Introduction to Distributed Systems

Introduction

Benoît Garbinato

distributed object programming lab

The team

Benoît Garbinato professor

Vaibhav Kulkarni assistant

Distributed systems (1)

"A distributed system is one that stops you from getting any work done when a machine you've never even heard of crashes."

L. Lamport, quoted by S. Müllender in Distributed Systems. 2nd edition. Addison-Wesley, 1993.

Distributed systems (2)

"As long as there were no machines, programming was no problem networks distributed at all; when we had a few weak computers, programming became a networks mild problem and now that we have gigantic computers, programming has become an equally gigantic problem. In this sense the electronic industry has not solved a single problem, it has only created them - it has created the problem of using its products."

Edgster Dijkstra, The Humble Programmer. Communication of the ACM, vol. 15, no. 10. October 1972. Turing Award Lecture.

Distributed systems (3)

"A distributed system is a collection of autonomous computers linked by a network, with software designed to produce an integrated computing facility."

In Distributed Systems: Concept and Design. 2nd edition. Addison-Wesley, 1994.

Historical background

- □ Hardware became continuously cheaper
- O Cheap and fast networks emerged
- □ The example of unix:
 - 1969 K. Thompson & D. Ritchie develop unix as a multi-users system on PDP-7
 - 1979 B. Joy enhances unix with interprocess communication facilities (BSD unix)
 - 1980's Sun Microsystems used BSD unix as operating systems for its workstations

Approach of this course (1)