an abstraction that is akin

to a mobile node that travels in the network in a predefined trajectory. In practice,

it can be implemented by a set of real nodes based on a replicated state machine

approach. Our algorithm implements the neighbor detector for real nodes located in

a circular region. We also assume that each real node can accurately predict its own

locations up to some bounded time interval ∆predict in the future. The key idea of

the algorithm is that the virtual mobile nodes regularly collect location predictions

of real nodes from different subregions, meet to share what they have collected with

each other and then distribute the collected location predictions to real nodes. Thus,

each real node can use the distributed location predictions for neighbor detection.

We show that our algorithm is correct in periodically well-populated regions. We also

define the minimum value of ∆predict for which the algorithm is correct. Compared

to the previously proposed solution also based on the notion of virtual mobile nodes,

our algorithm has two advantages: (1) it tolerates the failure of one to all virtual

mobile nodes; (2) as n grows, it remains correct with smaller values of ∆predict. This

feature makes the real-world deployment of the neighbor detector easier since with

the existing prediction methods, location predictions usually tend to become less

accurate as ∆predict increases. We also show that the cost of our algorithm (in terms

of communication) scales linearly with the number of virtual mobile nodes.
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Publication:

B. Bostanipour and B. Garbinato, A neighbor detection algorithm based on multiple

virtual mobile nodes for mobile ad hoc networks, currently under minor revision for

publication in Elsevier Computer Networks Journal, 2016.
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B. Bostanipour and B. Garbinato, Neighbor detection based on multiple virtual
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lion, Greece, IEEE, 2016.

5.1 Introduction

The growing adoption and usage of mobile devices and particularly smartphones has

caused the emergence of a new trend of distributed applications known as Proximity-

Based Mobile (PBM ) applications [3; 4; 5; 6]. These applications enable a user to

interact with others in a defined range and for a given time duration e.g., for social

networking (WhosHere [52], LoKast [35], iGroups [25], LocoPing [34]), gaming (local

multiplayer apps [36]) and driving (Waze [51]).

Discovering who is nearby is one of the basic requirements of PBM applications.

It is the preliminary step for further interactions between users. It also enables users

to extend their social network from the people that they know to the people that

they might not know but who are in their proximity. For instance, with the social

networking applications such as WhosHere [52] or LoKast [35], a user first discovers

others in her proximity and then decides to view their profiles, start a chat with them

or add them as friends. The discoverability, however, may not always be limited to

the current neighbors. For instance, with the social networking applications such as

iGroups [25] or LocoPing [34], a user can discover others who were in her vicinity

during a past event (e.g., concert, tradeshow, wedding) or simply during a past time

interval (e.g., the past 24 hours). One can also think of applications that provide the

user with the list of people who will be in her proximity up to some time interval in

the future and thus create the potential for new types of social interactions [5].

In this paper, we present an algorithm that implements the time-limited neighbor

detector service. This service enables a device to discover the set of its neighbors in
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the past, present and up to some bounded time interval in the future in a mobile ad

hoc network (MANET). It was first introduced in our previous work [5] to capture

the requirements of neighbor detection in PBM applications.

Our algorithm implements the time-limited neighbor detector using n = 2k vir-

tual mobile nodes where k is a non-negative integer. A virtual mobile node is an

abstraction that was already introduced in the literature and used for tasks such

as routing or collecting data in MANETs [14; 15]. It is akin to a mobile node that

travels in the network in a predefined trajectory known in advance to all nodes. In

practice a virtual mobile node is emulated by a set of real nodes in the network

using a replicated state machine approach.

Our algorithm implements the neighbor detector for real nodes located in a cir-

cular region. We also assume that each real node can accurately predict its own

locations up to some bounded time interval ∆predict in the future. Thus, the region

is divided into n equal subregions and each subregion is associated with one virtual

mobile node. Each virtual mobile node regularly collects the location predictions

from the real nodes in its subregion and meets other virtual mobile nodes to share

what it has collected with them. After the sharing, each virtual mobile node has the

location predictions collected from the entire region, which it distributes to the real

nodes in its subregion. In this way, each real node can find its neighbors at current

and future times based on the collected location predictions that it receives from a

virtual mobile node. It can also store the collected location predictions so it can be

queried about its past neighbors.

Main Contributions. The main contributions of this paper are as follows. We

introduce an algorithm that implements the time-limited neighbor detector service

using n = 2k virtual mobile nodes where k is a non-negative integer. To guarantee the

coordination between the virtual mobile nodes, we define a set of explicit properties

for their trajectory functions and we show how such trajectory functions can be

computed. We prove the correctness of the algorithm under certain conditions. In

particular, we show that our algorithm is correct for a category of executions, called

nice executions, which basically correspond to the executions of the algorithm in

periodically well-populated regions such as main squares in a downtown area. We also

define the minimum value of ∆predict for which the algorithm is correct in different

cases of nice executions.

This work relies on our previous work [5] for the general idea of using virtual mobile

nodes and location predictions to implement the time-limited neighbor detector.
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However, contrary to the algorithm in [5] which uses only a single virtual mobile

node and does not tolerate its failure, our algorithm can use multiple virtual mobile

nodes and can tolerate the failure of one to all virtual mobile nodes. Due to the use

of multiple virtual mobile nodes, our algorithm has a feature which did not exist in

the previous solution: as the number of virtual mobile nodes grows, our algorithm

remains correct with smaller values of ∆predict. This feature makes the real-world

deployment of the neighbor detector easier. In fact, although there exist different

approaches to predict the future locations of a real node, usually predictions tend to

become less accurate as ∆predict increases. We show that the cost of our algorithm (in

terms of communication) scales linearly with the number of virtual mobile nodes. We

also propose a set of optimizations which can be used for the real-world deployment

of our algorithm.

To the best of our knowledge, this is the first work that uses multiple virtual

mobile nodes to implement a neighbor detector service in MANETs. Moreover, this

is the first work that defines a set of explicit properties for the trajectory functions

of the virtual mobile nodes to guarantee the coordination between them.

Road Map. The remainder of the paper is as follows. In Section 5.2, we describe our

system model and introduce some definitions. In Section 5.3, we present a neighbor

detector service for MANETs in two variants: the perfect variant, which corresponds

to the ideal case of neighbor detection and is rather impractical and the time-limited

variant, for which we propose an implementation in this paper. In Section 5.4, we

present the implementation of the time-limited variant of the neighbor detector

service based on virtual mobile nodes. In order to do so, we first describe what a

virtual mobile node is and how it can be used for the implementation of the time-

limited neighbor detector. We then add n virtual mobile nodes to the system model.

Each virtual mobile node has a so called scan path through which it travels in its

subregion. Thus, we define the properties of this path and we show how it can be

computed in order to be useful for our algorithm. We then introduce a round-based

algorithm that implements the time-limited neighbor detector in the new system

model and prove the correctness of the algorithm under certain conditions. As we

show in the proof, the algorithm can tolerate the failure of one to all virtual mobile

nodes for a category of executions, called nice executions, which basically correspond

to the executions of the algorithm in periodically well-populated regions. We also

define the minimum value of ∆predict for which the algorithm is correct in different

cases of nice executions. Then, we show the evolution of this value as n grows.
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Based on this evolution, we deduce that as the number of virtual mobile nodes

grows the algorithm requires smaller values of ∆predict to correctly implement the

time-limited neighbor detector. In Section 5.5, we discuss two topics related to the

performance of the algorithm, namely its scalability with respect to the number of

virtual mobile nodes and the optimizations which can improve its performance. In

particular, we show that the communication cost of the algorithm, defined as the

number of message broadcasts per round, has a complexity of O(n). In Section 5.6,

we discuss the related work and in Section 5.7, we conclude and discuss future work.

The paper has also an Appendix 5.A, which is devoted to finding an upper bound

for the scan path length of a virtual mobile node. This upper bound is used (directly

or indirectly) in Sections 5.4.3, 5.4.6 and 5.5.1 to find other results.

5.2 System Model and Definitions

We consider a mobile ad-hoc network (MANET) consisting of a set P of processes

that move in a two dimensional plane. A process abstracts a mobile device in a

PBM application.1 We use the terms process, node and real node interchangeably.

Each process has a unique identifier. Processes can move on any continuous path,

however there exists a known upper bound on their motion speed. A process is prone

to crash-reboot failures: it can fail and recover at any time, and when the process

recovers, it returns to its initial state. A process is correct if it never fails. Since we

do not consider Byzantine behaviors, the information security and privacy issues are

beyond the scope of this paper.

We assume the existence of a discrete global clock, i.e., the range T of the clock’s

ticks is the set of non-negative integers. We also assume the existence of a known

bound on the relative processing speed. Each process in the system has access to

a LocalCast service, a global positioning service and a mobility predictor service.

In the following, we first introduce some definitions that are used throughout the

1 There are two main reasons behind our choice of a MANET as the underlying network ar-

chitecture. Firstly, MANETs seem to be the most natural existing technology to enable PBM

applications. In fact, similarly to PBM applications, in a MANET two nodes can communicate if

they are within a certain distance of each other (to have radio connectivity) for a certain amount of

time. Secondly, mobile devices are increasingly equipped with ad hoc communications capabilities

(e.g., WiFi in ad hoc mode or Bluetooth) which increases the chance of MANETs to be one of the

future mainstream technologies for PBM applications [6].
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paper. We then present each of the above mentioned services and for each service,

we describe how it can be implemented in the real world.

5.2.1 Definitions

Let pi be a process in the network, we introduce the following definitions in order

to capture proximity-based semantics.

• A location denotes a geometric point in the two dimensional plane and can be

expressed as tuple (x, y).

• loc(pi, t) denotes the location occupied by process pi at time t ∈ T .

• Z(pi, r, t) denotes all the locations inside or on the circle centered at loc(pi, t)

with given radius r.

• rd is called the neighbor detection radius. It is a constant known by all processes

in the network. Thus, Z(pi, rd, t) presents the neighborhood region of pi at time

t.

5.2.2 LocalCast Service

This communication service was introduced in [14; 15]. It allows a process to send

messages to all processes located within a given radius around it. Formally, the

LocalCast service exposes the following primitives:

• broadcast(m, r): broadcasts a message m in Z(pi, r, tb), where pi is the sender

and tb is the time when the broadcast is invoked.

• receive(m, pi): callback delivering a message m broadcast by process pi.

The service satisfies the following properties.

Reliable Delivery. Assume that a process pi performs a broadcast(m, r)

action. Let d be a constant and ∆delivery = [tb; tb + d]. Then every process pj

delivers m in ∆delivery if ∀t ∈ ∆delivery, loc(pj, t) ∈ Z(pi, r, t) and pj does not fail

during ∆delivery.

Integrity. For any LocalCast message m and process pi, if receive(m, pj)

event occurs at pi, then a broadcast(m, r) event precedes it at some process

pj.
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As stated in [14], sending a message using this service should be thought of as

making a single wireless broadcast (with a small number of retries, if necessary, to

avoid collisions). In practice, this service can be implemented with high probability

by one of the existing single-hop wireless broadcast protocols as long as the broadcast

radius is not too large [14; 15].

5.2.3 Global Positioning Service

This service allows each mobile process pi to know its current location and the

current time via the following functions:

• getCurrentTime: returns the current global time. Formally, this implies that

each process pi has access to the global clock modeled at the beginning of Sec-

tion 5.2.

• getCurrentLocation: returns the location occupied by pi at the current

global time.

In this paper, we do not provide any formal properties for this service. However,

we assume that the outputs of its functions are accurate. In an outdoor setting,

this service can typically be implemented using NASA’s GPS space-based satellite

navigation technology. In an indoor environment, a MITs Cricket device [39] may

be more suitable to implement this service.

5.2.4 Mobility Predictor Service

This service allows each mobile process pi to predict its future locations up to some

bounded time ∆predict via the following function:

• predictLocations: returns a hash map containing the predicted locations

for pi at each time t in the interval [tc; tc + ∆predict] where tc is the time when

predictLocations is invoked.

The service satisfies the following property.

Strong Accuracy. Let t ∈ [tc; tc+∆predict] and l be a location, if pi is predicted

to be at l at time t, then loc(pi, t) = l.
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In this paper we assume that in a PBM application a mobile device (abstracted by

a process) is used only by one user. Therefore, to implement the mobility predictor

service, a human mobility prediction method should be considered. The human

mobility prediction methods are usually based on the fact that the human activities

are characterized by a certain degree of regularity and predictability [40], thus, a

person’s future movement can be predicted using her prior movement history (e.g.,

previous locations, residence time at each previous location, etc...). In the literature,

there exist various human mobility prediction methods [10; 44; 45; 13; 40], which

are not all suitable for implementing the mobility predictor service. In fact, from a

practical point of view, a prediction method should have the following characteristics

to implement our mobility predictor service: (1) it should be able to predict not only

the future locations of a user but also the time interval during which the user stays

at each predicted location; (2) it should not require complex computations and large

amount of memory space. The reason behind this requirement is that we consider

a MANET where fixed infrastructures are lacking. Thereby, the predictions should

be made by each device itself, which has limited resources in terms of battery life

and computational capacity. The Markov-based method introduced in [45] and the

method based on nonlinear time series analysis introduced in [40] are examples of

the prediction methods that satisfy the above mentioned requirements and can be

used to implement our mobility predictor service.

Note that for simplicity’s sake, the mobility predictor service that we consider

in this paper is an idealized predictor. In practice, the above mentioned prediction

methods can implement it with high probability as long as ∆predict is not large (i.e.,

less than or equal to five minutes). More precisely, the mobility predictor service has

a strong accuracy property according to which the predictions are 100% accurate

through the whole interval ∆predict. However, in reality the above mentioned meth-

ods can predict the next immediate location with a high accuracy (from 75% to 95%

accuracy depending on the method) and this accuracy decreases in an almost linear

way as ∆predict increases. In general, we can say that with these prediction methods

the predictions are still highly accurate for a ∆predict equal to five minutes (for more

details see the evaluations in [40]). Another characteristic of our mobility predictor

service is that it makes the predictions for geometric locations. However, many of

the existing mobility prediction methods make predictions for symbolic locations

(e.g., rooms in a building, special areas in a map, etc...). In fact, since with symbolic

locations, identifying a node’s neighbors will depend directly on how symbolic loca-
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tions are defined and since there exist different types of symbolic locations, in this

paper for simplicity’s sake, we assume that the predictions are made for geometric

locations. We believe that our neighbor detector algorithm can be adapted to the

particular cases where symbolic locations are used.

5.3 The Neighbor Detector Service

This service was first introduced in our previous work in [5]. Intuitively, the neighbor

detector service allows a process to know its neighbors at a given time. Formally, it

exposes the following primitive:

• present(t): returns N(pi, t) i.e., the set of processes detected as neighbors of pi

at time t, where pi is the process that invokes present.

5.3.1 Neighbor Detector Variants

We present two variants of the neighbor detector service: the perfect neighbor de-

tector and the time-limited neighbor detector. As we discuss in the following, the

perfect neighbor detector presents an ideal case of neighbor detection and is rather

impractical. The reason why we present this variant is to help the reader to better

understand the properties of the other variant i.e., the time-limited neighbor detec-

tor. The time-limited neighbor detector is more practical and is the variant for which

we propose an implementation in this paper.

5.3.1.1 Perfect Neighbor Detector

By querying this variant of neighbor detector service, a mobile process is able to

know the set of its neighbors at any time in the past, present or the future.

Perfect Completeness. Let pi and pj be two correct processes, if loc(pj, t) ∈
Z(pi, rd, t), then pj ∈ N(pi, t).

Perfect Accuracy. Let pi and pj be two correct processes, if pj ∈ N(pi, t),

then loc(pj, t) ∈ Z(pi, rd, t).
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Roughly speaking, the perfect completeness property requires a neighbor detector

to detect any node that is in the neighborhood region at any time in the past, present

or future. At the same time, the perfect accuracy property guarantees that no false

detection occurs. Since in practice implementing the perfect completeness property

requires an infinite knowledge of nodes’ locations in the future, we consider a more

practical variant of the neighbor detector service called the time-limited neighbor

detector. We introduce this variant hereafter.

5.3.1.2 Time-limited Neighbor Detector

Compared to the perfect neighbor detector, this variant has a different completeness

property. However, its accuracy property is the same. We define its properties, below.

Time-limited Completeness. Let pi and pj be two correct processes and

∆future be a bounded time interval such that ∆future > 0, if loc(pj, t) ∈ Z(pi, rd, t)

and t ≤ tc + ∆future, then pj ∈ N(pi, t), where tc is the time when present is

invoked at pi.

Perfect Accuracy. Let pi and pj be two correct processes, if pj ∈ N(pi, t),

then loc(pj, t) ∈ Z(pi, rd, t).

Similarly to the perfect completeness property, the time-limited completeness

property requires a neighbor detector to detect any node that is in the neighbor-

hood region at any time in the past or present. However, its ability to detect future

neighbors is limited by a bounded time duration ∆future. More precisely, it only

detects a node that is in the neighborhood region at any time from the time when

present is invoked up to ∆future.
2 The perfect accuracy property also guarantees

no false detection.

As already stated, in this paper we propose an implementation for the time-limited

neighbor detector variant. Thus, henceforth whenever we use the term the neighbor

detector service, we actually refer to the time-limited neighbor detector.

2 For simplicity’s sake, we do not assume a time bound on the availability of the past neighborhood

information at this point. We will discuss this further in Section 5.5.2.2.
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5.4 Implementing The Time-Limited Neighbor Detector

To implement the time-limited neighbor detector, our intuition is as follows: since

each node knows its own locations up to ∆predict in the future, we can think of a

moving entity that travels through the network, collects the location predictions of

all nodes, and then distributes all the collected location predictions to the nodes.

In this way, each node can find its neighbors at current and future times based on

the collected location predictions. It can also store the collected location predictions

so it can be queried about its past neighbors. In our solution, we consider a virtual

mobile node (first introduced in [14]) to be used as the moving entity. Moreover, to

simplify the problem, we perform the neighbor detection only for real nodes which

are in a circular region R of the two dimensional plane. However, using only one

virtual mobile node to implement the neighbor detector has a main disadvantage: as

the size of the region R grows, the virtual mobile node spends more time to travel

through the network. This can cause the collected location predictions to expire

before they can be used for neighbor detection. One way to overcome this problem

is to increase∆predict of the mobility predictor. However, as discussed in Section 5.2.4,

with the existing mobility prediction methods, predictions usually tend to become

less accurate as ∆predict increases.

Another way to deal with this problem is to decrease the traveling time of the

virtual mobile node. In order to do so, our solution consists of using more than

one virtual mobile node. In fact, our solution can work with n = 2k virtual mobile

nodes where k is a non-negative integer. Thus, the region is divided into n equal

subregions and each subregion is associated with one virtual mobile node. Virtual

mobile nodes collect simultaneously the location predictions from the real nodes in

their subregions and meet at the center of R to share what they have collected with

each other. After the sharing, every virtual mobile node has the location predictions

collected from the entire R. Then, the virtual mobile nodes simultaneously distribute

the collected location predictions to the real nodes in their corresponding subregions.

As we further show, as n grows, our solution can correctly implement the neighbor

detector with smaller values of ∆predict. Intuitively, this is because as n grows, R is

divided into more and consequently smaller subregions and each virtual mobile node

spends less time to travel through its subregion.

In the following, we first describe what a virtual mobile node is and we add n

virtual mobile nodes to the system model. We also define the properties of the scan
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path i.e., the path through which a virtual mobile node travels in its subregion and

we show how it can be computed. We then introduce an algorithm that implements

the neighbor detector in the new system model and we prove the correctness of the

algorithm. As we show in the proof, the algorithm can tolerate the failure of the

virtual mobile nodes under certain conditions. We also define the minimum value of

∆predict for which the algorithm is correct. We then show the evolution of this value

as n grows. Based on this evolution, we deduce that as the number of virtual mobile

nodes grows the algorithm requires smaller values of ∆predict to correctly implement

the neighbor detector.

5.4.1 Virtual Mobile Node

A virtual mobile node (also referred to as a virtual node) is an abstraction that is

akin to a mobile node that travels in the network in a predefined trajectory. It was

first introduced by Dolev et al. in [14] to simplify the task of designing algorithms

for mobile ad hoc networks. In fact, Dolev et al. consider two main reasons behind

the difficulty of designing algorithms for mobile ad hoc networks: (1) the movement

of a mobile node is unpredictable; (2) mobile nodes are unreliable i.e., they can

continuously join and leave the system, they may fail or recover or be turned on and

off by the user or may sometimes choose to sleep and save power. Thus, a virtual

mobile node is designed so that it can execute any distributed algorithm that a real

node can execute, however, its movement can be predefined and known in advance

to all real nodes in the network. Moreover, a virtual mobile node is reliable (also

called robust). Roughly speaking, this means that a virtual mobile node does not

fail as long as it travels through well-populated areas of the network [14].

In [14] an algorithm called Mobile Point Emulator (MPE ) is introduced, which

implements the virtual mobile node abstraction in a system model equivalent to the

system model defined in this paper. The implementation of the virtual mobile node is

based on a replicated state machine technique similar to the one originally presented

in [33]. In fact, in order to achieve the robustness of the virtual mobile node in spite

of the failure of the real nodes, the algorithm replicates the state of the virtual mobile

node at the real nodes which travel near the location of the virtual mobile node. More

precisely, the algorithm defines a mobile point to be a circular region of a radius rmp,

which moves according to the predefined path of the virtual mobile node, i.e., at time
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t the center of the mobile point coincides with the preplanned location of the virtual

mobile node at time t. The MPE replicates the state of the virtual mobile node at

every real node within the mobile point’s region, modifying the set of replicas as

the real nodes move in and out of the mobile point’s region. MPE uses a total-order

broadcast service to ensure that the replicas are updated consistently. The total

order broadcast service is built using the LocalCast communication service (defined

in Section 5.2.2) and synchronized clocks which are obtained by using a service

equivalent to our global positioning service. Note that the real nodes are only used

by the MPE algorithm to assist in emulating the virtual mobile node. Thereby, the

motion of a virtual mobile node may be completely uncorrelated with the motion of

the real nodes i.e., even if all the real nodes are moving in one direction, the virtual

mobile node may travel in the opposite direction.

Similarly to a real node, a virtual mobile node can communicate with other virtual

or real nodes using the LocalCast service. Also, a virtual mobile node is prone to

crash-reboot failures. It can crash if and only if its trajectory takes it into a region

unpopulated by any real nodes (i.e., where there are no real nodes to act as replicas),

however, it recovers to its initial state as soon as it renters a dense area. A virtual

mobile node is correct if it never fails, i.e., ∀t ∈ T , at least one correct real node

resides in the circular region of radius rmp around the preplanned location of the

virtual mobile node at time t.

5.4.2 Adding Virtual Mobile Nodes to the System Model

In this section, we add a set of n virtual mobile nodes V = {v1, ..., vn} to the system

model where n = 2k and k is a non-negative integer. Each virtual node is assigned

a unique identifier. Note that we do not provide an implementation for the virtual

nodes, however, we assume that they can be implemented by the MPE algorithm

sketched in Section 5.4.1.

Let region R be a closed disk of radius rmap, centered at location lmap-center which

is the origin of the two dimensional plane. Each virtual node vi is associated with a

subregion Ri of R. The subregion Ri is a sector of R (in the shape of a pizza slice)
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Fig. 5.1: The subfigures correspond to the case where the number of virtual mobile

nodes (denoted by n) is equal to four. (a) Disk R is presented where the grey area

corresponds to a subregion Ri. (b) Each virtual mobile node scans its associated sub-

region in the form of collect and distribute scans. The arrows indicate the direction

of motion.

enclosed by two radii and an arc, where the arc subtends an angle 2π
n

(See Fig. 5.1.a).

All subregions have the same area and
⋃i=n
i=1 Ri = R.3

A virtual node can communicate with other virtual nodes or the real nodes using

the LocalCast service (defined in Section 5.2.2) where the broadcast radius equals to

a constant non-negative integer rcom known globally. This constant is defined by the

virtual node implementation (see [14]). Moreover, similar to a real node, a virtual

node has access to the global positioning service (defined in Section 5.2.3).

The movement of a virtual node vi is defined by a predetermined trajectory func-

tion loc(vi, t), which maps every t in T to a location. This function is known to all

virtual nodes and real nodes in the network. The average speed of vi’s movement

is equal to a constant vavg. This constant is defined by the speed of the real nodes

(that emulate vi) and the speed of the subprotocols of the MPE algorithm sketched

in Section 5.4.1.

The trajectory function of vi is defined such that it can be used by our algorithm

for the implementation of the neighbor detector. According to the trajectory func-

tion, vi continuously scans the subregion Ri. The scans are arranged in the form of

collect-distribute. More precisely, let linit(vi) be a location different from lmap-center.

Then, a collect scan starts at linit(vi) and ends at lmap-center and a distribute scan

3 In general, a disk can be divided using straightedge and compass into n equal parts if n = 2km

where k is a non-negative integer and m is either equal to 1 or else m is a product of different

Fermat primes [27].
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starts at lmap-center and ends at linit(vi) (See Fig. 5.1.b). The first scan starts at time

t = 0 and is a collect scan. Collect and distribute scans alternate and vi uses exactly

the same path in the collect and the distribute scans. This path is called the scan

path of vi and its length is denoted by Lscan-path(vi). The amount of time that vi

spends in a collect scan is equal to the amount of time that it spends in a distribute

scan. This time duration is denoted by ∆scan(vi).

In order to be useful for our neighbor detector algorithm, the scan path of vi

should satisfy the three following properties:

Scan Completeness. Let s be a scan (collect or distribute) and let tbegin

be the time when s begins, then the path traversed by vi during s is such that

∀location ∈ Ri,∃t ∈ [tbegin; tbegin+∆scan(vi)−1] s.t. distance(loc(vi, t), location) ≤
rcom.

Equal Scan Path Lengths. Let vj be a virtual node different from vi, then

Lscan-path(vi) = Lscan-path(vj).

Proportional Scan Path Length. Lscan-path(vi) is an inverse function of n.

The scan completeness property guarantees that a scan covers the entire subregion

Ri in terms of rcom. With regard to the equal scan path lengths property, it has a

direct result, that is, the value of ∆scan is the same for all virtual nodes (recall that

all virtual nodes have the same average speed vavg). Since all virtual nodes start their

scanning at t = 0 and with a collect scan, this guarantees that all virtual nodes meet

at the end of each collect scan at lmap-center. Finally, proportional scan path length

guarantees that as n (i.e., the number of virtual nodes) grows, the scan path length

and consequently ∆scan of each virtual node decreases.

In next section, we define the scan path that satisfies these properties and is used

by the trajectory functions of the virtual nodes.

5.4.3 The Scan Path of a Virtual Mobile Node

As described in Section 5.4.2, the scan path of a virtual node vi should satisfy a set of

properties. We start by finding the optimal path that satisfies the scan completeness

property. We then show that this path also satisfies the equal scan path lengths and

the proportional scan path length properties.
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rcom

Fig. 5.2: Hexagonal tessellation of the surface of a subregion Ri. Each hexagon

approximates a circle of radius rcom and hence its circumradius is equal to rcom. In

the figure, we present the circle and its radius in red only for one hexagon.

The optimal path that satisfies the scan completeness property is the shortest

possible path that goes through a set of locations that we call covering centers.

Roughly speaking, the covering centers are such that if vi broadcasts a message at

all covering centers then the message is disseminated at all locations in Ri. Thus,

covering centers are centers of disks of radius rcom that cover the whole surface of Ri

such that the number of disks is minimum. Note that a part of the surface of some

of these disks can be located out of Ri, thereby, some of the covering centers can be

situated at the boundary or even out of Ri.

Finding covering centers is a NP hard problem [29]. It can be approximately

solved by applying hexagonal tessellation (or so called hexagonal tiling) [21]. More

precisely, the surface of Ri is tessellated using the regular hexagons of circumradius

rcom (See Fig. 5.2). Since for all virtual nodes the scan path goes through lmap-center,

the tessellation made by the tessellation algorithm is such that one of the hexagons

is centered at lmap-center. The algorithm also ensures that the number of hexagons

covering Ri is minimum. Once the tessellation is made, the centers of the hexagons

are identified as the covering centers. Thus, the scan path can be found as the

shortest possible route that visits the center of each hexagon exactly once. This is a

variant of a famous algorithmic problem known as the Travelling Salesman Problem

(TSP). In this case, the problem can be easily solved thanks to the properties of the

hexagonal tessellation. In fact, in the hexagonal tessellation, the distance between

the centers of any two adjacent hexagons is equal to
√

3rcom. Therefore, the scan

path can be found as the path that connects the centers of each pair of adjacent

hexagons exactly once.
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The scan path that we have found satisfies the equal scan path lengths property

since the tessellation of every subregion is made by applying the same algorithm

and all subregions have the same shape and area. We would like also to show that

the scan path satisfies the proportional scan path length property. In fact, the scan

path length of vi can be found as:

Lscan-path(vi) = (NOC(Ri)− 1)×
√

3rcom
(5.1)

where NOC(Ri) denotes the number of covering centers for subregion Ri and

can be calculated by the tessellation algorithm. Without applying the tessella-

tion algorithm, we can still find an upper bound on NOC(Ri) and consequently

on Lscan-path(vi) using lattice theory (see Appendix 5.A on how to find the upper

bound). So, we have:

Lscan-path(vi) < c1 +
c2
n (5.2)

where c1 and c2 are two constants defined in terms of rmap and rcom and whose

values are defined by Eqs. 5.16 and 5.17 in Appendix 5.A. Thus, the scan path that

we have found also satisfies the proportional scan path length property. As described

in Section 5.4.2, a direct consequence of this property is that as n grows, ∆scan of

each virtual node decreases. In fact, ∆scan of a virtual node vi can be calculated as

below:

∆scan(vi) =
Lscan-path(vi)

vavg
(5.3)

Considering Eqs. 5.3 and 5.2 above, we find:

∆scan(vi) <
1

vavg
× (c1 +

c2
n

)
(5.4)

As we discuss in detail in Section 5.4.6, Eq. 5.4 plus the correctness conditions

of our neighbor detector algorithm imply that as n (i.e., the number of virtual
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nodes) grows, our neighbor detector algorithm remains correct with smaller values of

∆predict. Moreover, in Section 5.5.1, by using Eq. 5.4 we show that the communication

cost of our neighbor detector algorithm scales linearly with the number of virtual

mobile nodes.

5.4.4 Neighbor Detector Algorithm

The algorithm includes two parts: a part that is executed on each real node pi

(Algorithm 5.1) and a part that is executed on each virtual node vi (Algorithm 5.2).

The algorithm relies on the movement of the virtual nodes. Thus, it divides time

into rounds of duration ∆scan, where ∆scan is calculated by Eq. 5.5 and is globally

known.

∆scan = ∆scan(vi) where vi ∈ V (5.5)

In Eq. 5.5 above, the value of ∆scan(vi) can be found by Eq. 5.3 of Section 5.4.3.

Since the value of ∆scan(vi) is the same for all virtual nodes, in Eq. 5.5 there is no

difference which virtual node vi is used for calculation of ∆scan.

There exist two types of rounds: collect and distribute rounds, which alternate.

The first round is a collect round. Given this fact and since the execution of the algo-

rithm starts at t = 0 (i.e., when the virtual nodes start their movement by a collect

scan), the collect and distribute rounds coincide with the collect and distribute scans

of virtual nodes, respectively.

The algorithm proceeds in phases. Each phase comprises a collect and a distribute

round. In the collect round, every virtual node scans its subregion and collects the

location predictions sent to it by real nodes. Then, the virtual nodes share their

collected location predictions with each other when the collect round terminates (i.e.,

when they meet at lmap-center). In the distribute round, each virtual node distributes

the collected location predictions to real nodes in its subregion. Every real node

stores the collected location predictions that it receives to use them for neighbor

detection. In the following, we discuss the algorithm in more detail and whenever

necessary, we refer to the lines in the algorithm.

The algorithm keeps informed each real and virtual node of round changes via

two functions getRound and roundIsOver. Function getRound is called at
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Algorithm 5.1 Neighbor Detector Algorithm at Real Node pi
1: initialisation:

2: round← getRound(getCurrentTime) {assigns to round its value at current time. The first round is a collect round}
3: noMsgSentInThisRound← true

4: networkLocs←⊥ {creates hash map networkLocs to store the location predictions of real nodes in the network}

5: present(t)

6: N← ∅ {creates set N to store the neighbors of pi at time t}
7: if networkLocs(pi, t) 6=⊥ then {checks whether a location prediction for pi at time t exists in networkLocs}
8: for all pj ∈ networkLocs do

9: if pj 6= pi ∧ distance(networkLocs(pj , t),networkLocs(pi, t)) ≤ rd then

10: N← N ∪ pj

11: return N

12: upon distance(getCurrentLocation, loc(vi,getCurrentTime) ≤ rcom such that vi ∈ V do

13: if round = collect ∧ noMsgSentInThisRound then

14: realmsg←⊥ {creates realmsg to encapsulate the hash map locs}
15: realmsg.locs← predictLocations {hash map locs stores the output of the mobility predictor service}
16: trigger broadcast(realmsg, rcom)

17: noMsgSentInThisRound← false

18: upon roundIsOver(getCurrentTime) do

19: noMsgSentInThisRound← true

20: if round = collect then

21: round← distribute

22: else if round = distribute then

23: round← collect

24: upon receive(virtmsg, vi) do {receives virtmsg from virtual mobile node vi}
25: for all (pk, t) ∈ virtmsg.collectedLocs do

26: if networkLocs(pk, t) =⊥ then {checks if a location prediction for pk at time t does not exist in networkLocs}
27: networkLocs(pk, t)← virtmsg.collectedLocs(pk, t) {adds the location prediction for pk at time t from collectedLocs to networkLocs}

Algorithm 5.2 Neighbor Detector Algorithm at Virtual Mobile Node vi
28: initialisation:

29: round← getRound(getCurrentTime) {assigns to round its value at current time. The first round is a collect round}
30: coveringCenters← {l1, ..., lNOC(Ri)} { Set coveringCenters contains the covering centers of subregion Ri}
31: collectedLocs←⊥ {creates hash map collectedLocs to store the collected location predictions}

32: upon receive(realmsg, pi) do {receives realmsg from real node pi}
33: for all t ∈ realmsg.locs do

34: collectedLocs(pi, t)← realmsg.locs(t) {adds the location prediction for pi at time t from locs to collectedLocs}

35: upon roundIsOver(getCurrentTime) do

36: if round = collect then

37: intervirtmsg←⊥ {creates intervirtmsg to encapsulate the hash map collectedLocs}
38: intervirtmsg.collectedLocs← collectedLocs

39: trigger broadcast(intervirtmsg, rcom)

40: round← distribute

41: if round = distribute then

42: collectedLocs.clear() {clears the content of hash map collectedLocs at the end of each distribute round}
43: round← collect

44: upon receive(intervirtmsg, vj) do {receives intervirtmsg from virtual mobile node vj}
45: collectedLocs.combine(intervirtmsg.collectedLocs) {combines vi’s collectedLocs with collectedLocs of intervirtmsg}

46: upon getCurrentLocation = li such that li ∈ coveringCenters do {vi is at a covering center of subregion Ri}
47: if round = distribute then

48: virtmsg←⊥ {creates virtmsg to encapsulate the hash map collectedLocs}
49: virtmsg.collectedLocs← collectedLocs

50: trigger broadcast(virtmsg, rcom)



initialization (lines 2 and 29). It returns the round type (collect or distribute) at

current time. This value is stored in variable round. As stated previously, the first

round is a collect round, thereby, at t = 0, getRound returns collect.4 Function

roundIsOver takes current time as parameter and returns a boolean. Thus, when

a round terminates roundIsOver returns true, so that the value of variable round

is changed from collect to distribute and vice-versa.

Since the trajectory function of all virtual nodes are globally known, each real

node pi can calculate its distance to every virtual node at any time. Thus, at each

collect round pi waits until its distance to a virtual node vi becomes less than or

equal to rcom (note that vi can be any virtual node in V ) (line 12). Then, if pi has

not already sent a message to any virtual node in that round, it creates a message

realmsg to send to vi (line 14). This message encapsulates a hash map locs which is

used to store the output of predictLocations primitive of the mobility predictor

service (line 15). To store each location prediction of pi, the hash map locs uses one

key which is the time instant for which the location is predicted. For instance, locs(t)

returns the predicted location at time t. Once locs is assigned its value, realmsg is

broadcast within the radius rcom, so it can be received by vi (line 16).

Each virtual node has a hash map collectedLocs. It is used to store the location

predictions that the virtual node collects. When vi receives realmsg from pi, it stores

every location prediction that exists in locs in its collectedLocs map (lines 32-34).

For this storage, two keys are used where one key is the name of the real node for

which the prediction is made and the other key is the time instant for which the

prediction is made. For instance, collectedLocs(pi, t) returns the predicted location

of pi at time t.

When a collect round terminates (i.e., when all virtual nodes are at lmap-center),

vi creates intervirtmsg to share its collectedLocs with other virtual nodes (lines 35-

38). It broadcasts intervirtmsg within the radius rcom, so it can be received by all

virtual nodes (line 39). When a virtual node receives intervirtmsg, it combines its

own collectedLocs with collectedLocs of intervirtmsg, so that at the next distribute

round, all virtual nodes have the same location predictions in their collectedLocs

maps (lines 44-45).

4 Note that the failure of a real or virtual node is of a crash-reboot type i.e., if it crashes it recovers

to its initial state. Therefore, calling getRound at initialization, enables a real or virtual node to

know the round type not only at t = 0 but also after each recovery.
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In a distribute round, vi encapsulates its collectedLocs in a virtmsg and broadcasts

it whenever it is on a covering center of its subregion Ri (lines 46-50). The set of

covering centers denoted by coveringCenters is defined at the initialization (line 30)

and can be found by the tessellation algorithm discussed in Section 5.4.3. Thus, vi

broadcasts virtmsg on covering centers so that they are disseminated in the whole

Ri.

Each real node has a hash map called networkLocs that is used to store the location

predictions of all real nodes in the network. Similarly to collectedLocs, networkLocs

has two keys to store a location prediction: one key is the name of the real node for

which the prediction is made and the other key is the time instant for which the

prediction is made. For instance, networkLocs(pi, t) returns the predicted location of

pi at time t. The networkLocs map is augmented in distribute rounds, i.e., when new

location predictions are received in collectedLocs of a virtmsg (lines 24-27). Thus,

whenever primitive present(t) is invoked at pi, the map lookups on networkLocs

as well as distance comparisons are performed to find the real nodes which are in

the neighborhood region of pi at time t (lines 5-9). The names of real nodes found

in this way, are stored in set N which is returned as the result (lines 10-11).

5.4.5 Proof of Correctness

In this section we present a proof of correctness for the algorithm. As we show, un-

der certain conditions, the algorithm correctly implements the time-limited neigh-

bor detector abstraction (defined in Section 5.3) and can tolerate the failure of one

to all virtual mobile nodes. Thus, we start by describing the intuition behind the

proof and some of the conditions required to guarantee the correctness of the algo-

rithm. We also introduce some preliminary notations, definitions and lemmas that

are used throughout the proof. Then, we present the proof. In particular, we define

the minimum ∆predict for which the algorithm is correct. This value is then used in

Section 5.4.6, where we study the impact of increasing the number of virtual mobile

nodes on it.
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5.4.5.1 Intuition behind the Proof

As we show in the proof, the algorithm can tolerate the failure of one to all virtual

nodes under certain conditions. Recall that the failure of a virtual node is of a crash-

reboot type: it crashes when the area around its trajectory becomes unpopulated and

it recovers to its initial state as soon as it reenters a dense area. Since the algorithm

proceeds in phases, to guarantee its correctness in spite of the failure of the virtual

nodes, our intuition is as follows. We prove the correctness of the algorithm for a

category of the executions called nice executions, which basically correspond to the

executions in periodically well-populated regions such as main squares in a downtown

area. In a nice execution, virtual nodes can fail. However, there exist time periods

during a nice execution where the whole region R is populated well enough so that

all virtual nodes are up. Each of such periods is long enough to contain at least

one phase that is entirely executed in it.5 A phase that is executed while all virtual

nodes are up is called an atomic phase. In an atomic phase, no virtual node crashes,

thereby, no location prediction is lost by a virtual node during the collection, sharing

and distribution of location predictions. Thus, for neighbor detection, a real node pi

should rely on the location predictions that it receives during the distribute round

of each atomic phase. Intuitively, this means that the location predictions that pi

receives during the distribution in an atomic phase should be long enough so that pi

can use them for current and future neighbor detection at least until the distribution

in the next atomic phase (as for the past neighbor detection, pi can use the location

predictions that it has received and stored in all previous atomic phases). Note that,

in the distribute round of an atomic phase, pi may receive the location predictions

at the latest at the end of the round. Therefore, to guarantee the correctness of the

algorithm, ∆predict should be long enough to ensure the current and future neighbor

detection by pi, at least, at each time instant between the end of the distribute

rounds of two consecutive atomic phases. As we further show, such ∆predict can be

5 The existence of nice executions is realistic considering the variation of population density in

a periodically well-populated urban region (e.g., a public square) during a time interval (e.g., a

working day). In fact, in a periodically well-populated urban region, there are periods of time

where the population density becomes so low so that the virtual nodes that scan the region be-

come unstable (i.e., they crash and recover many times while traveling through their preplanned

trajectory). However, after some bounded time duration, the population density increases high

enough to guarantee that the virtual nodes remain up for at least some period of time.
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Fig. 5.3: tb,k and te,k of roundk

found based on the maximum time duration between the end of the distribute round

of two consecutive atomic phases.

5.4.5.2 Preliminaries

Before beginning the main part of the proof, we present some preliminary notations,

definitions and lemmas that are used throughout the proof. In particular, we focus

on formally defining a nice execution and highlight those characteristics of a nice

execution that can be used for the proof.

In the following, we first present the preliminary notations and definitions. We

then present the preliminary lemmas.

Preliminary Notations and Definitions.Here we present the preliminary nota-

tions and definitions.

• Given two sets A and B, A ⊆ B indicates that A is a subset of B.

• PR denotes a subset of P (recall that P is the set of all real nodes) such that

∀pi ∈ PR, pi never leaves region R and the movement of pi during ∆scan is

negligible.

• roundk denotes the kth round of the algorithm, where k (also called the index of

the round) is an integer such that k ≥ 1.

• φi denotes the ith phase of the algorithm, where i is an integer such that i ≥ 1.

• d(φi) returns the index of the distribute round of a phase φi. For instance, if

roundk is the distribute round of φi, then d(φi) = k.

• tb,k and te,k refer to the first clock tick and the last clock tick in roundk, respec-

tively (See Fig. 5.3). Note that, te,k = tb,k +∆scan− 1. We call tb,k, the beginning

time of roundk and te,k the end time of roundk.

• Global System State. The local state of a (virtual or real) node is a tuple that

contains the value of its variables. In particular, among these variables there is a
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variable which indicates whether the node is up or down. The global system state

is a vector σ whose elements are the local states of all virtual and real nodes in

the system.

• Execution. An execution E of neighbor detector algorithm is an infinite sequence

that maps every time instant in T to a global system state. Formally, E := (σt)
+∞
t=0

where σt is the global state at time t ∈ T .

• Stable and unstable periods. Let E be an execution, then E could include two

types of time periods called stable and unstable periods. A stable period is a

period during which all virtual nodes are up. On the other hand, an unstable

period is a period during which at least one virtual node is down.

• Nice Execution. Let E be an execution. Let ∆min
stable and ∆max

unstable be two non-

negative integers such that ∆min
stable = 4 × ∆scan. We say that E is nice if the

duration of each stable period in E is at least equal to ∆min
stable and the duration

of each unstable period in E is at most equal to ∆max
unstable. Moreover, the first

stable period in E starts at t = 0.

• Atomic phase. Let E be an execution. Let φi be a phase in E. Then φi is atomic

if it entirely occurs in a stable period of E, that is, while all virtual nodes are

up.

• Nonatomic phase. Let E be an execution. Let φi be a phase in E. Then φi is

nonatomic if at least a part of it occurs in an unstable period of E.

Preliminary Lemmas. We prove seven preliminary lemmas where two lemmas,

i.e., Lemma 5.3 and Lemma 5.6, have each an associated corollary. Lemmas 5.1 to

5.5 are straightforward and mainly used to prove (directly or indirectly) Lemmas 5.6

and 5.7. Lemmas 5.6 and 5.7 are important results which are used (with Lemma 5.3

and its associated corollary) for the main proof in the next section. In particular,

Lemma 5.6 proves that there exists a maximum, denoted by ∆gap, for the time

duration between the end of the distribute rounds of two consecutive atomic phases

in a nice execution. It also defines the value of ∆gap. Lemma 5.7 shows that in a nice

execution the time duration between the end of a round roundk such that k ≥ 3

and the end of the distribute round of the last atomic phase before roundk has a

maximum which is equal to ∆gap.

In the following, we prove the lemmas and whenever necessary, we give some

additional information regarding their use and the intuition behind them.
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Lemma 5.1. Let E be an execution. If E is nice, then every stable period in E

contains at least one atomic phase.

Proof. If E is nice, then the duration of every stable period in E is greater than or

equal to 4×∆scan. Therefore, regardless of how the rounds occur in a stable period,

the stable period contains at least one phase which is entirely executed in it. Hence,

in this case each stable period contains at least one atomic phase. ut

Lemma 5.2. Let E be an execution. If all virtual nodes are correct, then E is nice.

Proof. If all virtual nodes are correct, then they are always up. This means that

there exists only one stable period in E which has an infinite duration. Therefore,

the duration of the stable period is greater than ∆min
stable = 4×∆scan and the duration

of any unstable period is zero and consequently less than or equal to ∆max
unstable. ut

Lemma 5.3. Let E be an execution. If E is nice, then the first phase or φ1 of the

algorithm is also the first atomic phase in E.

Proof. The first phase of the algorithm denoted by φ1 comprises round1 and round2.

By definition, the first stable period of a nice execution begins at t = 0. Moreover,

every stable period of a nice execution lasts at least 4 × ∆scan. Therefore, if E is

nice, then the first four rounds of E are in the first stable period. Accordingly, phase

φ1 occurs entirely in the first stable period and thus, it is atomic. Therefore, φ1 is

also the first atomic phase. ut

Corollary 5.1. Let E be an execution and roundk be a round in E such that k ≥ 3.

If E is nice, then there exists at least one atomic phase in E which occurs before

roundk.

Proof. The proof follows directly from Lemma 5.3. ut

Lemma 5.4. Let E be an execution and Si be a stable period in E. If there exists

more than one atomic phase in Si, then there exists no nonatomic phase in Si that

occurs between the atomic phases.

Proof. Let φi and φj be two atomic phases in Si such that φj is the next atomic

phase after φi. Assume for contradiction that there exists a nonatomic phase φi + 1

after φi and before φj in Si. Since φi+1 is nonatomic, a part of it should occur in an

unstable period. This suggests that an unstable period should exist between φi and

φj, which implies that φj should occur in a stable period different than Si which is

impossible. ut

149



Lemma 5.5. Let E be a nice execution. Then, every round in E is either in an

atomic phase or between two atomic phases.

Proof. Let roundk be a round in E. From Lemma 5.3, we get that the first phase

in E is atomic, which means that round1 and round2 are in an atomic phase. Thus,

the lemma holds for k < 3. To show that the lemma also holds for k ≥ 3 we proceed

as follows. By Corollary 5.1 we know that if k ≥ 3, there exists at least one atomic

phase before roundk. Thus, to prove that the lemma holds for k ≥ 3, we should

show that roundk is either in an atomic phase or there exists an atomic phase after

roundk so that based on Corollary 5.1, we can conclude that roundk is between two

atomic phases. In the following, we prove the lemma for k ≥ 3 by considering two

possible cases.

Case 1: roundk is in an unstable period of E. Since an unstable period of E

lasts at most ∆max
unstable, we know that there exists a stable period after the unstable

period, which according to Lemma 5.1 contains at least one atomic phase. Therefore,

in this case there exists an atomic phase after roundk and the lemma holds.

Case 2: roundk is in a stable period of E. Let Si denote the stable period

where roundk occurs. By Lemma 5.1, we know that Si contains at least one atomic

phase. So there exist two subcases: (1) roundk is in an atomic phase of Si and the

lemma holds; (2) roundk is outside of any atomic phases of Si, which means that

roundk is in a nonatomic phase that partly occurs in Si. By Lemma 5.4, we know

that the nonatomic phase that contains roundk cannot occur between two atomic

phases of Si. Therefore, roundk is either outside and before any atomic phases of

Si or outside and after any atomic phases of Si. We show that in both cases the

lemma holds. In fact, if roundk is outside and before any atomic phases of Si, then

it means that there exists an atomic phase after roundk and the lemma holds. If

roundk is outside and after any atomic phases of Si, then it means that there exists

an unstable period just after Si (otherwise, roundk should be in an atomic phase).

Since an unstable period of E lasts at most ∆max
unstable, we know that there exists a

stable period after the unstable period, which according to Lemma 5.1 contains at

least one atomic phase. Therefore, there exists an atomic phase after roundk and

the lemma holds. ut

Now that we have proved Lemmas 5.1 to 5.5, we can present more important

results based on them. The next lemma proves that there exists a maximum, denoted
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(a) Case 1: ϕi and ϕj are in the same stable period

(b) Case 2: ϕi and ϕj are in two different stable periods

ϕi ϕj
collect distribute collect distribute

te,d(φi)
te,d(φj)

T

stable period unstable period

T

ϕi ϕi+1 ϕj-1 ϕj

Si Sj

collect collect collect collectdistribute distribute distribute distribute

te,d(φi)
te,d(φj)

Fig. 5.4: Examples of occurrence of two consecutive atomic phases φi and φj in a

nice execution. The cases correspond to the cases of the proof of Lemma 5.6.

by ∆gap, for the time duration between the end of the distribute rounds of two

consecutive atomic phases in a nice execution. It also defines the value of ∆gap.

Lemma 5.6. Let E be an execution. Let φi and φj be two atomic phases in E such

that φj is the next atomic phase after φi. If E is nice, then the time duration between

te,d(φi) and te,d(φj) has a maximum denoted by ∆gap such that ∆gap = 6×∆scan− 2 +

∆max
unstable.

Proof. We assume that E is nice and we consider the two possible cases below.

Case 1: φi and φj are in the same stable period. Since φj is the next atomic

phase after φi and since φi and φj are in the same stable period, by Lemma 5.4,

we know that there exists no nonatomic phase between φi and φj. Therefore, φj

can only be the phase just after φi (see Fig. 5.4.a). Thus, in this case the time

duration between te,d(φi) and te,d(φj) is always equal to 2×∆scan and the maximum

time duration between te,d(φi) and te,d(φj) is also equal to 2×∆scan.

Case 2: φi and φj are in two different stable periods. Let Si and Sj be two

different stable periods such that φi is in Si and φj is in Sj. Since φj is the next

atomic phase after φi, we know that there is no atomic phase between φi and φj.
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Moreover, since E is nice by Lemma 5.1 we know that every stable period in E

contains at least one atomic phase. Therefor, there exists no stable period between

Si and Sj. Accordingly, there exists only one unstable period between Si and Sj.

Thus, in this case the maximum time duration between te,d(φi) and te,d(φj) corresponds

to the following situation: the unstable period between Si and Sj lasts ∆max
unstable. In

addition, there exist a nonatomic phase φi+1 just after φi and a nonatomic phase

φj−1 just before φj such that one time unit of φi+1 and one time unit of φj−1 occur

in the unstable period between Si and Sj and 2 × ∆scan − 1 time units of φi+1

occur in Si and 2 × ∆scan − 1 time units of φj−1 occur in Sj (see Fig. 5.4.b).6

Thus, the maximum time duration between te,d(φi) and te,d(φj) in this case is equal

to 2× (2×∆scan − 1) +∆max
unstable + 2×∆scan = 6×∆scan − 2 +∆max

unstable.

In each case described above, the time duration between te,d(φi) and te,d(φj) has a

maximum. In Case 1, the maximum is equal to 2 ×∆scan. In Case 2, it is equal to

6×∆scan − 2 +∆max
unstable. Hence, ∆gap is equal to 6×∆scan − 2 +∆max

unstable. ut

The value of ∆gap defined by Lemma 5.6 corresponds to nice executions in general.

The following corollary of Lemma 5.6 defines the value of ∆gap in a special case of

nice executions, i.e., where all virtual nodes are correct. This value of ∆gap is smaller

than the value defined in Lemma 5.6. We will use this value in Section 5.4.5.3 to

define the minimum ∆predict required for the correctness of the algorithm in the

special case where all virtual nodes are correct.

Corollary 5.2. If all virtual nodes are correct, then ∆gap = 2×∆scan.

Proof. Let E be the execution considered in Lemma 5.6. Let φi and φj be the two

atomic phases considered in Lemma 5.6. From Lemma 5.2, we know that if all

virtual nodes are correct, then E is nice. Moreover, if all virtual nodes are correct,

E contains only one stable period and no unstable period. Therefore, there exists

only one case, i.e., φi and φj are in the same stable period. By proof of Lemma 5.6,

we know that the maximum time duration between te,d(φi) and te,d(φj) in this case is

equal to 2×∆scan. Hence, ∆gap is equal to 2×∆scan. ut

Our final preliminary lemma shows that in a nice execution the time duration

between the end of a round roundk such that k ≥ 3 and the end of the distribute

round of the last atomic phase before roundk has a maximum. This maximum is

equal to the time duration ∆gap which is already defined by Lemma 5.6. Note that

6 Recall that the duration of a phase is equal to 2×∆scan time units.
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the following lemma is defined for k ≥ 3 since by Corollary 5.1 we know that there

exists at least one atomic phase before roundk if k ≥ 3.

Lemma 5.7. Let E be a nice execution. Let roundk be a round in E such that k ≥ 3.

Let φi be the last atomic phase before roundk. Then, the maximum time duration

between te,d(φi) and te,k is equal to ∆gap.

Proof. By Lemma 5.5, roundk occurs either in an atomic phase or between two

atomic phases. Thus, let φj be the atomic phase just after φi, we know that roundk

occurs either between φi and φj or in φj. Therefore, we can say that roundk can

be, at the latest, the distribute round of φj. From Lemma 5.6, we get that the

maximum time duration between te,d(φi) and te,d(φj) is equal to ∆gap. Hence, the

lemma holds. ut

5.4.5.3 The Proof

We prove the correctness of the algorithm under a set of conditions. In particular, we

define the minimum ∆predict for which the algorithm is correct in different cases of

nice executions i.e., in the general case as well as in the special case where all virtual

mobile nodes are correct. Thus, in the following, we first introduce the conditions

under which the algorithm is correct and formally describe the meaning and the

implication of each condition. We then introduce the theorems and the lemmas that

are used for the proof.

Note that in this section, ∆predict refers to the prediction interval of the mobility

predictor service (defined in Section 5.2.4), ∆future refers to the time duration de-

fined in the time-limited completeness property of the neighbor detector (stated in

Section 5.3.1.2) and ∆gap refers to the time duration defined in Lemma 5.6.

Conditions. We prove that the algorithm is correct under the conditions listed

hereafter.

C1 We consider a nice execution for the proof.

C2 The value of the constant d defined in the reliable delivery property of the Lo-

calCast service (stated in Section 5.2.2) is negligible.

C3 The execution time of lines 36-40 and line 45 of the algorithm is negligible.

C4 ∆predict = 2×∆scan − 1 +∆gap +∆future.
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C5 Let pi and pj be the processes defined in the time-limited completeness property

of the neighbor detector (stated in Section 5.3.1.2), then pi, pj ∈ PR.

C6 If present(t) of the neighbor detector is called, then t ≥ te,1 and tc ≥ tb,3 where

tc is the time when present(t) is called.

Informally speaking, Condition C1 enables us to use the characteristics of a nice

execution (stated in the preliminary lemmas of Section 5.4.5.2) to prove the cor-

rectness of the algorithm. Condition C2 plus the reliable delivery property of the

LocalCast service (stated in Section 5.2.2) ensure that a node which remains for

a negligible time within the broadcast radius of the sender, will deliver the broad-

cast message with negligible delay. Condition C3 guarantees that the creation of

a intervirtmsg message (i.e., the message used by a virtual node to share its col-

lected location predictions with other virtual nodes) and the combination of the

location predictions collected by different virtual nodes takes a negligible time. This

condition plus some other properties imply that the sharing of collected location

predictions between virtual nodes takes a negligible time. Condition C4 defines a

value of ∆predict for which the algorithm is correct. This value is long enough to

ensure the current and future neighbor detection by a real node at each time instant

between the end of the distribute rounds of two consecutive atomic phases. As we

show in the proof, the value defined in Condition C4 is in fact the minimum value

of ∆predict for which the algorithm is correct. Condition C5, assumes that processes

pi and pj defined in the time-limited completeness property of the neighbor detector

are in set PR. This means that pi and pj are always in region R and their movements

are negligible during ∆scan. As we show in the poof, this condition plus some other

properties ensure that in the collect as well as in the distribute round of an atomic

phase, there exists a time when pi and pj are within distance rcom to a virtual node

and thus, can communicate with it. Finally, Condition C6 implies that the neighbor

detection is not guaranteed for time instants before te,1 (i.e., the end time of round1

) and present(t) is called in roundk where k ≥ 3.

Theorems and Lemmas. We prove four theorems. The main theorem, which

proves the correctness of the algorithm, is Theorem 5.3. The proof of Theorem 5.3

relies on Theorem 5.1 and Theorem 5.2. Theorem 5.1 proves that the algorithm

satisfies the time-limited completeness property of the time-limited neighbor detector

abstraction (stated in Section 5.3.1.2). To prove Theorem 5.1, we use three helper

Lemmas, that is, Lemma 5.8, Lemma 5.9 and Lemma 5.10. Each helper lemma also
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relies for its proof on some of the preliminary lemmas introduced in the previous

section. Theorem 5.2 proves that the algorithm satisfies the perfect accuracy property

of the time-limited neighbor detector abstraction (stated in Section 5.3.1.2). The

proof of this theorem is straightforward and relies on no lemma. Our final theorem,

Theorem 5.4, proves that the minimum ∆predict for which the algorithm is correct

is equal to the one defined in Condition C4. The proof of this theorem relies on

Theorem 5.3, Theorem 5.1 and Corollary 5.4, which is the associated corollary of

Lemma 5.10.

In the following, we first prove the helper lemmas for Theorem 5.1. We then

prove Theorems 5.1 to 5.4, respectively. Note that throughout the proof, whenever

necessary we refer to the lines of the algorithm.

Before presenting the helper lemmas for Theorem 5.1, we describe the key idea

behind the proof of Theorem 5.1. As previously stated according to Theorem 5.1, the

algorithm satisfies the time-limited completeness property. Roughly speaking, this

property requires a process pi to detect any process pj that is in the neighborhood

region of pi at any time in the past, present and up to interval∆future in the future. In

the algorithm a process uses the location predictions that it stores in its networkLocs

for neighbor detection. Thereby, in order to prove Theorem 5.1, by using the helper

lemmas we basically prove that: (1) at the distribute round of each atomic phase, pi

receives accurate location predictions for both pi and pj and stores the predictions in

its networkLocs; (2) the location predictions stored in networkLocs are long enough

so that at any time instant in a roundk such that k ≥ 3, pi has enough predictions

to detect past, present and future neighbors. The reason why k ≥ 3, is that in a nice

execution, the first distribute round which occurs in an atomic phase is round2. The

helper lemmas 5.9 and 5.10 each have a corollary. These corollaries are later used

by Theorem 5.4 to prove that the value of ∆predict defined in Condition C4, is also

the minimum ∆predict for which the algorithm is correct.

Lemma 5.8. Let pi and pj be the processes defined in the time-limited completeness

property of the neighbor detector. Let roundk be the distribute round of an atomic

phase. Then, in roundk, process pi receives a virtmsg from a virtual mobile node

with collectedLocs map which contains accurate location predictions for both pi and

pj. Moreover, all location predictions are defined for the time interval [te,k−1; tb,k−1+

∆predict].

Proof. If roundk is a distribute round in an atomic phase, then roundk−1 is a collect

round in the same atomic phase. According to Condition C5, pi, pj ∈ PR. Therefore,
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pi and pj are always in region R and their movements are negligible during ∆scan.

Moreover, the scan path of each virtual node guarantees the scan completeness

property (stated in Section 5.4.2) which implies that in each round, for each location

l in a subregion Ri scanned by virtual node vi, there exists a time when l is within

distance rcom to vi. Considering these facts and since in roundk−1 all virtual nodes

are up, then in roundk−1 there exists a time when the distance of pi and pj to a

virtual node becomes less than or equal to rcom. According to the algorithm, in a

collect round, as soon as a real node realizes that is within a distance rcom to a virtual

node, it sends its location predictions in locs map to the virtual node (lines 12-16).

Therefore, in roundk−1 both pi and pj send their locs maps to a virtual node. The

strong accuracy property of the mobility predictor service (stated in Section 5.2.4)

guarantees that the location predictions of pi and pj in their locs maps are accurate.

Moreover, in roundk−1, if a real node is within a distance rcom to a virtual node

at the earliest possible time (i.e., at tb,k−1 or the beginning time of the round), its

locs map is defined for time interval T1 = [tb,k−1; tb,k−1 + ∆predict]. On the other

hand, if in roundk−1 a real node is within a distance rcom to a virtual node at

the latest possible time (i.e., te,k−1 or the end time of the round), its locs map is

defined for time interval T2 = [te,k−1; te,k−1 + ∆predict]. The intersection of T1 and

T2 is T3 = [te,k−1; tb,k−1 +∆predict]. Thus, regardless of the time when pi and pj are

within a distance rcom to a virtual node in roundk−1, their locs maps contain location

predictions for time interval T3. Condition C2 plus the reliable delivery property of

the underlying broadcast (stated in Section 5.2.2) ensure that a node which remains

for a negligible time within the broadcast radius of the sender, will deliver the

broadcast message with negligible delay. Thus, considering Condition C2, the reliable

delivery property of the underlying broadcast and the fact that in roundk−1 all

virtual nodes are up, we know that the communication between a virtual node

and a correct real node in roundk−1 is reliable and takes negligible delay. Moreover,

according to the algorithm, a virtual node stores all the location predictions received

from the real nodes in its collectedLocs map (lines 32-34). Therefore, the location

predictions sent by pi and pj in roundk−1 are received and stored by the virtual

nodes which are in their proximity in roundk−1.

According to the algorithm, when roundk−1 terminates, virtual nodes share their

own collectedLocs with each other by broadcasting intervirtmsg messages (lines 36-

40). Then, they combine the received collectedLocs with their own collectedLocs

(line 45). Considering Condition C2, the reliable delivery property of the underly-
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ing broadcast and the fact that all virtual nodes are up and meet when roundk−1

(which is a collect round) terminates, we know that the communication between

virtual nodes is reliable and takes negligible time. Condition C3 also guarantees

that the creation of a intervirtmsg message and the combination of collectedLocs

maps takes a negligible time. As a result, at the beginning of roundk, which is a

distribute round, all the virtual nodes have the location predictions of pi and pj

in their collectedLocs. According to the algorithm, in roundk each virtual node vi

encapsulates its collectedLocs map in a virtmsg and broadcasts it at the covering

centers of its subregion Ri (lines 46-50). As previously stated, according to Con-

dition C5, pi ∈ PR, which means that pi is always in R and its movement during

∆scan is negligible. We also know that in roundk, all virtual nodes are up. There-

fore, regardless of the subregion where pi is found, there exists a time in roundk

when pi is within the broadcast radius of a virtual node which broadcasts virtmsg.

Condition C2 and the reliable delivery property of the underlying broadcast, also

guarantee that virtmsg will be received by pi in a negligible time. Therefore, we

know that regardless of the subregion where pi is found in roundk, it receives a

virtmsg encapsulating the collectedLocs and broadcast by a virtual node, in roundk.

As we have just shown, the collectedLocs map contains accurate location predictions

for both pi and pj and all the location predictions are defined for time interval T3.

Hence, the Lemma holds. ut

Lemma 5.9. Let pi and pj be the processes defined in the time-limited completeness

property of the neighbor detector. Let phase φi be an atomic phase. Then, once φi

terminates, networkLocs of pi contains accurate location predictions for both pi and

pj, which are all defined for the time interval [te,1; te,d(φi) +∆gap +∆future].

Proof. For the proof we use induction.

Base Case: The first atomic Phase. From Condition C1, we get that the exe-

cution that we consider for the proof is nice. Thus, from Lemma 5.3, we get that

in a nice execution, the first phase or φ1 is also the first atomic phase. According

to the algorithm, φ1 comprises round1 and round2 where round1 is a collect round

and round2 is a distribute round. Since round2 is a distribute round of an atomic

phase, by Lemma 5.8 we know that in round2, pi receives the accurate location

predictions for both pi and pj and the predictions are all defined for time interval

T1 = [te,1; tb,1 +∆predict]. By replacing ∆predict by its value defined in Condition C4,

we have T1 = [te,1; tb,1 +2×∆scan−1+∆gap+∆future] = [te,1; te,2 +∆gap+∆future].
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Since te,2 = te,d(φ1), we have T1 = [te,1; te,d(φ1) + ∆gap + ∆future]. According to the

algorithm, pi stores all the received location predictions in networkLocs and uses

them for neighbor detection (lines 24-27). Therefore, once the first atomic phase

terminates, process pi has the accurate location predictions for both pi and pj which

are all defined for the time interval T1. Hence, the lemma holds in this case.

Inductive Step. We assume that the lemma holds for an atomic phase φi which

is either the first atomic phase or after the first atomic phase. Then, we wish to

show that the lemma holds for φj which is the next atomic phase after φi. By

inductive hypothesis we know that once φi terminates, networkLocs of pi con-

tains accurate location predictions for both pi and pj, which are all valid for the

time interval T1 = [te,1; te,d(φi) + ∆gap + ∆future]. According to Condition C1,

the execution that we consider is nice, therefore, by Lemma 5.6, we know that

the maximum time duration between te,d(φi) and te,d(φj) is equal to ∆gap. Thus,

let T2 = [te,1; te,d(φj) + ∆future], we know that once φi terminates, networkLocs

of pi contains accurate location predictions for both pi and pj, which are valid

for the time interval T2 since T2 ⊆ T1. Moreover, by Lemma 5.8, we know that

in the distribute round of φj, the process pi receives the accurate location pre-

dictions for both pi and pj and the predictions are defined for the time interval

T3 = [te,d(φj)−1; tb,d(φj)−1 + ∆predict]. By replacing ∆predict by its value defined in

Condition C4, we have T3 = [te,d(φj)−1; tb,d(φj)−1 + 2×∆scan− 1 +∆gap +∆future] =

[te,d(φj)−1; te,d(φj) + ∆gap + ∆future]. According to the algorithm, pi stores all the

received location predictions in networkLocs and uses them for neighbor detec-

tion (lines 24-27). Thus, when φj terminates, networkLocs of pi contains accu-

rate location predictions for both pi and pj, which are defined for time interval

T4 = T2 ∪ T3 = [te,1; te,d(φj) +∆gap +∆future]. Hence, the lemma holds in this case.

Since the base case holds and since the inductive step holds, the lemma holds. ut

Corollary 5.3. Let ∆min
predict be the minimum value of ∆predict for which Lemma 5.9

holds, then ∆min
predict = 2 × ∆scan − 1 + ∆gap + ∆future (i.e., the value defined in

Condition C4).

Proof. For the proof we show that if ∆min
predict = 2×∆scan − 1 +∆gap +∆future, then

Lemma 5.9 holds for ∆predict ≥ ∆min
predict and it does not hold for ∆predict < ∆min

predict.

Thus, we assume that ∆predict = ∆min
predict + ∆diff where ∆diff = ∆predict − ∆min

predict

and we consider the two following cases:
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Case 1. ∆predict ≥ ∆min
predict. Consider the proof of Lemma 5.9. Then, in Base Case

of the induction to calculate T1, replace ∆predict by ∆min
predict + ∆diff . If ∆min

predict =

2 × ∆scan − 1 + ∆gap + ∆future, then T1 = [te,1; te,2 + ∆gap + ∆future+∆diff ]. As

te,2 = te,d(φ1), we have T1 = [te,1; te,d(φ1) + ∆gap + ∆future+∆diff ]. Since in this case

∆diff ≥ 0, then [te,1; te,d(φ1)+∆gap+∆future] ⊆ T1 and the lemma holds for Base Case

of the induction. Also, in Inductive Step of the induction, to calculate T3, replace

∆predict by ∆min
predict + ∆diff . If ∆min

predict = 2 ×∆scan − 1 + ∆gap + ∆future, then T3 =

[te,d(φj)−1; te,d(φj) +∆gap +∆future +∆diff ] and T4 = T2 ∪ T3 = [te,1; te,d(φj) +∆gap +

∆future+∆diff ]. Since in this case ∆diff ≥ 0, then [te,1; te,d(φj)+∆gap+∆future] ⊆ T4

and the lemma holds for Inductive Step of the induction. So, Lemma 5.9 holds in

this case.

Case 2. ∆predict < ∆min
predict. Consider the proof of Lemma 5.9. Then, in Base Case

of the induction to calculate T1, replace ∆predict by ∆min
predict + ∆diff . If ∆min

predict =

2 × ∆scan − 1 + ∆gap + ∆future, then T1 = [te,1; te,2 + ∆gap + ∆future+∆diff ]. As

te,2 = te,d(φ1), we have T1 = [te,1; te,d(φ1) + ∆gap + ∆future+∆diff ]. Since in this case

∆diff < 0, then T1 is a subset of [te,1; te,d(φ1) + ∆gap + ∆future] such that T1 is not

equal to [te,1; te,d(φ1) +∆gap +∆future]. Therefor, the lemma does not hold for Base

Case of the induction. So, Lemma 5.9 does not hold in this case. ut

Lemma 5.10. Let pi and pj be the processes defined in the time-limited complete-

ness property of the neighbor detector. Then, at every roundk such that k ≥ 3,

networkLocs of pi contains accurate location predictions for both pi and pj, which

are defined for the time interval [te,1; te,k +∆future].

Proof. By Condition C1, we know that the execution that we consider for the proof

is nice. By Corollary 5.1, which is a corollary of Lemma 5.3, we know that there

exists at least one atomic phase which occurs before roundk. Let φi be the last

atomic phase before roundk. By Lemma 5.9, we know that once φi terminates,

networkLocs contains accurate location predictions for both pi and pj for the time

interval [te,1; te,d(φi) +∆gap +∆future]. By Lemma 5.7, we know that the maximum

time duration between te,d(φi) and te,k is equal to ∆gap. Thus, in roundk, networkLocs

of pi contains accurate location predictions for both pi and pj for the time interval

[te,1; te,k +∆future]. ut

Corollary 5.4. The minimum value of ∆predict for which Lemma 5.10 holds is

∆min
predict = 2×∆scan − 1 +∆gap +∆future.
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Proof. Consider the proof of Lemma 5.10. This proof relies on Lemma 5.9 which

states that once φi terminates, networkLocs of pi contains accurate location pre-

dictions for both pi and pj, which are defined for the time interval [te,1; te,d(φi) +

∆gap + ∆future]. This time interval is the minimum time interval required to prove

Lemma 5.10, mainly because ∆gap is the maximum (and hence, the least upper

bound) for the time duration between te,d(φi) and te,k. Moreover, By Corollary 5.3,

which is a corollary of Lemma 5.9, we know that ∆min
predict = 2×∆scan − 1 +∆gap +

∆future, is the minimum value for which Lemma 5.9 holds. Therefore, based on the

above arguments, ∆min
predict = 2 × ∆scan − 1 + ∆gap + ∆future is the minimum value

for which Lemma 5.10 holds. ut

Theorem 5.1. The neighbor detector algorithm satisfies the time-limited complete-

ness property.

Proof. From Condition C6, we have tc ≥ tb,3, which means that present(t) is

called in roundk such that k ≥ 3. Also, t ≥ te,1 implies that the neighbor detection

is not guaranteed for time instants before te,1. Thus, considering Condition C6, we

can reformulate the theorem as follows. Let pi and pj be the two correct processes

defined in the time-limited completeness property. Let present(t) be invoked at pi

in roundk such that k ≥ 3. If loc(pj, t) ∈ Z(pi, rd, t) and te,1 ≤ t ≤ tc +∆future, then

pj ∈ N(pi, t) where tc is the time when present(t) is called at pi. For the proof, we

proceed as follows. By Lemma 5.10, we know that at every roundk such that k ≥ 3,

networkLocs of pi contains accurate location predictions for both pi and pj for the

time interval T1 = [te,1; te,k+∆future]. We know that in roundk, tc ∈ [tb,k; te,k]. Thus,

let T2 = [te,1; tc +∆future] we have T2 ⊆ T1. Therefore, in roundk, networkLocs of pi

contains accurate location predictions for both pi and pj for T2. Since the algorithm

guarantees the correct neighbor matching based on calculating the distance between

the predicted locations (line 9), if loc(pj, t) ∈ Z(pi, rd, t), then pj ∈ N(pi, t) for

∀t ∈ T2. So, the theorem holds. ut

We next prove Theorem 5.2 according to which the algorithm correctly imple-

ments the perfect accuracy property. Roughly speaking, this property guarantees

that no false neighbor detection occurs. Since for neighbor detection a process uses

the location predictions stored in its networkLocs, to prove the theorem we basically

show that: (1) the location predictions in networkLocs are indeed collected from

the real nodes and are not created by the communication links; (2) the locations
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are predicted accurately and (3) the algorithm correctly detects the neighbors of a

process by calculating the distance between the predicted locations.

Theorem 5.2. The neighbor detector algorithm satisfies the perfect accuracy prop-

erty.

Proof. Let pi and pj be the processes defined in the perfect accuracy property, ac-

cording to the algorithm, if pj ∈ N(pi, t), there exists a round during which pi has

received from a virtual node a virtmsg with a collectedLocs map such that a location

prediction for key pair (pj, t) exists in virtmsg.collectedLocs. The integrity property

of the underlying broadcast (stated in Section 5.2.2) guarantees that the virtmsg is

indeed sent by a virtual node. According to the algorithm, the collectedLocs map

of the virtmsg is created by combining the collectedLocs of all virtual nodes in the

system (line 45). These collectedLocs are encapsulated in intervirtmsgs and received

from virtual nodes when a collect round terminates. The integrity property of the

underlying broadcast guarantees that each intervirtmsg is indeed sent by a virtual

node. The collectedLocs of intervirtmsgs contain location predictions that are col-

lected by virtual nodes during the collect round. In the collect round, the location

predictions are sent by real nodes in locs maps of realmsgs (lines 32-34). The in-

tegrity property of the underlying broadcast guarantees that each realmsg received

from a real node is indeed sent by that real node. The strong accuracy property of

the mobility predictor service (stated in Section 5.2.4) guarantees that the location

predictions in locs maps are accurate. Moreover, the algorithm only detects pj as a

neighbor of pi at time t if the distance between their predicted locations at t is less

than or equal to rd (line 9). Hence, if pj ∈ N(pi, t), then loc(pj, t) ∈ Z(pi, rd, t) and

the theorem holds. ut

Theorem 5.3. The neighbor detector algorithm correctly implements the time-limited

neighbor detector service.

Proof. By Theorem 5.1, the algorithm guarantees the time-limited completeness

property. By Theorem 5.2, the algorithm guarantees the perfect accuracy property.

Hence, Theorem 5.3 holds. ut

Theorem 5.4. The minimum value of ∆predict for which neighbor detector algorithm

correctly implements the time-limited neighbor detector service is ∆min
predict = 2 ×

∆scan − 1 +∆gap +∆future.
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Proof. According to Theorem 5.3, the algorithm correctly implements the time-

limited neighbor detector service. For the proof of Theorem 5.3 we used Theo-

rem 5.1 which itself relies upon Lemma 5.10. By Corollary 5.4, which is a corollary

of Lemma 5.10, we know that ∆min
predict = 2×∆scan−1+∆gap+∆future is the minimum

value for which Lemma 5.10 holds. Hence, Theorem 5.4 holds. ut

Corollary 5.5. In the general case of nice executions ∆min
predict = 8×∆scan+∆max

unstable+

∆future−3 and in a special case of nice executions where all virtual nodes are correct

∆min
predict = 4×∆scan +∆future − 1.

Proof. In Theorem 5.4, ∆min
predict is defined as a function of ∆gap. From Lemma 5.6,

we get that for nice executions in general ∆gap = 6×∆scan− 2 +∆max
unstable. However,

by Corollary 5.2, which is a corollary of Lemma 5.6, we know that in a special case

of nice executions where all virtual nodes are correct, ∆gap = 2 ×∆scan. Thus, the

corollary holds if in ∆min
predict we replace ∆gap with its value for each case. ut

Since∆scan and∆future are positive integers and∆max
unstable is a non-negative integer,

from Corollary 5.5, we conclude that ∆min
predict in the case that all virtual nodes are

correct is smaller than in the general case of nice executions. This result is very

intuitive. In fact, in the general case of nice executions the location predictions

should be long enough to do not expire during the unstable periods where virtual

nodes crash. In the case where all virtual nodes are correct, there is no unstable

period, therefore, the predictions do not need to be as long as in the general case.

5.4.6 Impact of Increasing the Number of Virtual Mobile

Nodes on ∆min
predict

As discussed at the beginning of Section 5.4, one of our motivations for designing

a neighbor detector algorithm based on multiple virtual mobile nodes, was that by

growing the number of virtual mobile nodes (denoted by n), we can reduce ∆predict

required for the correctness of the algorithm. Thus, here we discuss the impact of

increasing n on ∆min
predict (defined by Theorem 5.4). In order to do so, we first find an

upper bound on ∆min
predict where the upper bound is a function of n. To find the upper

bound we proceed as follows. In Corollary 5.5, which is the associated corollary of

Theorem 5.4, ∆min
predict is expressed as a function of ∆scan (both in the general case

of nice executions as well as in the case where all virtual nodes are correct). By
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Eq. 5.5 of Section 5.4.4, we know that ∆scan is equal to ∆scan(vi) where vi can be

any virtual node in the set of all virtual nodes in the system. Moreover, in Eq. 5.4 of

Section 5.4.3 we have already defined an upper bound for ∆scan(vi) where the upper

bound is a function of n. Considering these facts, we find the following upper bound

for ∆min
predict:

∆min
predict < c′1 +

c′2
n (5.6)

where c′1 and c′2 are two constants defined as follows. Let c1 and c2 be the constants

in Eq. 5.4 and whose values are defined by Eqs. 5.16 and 5.17 in Appendix 5.A. Then,

for the general case of nice executions, we have:

c′1 =
8

vavg
× c1 − 3 +∆max

unstable +∆future (5.7)

c′2 =
8

vavg
× c2 (5.8)

And in the special case of nice executions where all virtual nodes are correct, we

have:

c′1 =
4

vavg
× c1 − 1 +∆future (5.9)

c′2 =
4

vavg
× c2 (5.10)

According to the Eq. 5.6, as n grows ∆min
predict decreases. Roughly speaking, this

means that as the number of virtual nodes grows the algorithm requires smaller

values of ∆predict to correctly implement the neighbor detector. However, note that

as n approaches infinity, the right hand side of the equation approaches c′1 which is

a constant. In practice, this means that if the number of virtual nodes is very large,

adding more virtual nodes does not reduce any more the minimum value of ∆predict

required for correctness of the algorithm.
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5.5 Performance Discussion

In this section we discuss two topics related to the performance of our algorithm,

namely its scalability with respect to the number of virtual nodes and the optimiza-

tions which can improve its performance.

5.5.1 Scalability with respect to the Number of Virtual

Mobile Nodes

As discussed in Section 5.4.6, one of the advantages of our neighbor detector algo-

rithm is that as n (i.e., the number of virtual nodes) grows the algorithm requires

smaller values of ∆predict to correctly implement the neighbor detector. However,

adding more virtual nodes also affects the consumption of resources such as energy

and bandwidth. Communication is the main cause of energy and bandwidth con-

sumption in a network executing the neighbor detector algorithm. Therefore, in this

section we study the impact of increasing n on the communication cost. Note that

since the algorithm is round-based and there exist an infinite number of rounds, we

define the communication cost for one round, which can be measured by the number

of broadcasts (via the underlying LocalCast service) in a round.

Let NOB(Ri) denote the number of broadcasts in a subregion Ri during a round.

Basically, NOB(Ri) is an increasing function of ∆scan(vi) (recall that vi is the virtual

node associated to Ri). In fact, if ∆scan(vi) increases, vi scans its subregion longer.

Consequently, more real nodes emulate vi, which results in more broadcasts. In

addition, if the round is a collect round, more real nodes send their predictions to vi

and if the round is a distribute round, vi broadcasts the location predictions longer.

Let maximum broadcast rate (mbr) denote the maximum number of broadcasts per

time unit in any subregion, we have:

NOB(Ri) ≤ mbr×∆scan(vi) (5.11)

Note that mbr is a constant and independent of n. In fact, mbr is a function of

the number of real nodes that are within a distance rmp and/or rcom of the location

of vi per time unit. These are the real nodes that emulate vi or send their location

predictions to vi. As in our study we assume that the real node density, rmp and

rcom are constant, then mbr is also a constant.
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Let NOB(R) denote the number of broadcasts in the entire region R during a

round (recall that R is the region for which the neighbor detection is implemented).

Based on Eq. 5.11 and since the value of ∆scan is the same for all virtual nodes, we

can find the following upper bound on NOB(R):

NOB(R) ≤ n×mbr×∆scan(vi) (5.12)

Considering Eq. 5.12 and Eq. 5.4 of Section 5.4.3, which defines an upper bound

for ∆scan(vi), we have:

NOB(R) <
n×mbr× c1

vavg
+

mbr× c2
vavg (5.13)

where c1 and c2 are the constants of Eq. 5.4 and whose values are defined by

Eqs. 5.16 and 5.17 in Appendix 5.A. Based on Eq. 5.13, we know that the number

of broadcasts in a round has a complexity of O(n). This means that the communi-

cation cost of the algorithm scales linearly with the number of virtual mobile nodes.

Although there exists no widely-accepted definition of scalability in the literature,

it is usually assumed that an algorithm is scalable if its cost is less than O(n2) [47].

Therefore, we can say that the algorithm is scalable (in terms of communication

cost) with respect to the number of virtual nodes.

5.5.2 Performance Optimization

It is beyond the scope of this paper to present a deployment of the neighbor de-

tector algorithm in a real network. Here, we only discuss some ways in which the

neighbor detector algorithm can be optimized for deployment purposes. It would be

interesting to experiment with a real deployment to determine the extent to which

these optimizations can be applied and whether they can effectively improve the

performance of the algorithm.

Since the neighbor detector algorithm relies on virtual mobile nodes, optimizing

the implementation of the virtual mobile nodes indirectly optimizes the neighbor

detector algorithm. Thus, in the following we first discuss ways in which the imple-

mentation of the virtual mobile nodes can be optimized. We then discuss ways in

which the neighbor detector algorithm can be directly optimized.
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5.5.2.1 Optimizing the Implementation of the Virtual Mobile Nodes

In this paper we assumed that the virtual mobile nodes are implemented by the

MPE algorithm sketched in Section 5.4.1. The MPE algorithm has a number of lim-

itations. In particular, it requires significant amounts of communication and power

consumption [14]. Moreover, it relies on the LocalCast service, a powerful local

communication service which is both reliable and synchronous (i.e., it delivers the

message after a bounded time interval). Below, we suggest two ways to deal with

these limitations.

Optimizing the MPE Algorithm. In [14], Dolev et al. propose some optimiza-

tions for the MPE algorithm. These optimizations mainly reduce the number of

message exchanges between the real nodes, which results in saving power as well.

For instance, if a (temporary) leader is elected within a mobile point, and the leader

initiates all the transitions for the replica, conflicting requests are avoided and power

is saved. The interested reader can refer to [14] for more detail regarding these opti-

mizations. Moreover, according to Dolev et al. the MPE algorithm can be correctly

implemented using an underlying broadcast service that works in partially syn-

chronous environments. They also propose some broadcast algorithms that can be

used for implementing the MPE algorithm in such environments. The interested

reader can refer to [15] for more detail.

Using a Simpler Algorithm than the MPE algorithm to Implement the

Virtual Mobile Nodes. In [14], in addition to the MPE algorithm, Dolev et al. also

describe an agent-based algorithm to implement the virtual mobile node abstraction.

The algorithm uses a mobile agent, which is a special program (or as called in [14], a

dynamic process) that jumps from one real node to another, moving in the direction

specified by the trajectory function of the virtual mobile node. An agent hitches a

ride with a host that is near to the specified location of the virtual mobile node.

Compared to the MPE algorithm, this algorithm is simpler and more efficient (i.e., it

requires less message exchanges and power consumption). However, it only achieves

one of the goals of the design of a virtual mobile node i.e., the movement of the

virtual mobile node can be predefined. In fact, the host of the agent is a single

point of failure and therefore a virtual mobile node implemented by the agent-based

algorithm is not robust. It seems likely that our neighbor detector algorithm can

be correctly implemented (with some probability and under some conditions) even
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if it uses the virtual nodes implemented by the agent-based algorithm. In this case

the basic idea is that if the average time during which a host remains up after each

recovery is known, then the agent can change its host just before the time when the

host is likely to crash.

5.5.2.2 Optimizing the Neighbor Detector Algorithm

In addition to the implementation of the virtual nodes, the neighbor detector algo-

rithm can also be directly optimized in many ways. Below we discuss some of these

methods.

Avoid Unnecessary Sharing and Distribution of Location Predictions. In

the current version of the neighbor detector algorithm, when a collect round termi-

nates, each virtual mobile node shares the location predictions that it has collected

with other virtual mobile nodes. However, sharing the location predictions may not

be always necessary. In fact, users of mobile devices may remain for long periods of

time in a subregion depending on their work habits, their movement speed, etc. In

this case, the predicted locations of a real node are all in the same subregion where

the real node resides at the moment of collection. Thus, if at the end of a collect

round, for every virtual node vi, the predicted locations that it has collected are

all in Ri (as a reminder, Ri denotes the associated subregion of vi), then there is

no need for virtual nodes to share what they have collected. Consequently, in the

next distribute round, each virtual node only distributes the predictions that it has

collected from its associated subregion. In the described example, the unnecessary

distribution of location predictions is avoided indirectly, i.e., by avoiding the unnec-

essary sharing. However, it seems that the unnecessary distribution can also avoided

after the sharing. For instance, after the sharing, based on the location predictions,

each virtual node vi can identify the real nodes that will be in its associated subre-

gion during the upcoming distribute round. Thus, if vi can determine the location

predictions which are never used for neighbor detection by these real nodes, it can

avoid distributing them.

Defining a Time Bound for the Detection of the Past Neighbors. In the

definition of the time-limited completeness property of the neighbor detector service

(stated in Section 5.3.1.2), for simplicity’s sake, we do not assume a time bound for

the detection of the past neighbors. This implies that each real node should have
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an unbounded buffer to store all the location predictions that it receives from the

virtual nodes in the distribute rounds. However, for real deployments, based on the

application requirements and the availability of the resources, a time interval down

to which the past neighbors can be detected should be considered. In this way, the

location predictions stored by a real node can be erased as soon as they become too

old to be used for the neighbor detection.

Defining Clusters for Real Nodes. In the current version of the neighbor detector

algorithm, each real node acts on its own and is responsible for sending and receiving

messages to the virtual nodes. However, we can think of real nodes forming clusters

such that within each cluster one or more real nodes, called the gateway nodes, are

in charge of communicating with the virtual nodes. Based on how the clusters are

defined, the other real nodes can communicate with these gateway nodes using the

LocalCast service or a traditional MANET routing protocol. It seems that using

clusters can reduce the scan path length of a virtual node (and consequently the

scan duration or ∆scan). In fact, in this case, during a scan a virtual node should

only be in the transmission range of the gateway nodes instead of all real nodes. It

remains an open question as to whether using clusters can also reduce the number

of message exchange.

5.6 Related Work

For the related work, we consider three categories of algorithms, which are neighbor

detection algorithms, mobility-assisted algorithms and virtual mobile node-based al-

gorithms. Note that these categories are not disjoint. In particular, all virtual mobile

node-based algorithms can also be categorized as mobility-assisted algorithms and

some of them can also be categorized as neighbor detection algorithms. Our moti-

vation for considering a category for virtual mobile node-based algorithms is to be

able to discuss in detail how these algorithms use virtual mobile nodes to achieve

their goals and to compare their approach with the approach used by our algorithm.
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5.6.1 Neighbor Detection Algorithms

In ad hoc networks neighbor detection is usually studied as a building block for ap-

plications such as routing, leader election, group management and localization. The

majority of the existing neighbor detection algorithms belong to the hello protocols

family [37; 50; 17; 28; 1; 26; 24; 4; 6]. They are based on the basic hello protocol first

described in Open Shortest Path First (OSPF ) routing protocol [38], which works

as follows: each node in the network periodically sends hello messages to announce

its presence to close nodes, and maintains a neighbor set. The sending frequency is

denoted by fhello. If a hello message is not received from a neighbor for a predefined

amount of time, then that neighbor is discarded from the neighbor set. The problem

with this approach is that if fhello is too low (with respect to the speed of the nodes),

then the neighbor set becomes quickly obsolete. On the other hand, if it is too high,

the neighbor set remains up to date but it causes a significant waste of communica-

tion bandwidth and energy [26]. However, finding the optimal fhello is not obvious

and the existing solutions cannot ideally solve this problem. Moreover, contrary to

our neighbor detector algorithm, the hello protocols usually provide only the set of

current neighbors and they do not satisfy any formal guarantees.

Although, the hello protocols comprise the majority of the existing neighbor de-

tection algorithms for ad hoc networks, in the literature there exist also the schemes

that use different approaches than the hello broadcast for neighbor detection [11; 12].

For instance, in [12] Cornejo et al. define a reliable neighbor detection abstraction

that establishes links over which message delivery is guaranteed. They present two

region-based neighbor detection algorithms which implement the abstraction with

different link establishment guarantees. The algorithms are implemented on top of

a Medium Access Control (MAC) layer which provides upper bounds on the time

for message delivery. The main idea behind the first algorithm is that a node sends

a join message some time after entering a new region to establish communication

links. It also sends a leave message some time before leaving a region to inform the

other nodes so that they can tear down their corresponding link with that node.

To guarantee that these notification messages reach their destination despite the

continuos motion of nodes, the authors define the time limits for a node to send

the join and the leave messages. These time limits are obtained using the timing

guarantees of the underlying MAC layer. Since a node should send a leave message

some time before it actually leaves a region, the algorithm assumes that a node’s
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trajectory function is known to that node with enough anticipation to communicate

with other nodes before leaving the region. The first algorithm does not guarantee

the communication links when nodes are moving quickly across region boundaries.

Thus, the authors introduce a second algorithm. In this new algorithm they apply

a technique which overlays multiple region partitions, associating with each region

partition an instance of the first algorithm. The output of each instance is then com-

posed such that it guarantees the communication links even when nodes are moving

across region boundaries. The approach applied in [12] for neighbor detection is in-

teresting because it uses a relatively lower number of message broadcast compared

to the hello protocols. Similarly to our work, this approach also uses the knowledge

of nodes about their future locations for the neighbor detection. However, contrary

to our work, no future neighbor detection is defined and only the current neighbor

detection is guaranteed.

The time-limited neighbor detector service implemented in this paper is first in-

troduced in our previous work in [5]. To the best of our knowledge, it is the only

neighbor detector service for ad hoc networks that detects not only the current

neighbors of a node but also its future neighbors. In addition to the definition of the

neighbor detector, in [5] we also proposed a simple but limited algorithm that im-

plements the neighbor detector using a single virtual mobile node. In Section 5.6.3,

which is dedicated to the virtual mobile node-based algorithms, we will describe this

simple algorithm in more detail and compare it with the algorithm introduced in

the present work.

5.6.2 Mobility-assisted Algorithms

In the literature of mobile ad hoc networks, node mobility is leveraged for differ-

ent purposes e.g., to improve security [8], increase network capacity [19] or locating

nodes [20]. In particular, there exist various algorithms that take advantage of mo-

bility for routing purposes in sparse mobile ad hoc networks [48; 56; 42; 18; 32;

23; 46; 43; 9; 31; 53; 55; 54; 2; 41].7 In a sparse mobile ad hoc network, node de-

ployment is sparse. Therefore, nodes may not be in the transmission range of each

other for long periods of time. Several routing algorithms for this type of networks

7 Since a sparse mobile ad hoc network is a specific type of delay tolerant networks (DTNs), in the

literature, some of these algorithms are presented as routing algorithms for DTNs.
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use the store-carry-forward model, according to which the nodes in the network

forward a message from the source node to the destination node in one or many

hopes, such that, once a relay node receives the message, it stores and carries the

message until it has a chance to forward it to another node [53]. Thus, although in

such networks an end-to-end path between a source and a destination may never

exist at a given time, the store-carry-forward model uses node mobility to provide

paths between the source and the destination overtime. The famous examples of

the algorithms that use the store-carry-forward model, are the epidemic routing al-

gorithms [42; 18; 32; 23; 46; 43] which are based on the original epidemic routing

algorithm of Vahdat et al. [48]. The key ida behind this algorithm is that, similarly

to the spread of infectious diseases, a node carrying a message forwards it to all

other nodes that it meets and which do not have a copy of the message [56]. The

epidemic routing algorithms exploit the inherent node mobility. In [22], Hatzis et

al. introduce the concept of compulsory protocols, which require a subset of the

mobile nodes to move in a pre-specified manner. The motivation behind the design

of compulsory protocols is that if mobile nodes moved in a programmable way, al-

gorithms could take advantage of motion, performing even more efficiently than in

static networks [14]. In [22], Hatzis et al. present an efficient compulsory protocol

for leader election. Furthermore, Chatzigiannakis et al. [9] and Li et al. [31] propose

simple and efficient routing algorithms based on the idea of compulsory protocols.

Among the mobility-assisted algorithms that do not use virtual mobile nodes, the

closest algorithms to our work are the message ferrying (MF) algorithms [53; 55; 54;

2]. MF algorithms are the routing algorithms for sparse ad hoc networks, which use

moving entities called message ferries (or ferries for short) for carrying messages

between nodes. Ferries travel through the network and communicate with nodes

using a single-hop broadcast scheme. Similarly to a virtual mobile node’s path, the

route through which a ferry moves is programmed and usually known to all nodes

in the network. However, contrary to a virtual mobile node, a ferry is, in fact, a real

node which has no (or less) resource constraints (in terms of energy consumption

or buffer size) compared to other nodes in the network. Ferries are used in different

applications. For instance, in a disaster scene where the existing infrastructure is

unusable, airplanes or vehicles can be used as ferries to transport data between

users in separated areas. In sensor networks with limited power supplies, mobile

entities such as robots can be used as ferries to collect data from sensors and thus,
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reduce the part of sensor energy that is consumed for communication purposes [55].8

The MF algorithms usually aim at satisfying some guarantees in terms of network

throughput, average message delay or energy consumption. Therefore, the routes of

the ferries should be designed so that such guarantees can be achieved. In [53; 55]

the ferry route design problem is considered for a network where regular nodes9

are stationary and their locations are a priori known. Thus, the ferry route design

problem is basically considered as a variation of the traveling salesman problem

(TSP) and is solved by applying some TSP algorithms on the locations of the regular

nodes. Obviously, the solutions proposed in [53; 55] are limited since they can only

be applied to stationary networks where the locations of regular nodes are a priori

known. In [54], a network composed of mobile regular nodes is considered. Since

regular nodes are mobile, to ensure the meeting between the ferries and the regular

nodes, two approaches are proposed where each approach is presented by one MF

algorithm. In the Node-Initiated MF (NIMF) algorithm, ferries move around the

deployed area according to routes known to the regular nodes. When a regular node

has a message to send or receive, it moves close to a ferry and communicates with

it. The problem with this approach is that it disrupts the normal movement of

the regular nodes for the purpose of communication with the ferries. In the Ferry-

Initiated MF (FIMF) algorithm, the ferries move to meet the regular nodes at their

requests. Thus, when a regular node wants to send a message to another regular

node or receive a message, it generates a service request (which is a control message

encapsulating the location of the regular node) and transmits it to a chosen ferry

using a long-range radio. Upon the reception of a service request, the ferry will

adjust its trajectory to meet up with the regular node and exchange messages using

short range radios. Note that since the location of the regular node can change after

sending the service request, the regular node occasionally transmits location updates

(which are also control messages) using long range radio to notify the ferry of the

changes in its location. The main problem with this approach is that it requires

the use of long-range radio which might not always be feasible or desirable. In [2],

a ferry route design algorithm called Optimized Way Points (OPWP) is proposed

8 In the literature, there exists also the notion of Data MULEs (Mobile Ubiquitous LAN Ex-

tensions) [41]. Message ferries and Data MULEs are somehow synonymous. The main difference

between them is that the movement of Data MULEs is random [2; 43; 54].
9 In the MF algorithms, the nodes in the network which are not ferries are referred to as regular

nodes. We also adopt this term while discussing MF algorithms.

172



for a network where regular nodes are mobile. OPWP only guarantees probabilistic

meetings between the ferries and the regular nodes, that is, it ensures that every

time a ferry traverses its route, it meets every regular node with a certain minimum

probability. A ferry route found by OPWP comprises an ordered set of way-points

and waiting times at these way-points that are chosen carefully based on the mobility

model of the regular nodes. More precisely, to choose the set of way-points for a ferry

route, OPWP requires that for every regular node pi and every way-point s in the

deployment area, the probability of the meeting between the ferry and pi when the

ferry moves as well as the probability of the meeting between the ferry and pi when

the ferry waits at s to be known. Thus, the main problem with the approach used

by OPWP is that to find the routes of the ferries, not only the mobility model of

the regular nodes should be a priori known but also the mobility model should be

such that the above mentioned probabilities can be determined from it.

As we have described, the MF algorithms require some nodes in the network (ba-

sically the ferries) to move in a controlled, programmed way (note that in some MF

algorithms such as in the NIMF algorithm, not only the ferries but also the regular

nodes should adjust their movement for the communication purposes) whereas our

work is based on virtual mobile nodes which only use the real nodes to emulate the

virtual mobile node and does not require them to move in a programmed way. Not

requiring the real nodes to move in a programmed way is preferable especially in

the PBM applications (i.e., the target applications for our work) where the wireless

devices are used by ordinary people who are not amenable to following instructions

as to where their devices may travel. Moreover, as described above, the approaches

proposed in the literature to compute the ferry routes, are either limited (e.g., re-

quire stationary regular nodes with known locations) or complicated (e.g., require

sending control messages using long range radio or require some probabilities to be

determined from the mobility model of the regular nodes). On the contrary, our

approach for finding the scan path of virtual mobile nodes does not require a sta-

tionary network and is simple, since it only requires finding the covering centers

using a hexagonal tessellation algorithm.

In the next section we discuss a special type of mobility-assisted algorithms, i.e.,

the virtual mobile node-based algorithms and compare them to our algorithm.
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5.6.3 Virtual Mobile Node-based Algorithms

The idea of using virtual mobile nodes to facilitate the design of algorithms for mobile

ad hoc networks was first introduced by Dolev et al. in [14]. The virtual mobile node

abstraction design was inspired by idea of the compulsory protocols of Hatzis et

al. [22] (we have already discussed the compulsory protocols in Section 5.6.2). Note

however that, contrary to the compulsory protocols, the virtual mobile node-based

algorithms do not require a set of real nodes to move in a programmable way but

they rather require the virtual mobile nodes, emulated by the real nodes, to move

in a programmable way.

In [15], several basic algorithms that use virtual mobile nodes to solve various

problems are briefly presented. These algorithms address the problems such as rout-

ing, collecting and evaluating data, group communication and atomic memory in

mobile ad hoc networks. Similarly to the present work, some of these algorithms

use several virtual nodes which regularly exchange information between each other.

However, contrary to the present work, no explicit properties for the trajectory func-

tions of the virtual nodes are defined to guarantee the meeting and communication

between them.

In our previous work [5], we presented an algorithm that implements the time-

limited neighbor detector service with the same guarantees defined in the present

work. Similarly to the present work, real nodes have access to a mobility predictor

service and can predict their locations up to ∆predict in the future. However, the

algorithm uses only a single virtual mobile node that travels through the network,

collects location predictions and distributes neighbor detection-related information.

Thus, in order to stay correct, the algorithm requires greater ∆predict values as the

map size grows. Another drawback of the algorithm presented in [5] is that it does

not tolerate the failure of the virtual mobile node. These drawbacks are the main

motivations for the present work. Finally, note that the present work is an extension

of the work published as a conference paper in [7].

5.7 Conclusion

We have introduced an algorithm that implements the time-limited neighbor detec-

tor service for MANETs using n = 2k virtual mobile nodes where k is a non-negative
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integer. We proved that our algorithm is correct under certain conditions. In par-

ticular, we showed that our algorithm is correct for a category of executions, called

nice executions, which basically correspond to the executions of the algorithm in

periodically well-populated regions. We also defined the minimum value of ∆predict

for which the algorithm is correct in different cases of nice executions.

Compared to the previously proposed algorithm [5], which uses a single virtual

mobile node, our algorithm has two advantages: (1) it tolerates the failure of one to

all virtual mobile nodes; (2) as the number of virtual mobile nodes grows, it remains

correct with smaller values of ∆predict. This feature makes the real-world deployment

of the neighbor detector easier since with the existing prediction methods, location

predictions usually tend to become less accurate as ∆predict increases. We showed

that the cost of our algorithm (in terms of communication) scales linearly with the

number of virtual mobile nodes. We also proposed a set of optimizations which can

be used for the real-world deployment of our algorithm.

To the best of our knowledge, this is the first work that uses multiple virtual

mobile nodes to implement a neighbor detector service in MANETs. Another novelty

of our work, is the definition of explicit properties for the scan paths of virtual nodes

and then presenting a way to compute the scan paths. As shown in the paper, the

scan paths are defined so that they guarantee a full collection and distribution of

predictions in each subregion as well as the coordination between the virtual mobile

nodes. Thus, we believe that the approach used in this paper to define the scan paths

can be used for implementing other virtual mobile node-based algorithms such as

virtual mobile node-based routing algorithms.

As a potential future work, we consider a real-world deployment of our neigh-

bor detector algorithm. In fact, we are currently developing, ManetLab, a modular

and configurable software framework for creating and running testbeds to evaluate

MANET-specific protocols [49]. Once the neighbor detector algorithm is deployed

on ManetLab, we can perform the following:

• compare our theoretical results with the results obtained from the real deploy-

ment. In fact, as shown by a quantitative analysis in the paper, when n (i.e., the

number of virtual nodes) grows, the neighbor detector algorithm requires smaller

values of ∆predict to correctly implement the neighbor detector and at the same

time its communication cost grows as O(n). Thus, it would be interesting to

validate our theoretical results using the real deployment and determine up to

which value of n the utility of the algorithm outweighs its cost;
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• deploy some other famous neighbor detection algorithms (mentioned in Sec-

tion 5.6.1) and compare their performance with the algorithm in the present

work. Note that since other neighbor detection algorithms (except the algorithm

in our previous work [5]) only detect current neighbors the comparison will only

be limited to current neighbor detection;

• apply the optimizations proposed in Section 5.5.2 on the deployment and deter-

mine the extent to which these optimizations can be applied and whether they

can effectively improve the performance of the algorithm.

The neighbor detector algorithm presented in this paper is designed for periodi-

cally well-populated regions. Thus, another issue which can be investigated as future

work is to implement the neighbor detector for less populated regions. In order to

do so, we can think of using another type of virtual nodes called autonomous virtual

mobile nodes [16]. This type of virtual nodes can move autonomously, choosing to

change their path based on their own state and inputs from the environment. For

instance, if the area in their paths appears deserted, they can change their path to

the more populated areas.

5.A Appendix: Finding an Upper Bound for the Scan Path

Length of a Virtual Mobile Node

According to Eq. 5.1 of Section 5.4.3, the scan path length of a virtual node vi or

Lscan-path(vi) can be calculated as:

Lscan-path(vi) = (NOC(Ri)− 1)×
√

3rcom

where NOC(Ri) denotes the number of covering centers for subregion Ri. We can

find an upper bound on NOC(Ri) by counting the number of lattice points that

are associated to the tessellation of Ri. In mathematics and group theory, a two

dimensional lattice is a discrete subgroup of R2 which spans the vector space of

R2. In a regular hexagonal tessellation, the centers and the vertices of the hexagons

form a two dimensional lattice called the hexagonal lattice. Let NOLdisk denote the

number of hexagonal lattice points within a disk centered at the origin of the plane

(which is lmap-center in our case). Then, NOLdisk can be calculated using Eq. 5.14
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where r is the radius of the disk and d is the distance between the closest lattice

point pairs [30].

NOLdisk(r, d) =

b r
d
√

3
c∑

x=−b r
d
√

3
c
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r2
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2
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2
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2
c

2b
√
r2
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2
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(5.14)

Obviously, a covering center is also a hexagonal lattice point. Thereby, if we want

to calculate an upper bound for the number of covering centers of Ri using the

number of the lattice points, we should take into account the limit cases i.e., where

a covering center is at the boundary or out of Ri. Since the circumradius of a hexagon

is rcom, we know that a covering center cannot be located at a distance greater than

rcom from a boundary of Ri. Thus, we calculate the number of lattice points for an

extended region R′i made from Ri. The extension is performed by increasing the arc

of Ri by 2rcom (i.e., adding rcom at each end of the arc) and by increasing the radius

of Ri by rcom. Therefore, R′i has a radius of length rmap + rcom and a central angle

θ′ = 2rcom
rmap+rcom

+ 2π
n

. Let NOLregion(R′i) denote the number of lattice points in R′i, we

have:

NOLregion(R′i) = NOLdisk(rmap + rcom, rcom)× θ′

2π

= NOLdisk(rmap + rcom, rcom)×

(
2rcom

rmap + rcom
+

2π

n
)× 1

2π

(5.15)

As described before, NOC(Ri) < NOLregion(R′i), thus, considering this fact and

Eq. 5.1 of Section 5.4.3 and Eq. 5.15, we have:

Lscan-path(vi) < c1 +
c2
n

where c1 and c2 are two constants defined below.
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c1 =
√

3rcom × (
rcom × NOLdisk(rmap + rcom, rcom)

π × (rmap + rcom)
− 1) (5.16)

c2 =
√

3rcom × NOLdisk(rmap + rcom, rcom) (5.17)
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Chapter 6

Conclusion

In this thesis we introduced a set of programming abstractions and algorithms that

can be used for building PBM applications in MANETs. We started by identifying

proximity-based durable broadcast and proximity-based neighbor detection as main

requirements of PBM applications. In the first part of this thesis we proposed ab-

stractions and algorithms for proximity-based durable broadcast, while in the second

part, we proposed abstractions and algorithms for proximity-based neighbor detec-

tion. In this chapter, we first review the main contributions of this thesis and then

discuss possible future research directions.

6.1 Contributions

Spotcast and scoped broadcast abstractions. We introduced spotcast, a new

communication abstraction for proximity-based durable broadcast in MANETs.

Spotcast enables a node to disseminate a message for a given time duration to

all nodes located within a given range. Spotcast comes in three variants, namely

timely spotcast, eventual spotcast and exhaustive spotcast. These variants differ in

their timing guarantees for message delivery, which are defined based on the require-

ments of different PBM applications. Accordingly, each spotcast variant can be used

to build a specific type of PBM applications. We also introduced scoped broadcast,

a communication abstraction that enables a node to disseminate a message to all

nodes located within a given range. Scoped broadcast comes in two variants: a timely

scoped broadcast, which guarantees a synchronous message delivery, and a fair-loss

scoped broadcast, which is an asynchronous variant. We presented a generic algo-

rithm that implements the three spotcast variants using different scoped broadcast

183



variants and different types of message buffers. We also presented a proof of correct-

ness for our algorithm. In addition, we discussed how scoped broadcast variants can

be implemented in single-hop and multi-hop cases.

Adjusting the parameters of the hello protocols for proximity-based

neighbor detection. We identified the transmission power and the broadcast inter-

val as the main parameters of the hello protocols, which influence the effectiveness

and the efficiency of neighbor detection. Effectiveness refers to the degree to which

the detection is successful and efficiency refers to the degree to which the detection

is energy saving. We evaluated the impact of these parameters on the effectiveness

and efficiency of the hello protocols in three urban environments namely, indoor with

hard partitions (corresponding to offices with thick walls), indoor with soft partitions

(corresponding to indoor exhibitions with temporary partitions) and outdoor urban

areas (corresponding to a music festival in downtown). These are the typical envi-

ronments where PBM applications are used. Our evaluations were based on realistic

simulations. For one thing, we used a faithful simulation of the 802.11a technology

for communication between nodes and we assumed a probabilistic radio propagation

model for urban environments. Furthermore, we calculated the energy consumption

using the real specification of typical smartphones. We identified the most effective

strategy and the most efficient strategy in each environment, where a strategy refers

to a pair of the transmission power and the broadcast interval. We showed that the

most effective strategy is not the same as the most efficient strategy in any envi-

ronment. In fact, in all environments, there is a conflict between effectiveness and

efficiency such that the most effective strategy is usually not very efficient and the

most efficient strategy is not always very effective. However, the conflict becomes less

severe as the environment becomes less obstructed. We then proposed an approach

to make a tradeoff between effectiveness and efficiency. Accordingly, we identified the

tradeoff strategy in each environment and we showed that it had a relatively good

effectiveness and efficiency compared to other strategies. Our results can be used as

a basis to design adaptive neighbor detection algorithms for urban environments.

Such algorithms can adapt the transmission power and broadcast interval based on

environment and application requirements on effectiveness and efficiency.

The time-limited neighbor detector abstraction and its implementations

based on virtual mobile nodes. We introduced a new abstraction for proximity-

based neighbor detection called the time-limited neighbor detector. This abstraction
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enables a node to detect its neighbors in the past, present and up to some bounded

time interval in the future. It has a completeness property that guarantees to detect

all past, present and future neighbors (up to some bounded time interval). It has

also an accuracy property that guarantees that no false detection occurs. To the best

of our knowledge, this is the first neighbor detector service that detects the future

neighbors of a node in MANETs. We introduced two algorithms that implement

the time-limited neighbor detector abstraction based on the notion of virtual mobile

nodes already presented in the literature. To the best of our knowledge, these are the

first algorithms that use virtual mobile nodes for neighbor detection in MANETs.

More precisely, we introduced:

• A simple but limited algorithm based on a single virtual mobile node. Each

real node has access to a mobility predictor service that accurately predicts

its locations up to some bounded time interval ∆predict in the future. Thus, the

virtual mobile node travels through the network, collects the location predictions

of real nodes and distributes the neighbor lists, which it creates based on the

collected location predictions, to real nodes. The algorithm is correct if the virtual

mobile node is correct.

• A more general algorithm that uses n = 2k virtual mobile nodes, where k is a non-

negative integer. The algorithm implements the neighbor detector for real nodes

located in a circular region. Each real node has access to the same mobility pre-

dictor service already defined for the single virtual mobile node-based algorithm.

The key idea of the algorithm is that the virtual mobile nodes regularly collect

location predictions of real nodes from different subregions, meet to share what

they have collected with each other and then distribute the collected location

predictions to real nodes. Thus, each real node can find its neighbors at current

and future times based on the distributed location predictions. It can also store

the location predictions so it can be queried about its past neighbors. We showed

that the algorithm is correct in periodically well-populated regions. Compared

to the single virtual mobile node-based algorithm, this algorithm has two advan-

tages: (1) it tolerates the failure of one to all virtual mobile nodes; (2) as n grows,

it correctly implements the neighbor detector with smaller values of ∆predict. In-

tuitively, this is because as n grows, the circular region is divided into more and

consequently smaller subregions and each virtual mobile node spends less time

to travel through its subregion. This feature makes the real-world deployment

of the neighbor detector easier since with the existing prediction methods, loca-
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tion predictions usually tend to become less accurate as ∆predict increases. We

showed that the cost of our algorithm (in terms of communication) scales linearly

with the number of virtual mobile nodes. We also proposed a set of optimizations

that reduce the communication cost of the algorithm. We defined a set of explicit

properties for the trajectory functions of the virtual mobile nodes to guarantee

the coordination between them. We believe that our approach to define the tra-

jectory functions of virtual mobile nodes can be used for implementing other

virtual mobile node-based algorithms, such as virtual mobile node-based routing

algorithms.

6.2 Future Work

The research conducted in this thesis can be extended in several directions:

Energy efficient proximity-based durable broadcast. We did not consider

energy efficiency in the design and implementation of the spotcast variants. How-

ever, since mobile nodes tend to have very stringent energy limitations, the energy

efficiency should also be considered as one of the requirements of proximity-based

durable broadcast. There exist at least two approaches to address this problem: op-

timizing the implementations of the spotcast variants introduced in Chapter 2 or

proposing new energy efficient algorithms for proximity-based durable broadcast.

Design and deploy adaptive hello protocols for proximity-based neighbor

detection in urban environments. Based on the results of Chapter 3, adap-

tive hello protocols for proximity-based neighbor detection in urban environments

can be designed and deployed. Such algorithms can adapt the transmission power

and broadcast interval based on environment and application guarantees on effec-

tiveness and efficiency. To deploy such algorithms on a smartphone, one can use

lightweight sensing services such as the one introduced in [6], which can detect the

indoor/outdoor environment in a fast, accurate, and efficient manner. Then, the

results of the real deployment in terms of detection effectiveness and energy effi-

ciency can be compared to the results of simulations in Chapter 3 and possible

optimizations can be performed.

Deploy the multiple virtual mobile nodes-based algorithm in a real net-

work. The neighbor detector algorithm presented in Chapter 5 can be deployed on
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a real network. Once the neighbor detector algorithm is deployed on a real network,

the theoretical results obtained in Chapter 5 can be compared with the results ob-

tained from the real deployment. In fact, as shown by a quantitative analysis in

Chapter 5, when n (i.e., the number of virtual mobile nodes) grows, the neighbor

detector algorithm requires smaller values of ∆predict to correctly implement the

time-limited neighbor detector service and at the same time its communication cost

grows as O(n). Thus, it would be interesting to validate the theoretical results using

the real deployment and determine up to which value of n, the utility of the algo-

rithm outweighs its cost. In chapter 5, we have also proposed a set of optimizations

for the algorithm. Thus, these optimizations can be applied on the deployment to

determine whether they can effectively improve the performance of the algorithm.

Proximity-based group formation. One of the requirements of PBM applications

that we did not consider in this thesis is proximity-based group formation. In some

of existing PBM applications, a group is formed of people who are in proximity of

each other for a period of time. An example of such applications is iGroups [1],

a smartphone-based social networking application that enables people attending

events, such as a concert, a trade show, a business meeting, a wedding or a rally,

to form a group. Group formation is done anonymously and implicitly, without

requiring users to send any message to each other. Once the event is over, people

who were in the event are asked to confirm their membership to the group. If they do

so, they receive the list and contact information of other members of the group. The

current solution proposed in the literature [1] for solving this problem is to broadcast

tokens using an ad hoc networking mode. All devices within transmission range of

each other that are set in Token Exchange mode begin exchanging and storing tokens.

After some time, each of the members upload their collected tokens to the trusted

service (that can be a service such as Apple iCloud or any similar trusted third party

that maintains a secure database). As this approach uses a hybrid architecture i.e.,

both infrastructure-based and ad hoc architectures, a possible research question to

investigate is: how to build a proximity-based group using a pure ad hoc architecture?

Privacy-preserving mechanisms for PBM applications. One of the require-

ments of PBM applications that we did not consider in this thesis is preserving

privacy. Thus, a possible research question to investigate in a future work is: which

privacy-preserving mechanisms should be considered for PBM applications? This is

a broad question which can be split into various subquestions. For instance, what
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type of privacy should be considered for PBM applications? One possible answer is

location privacy, i.e., users are concerned about the fact that their exact location

at specific times can be obtained by others [2; 4; 5; 3]. Another subquestion can

be: is there a minimum location privacy that can be guaranteed by the abstractions?

and if the answer is yes, then, a possible question is: are cryptographic and informa-

tion security-preserving mechanisms can be used to achieve this minimum location

privacy?
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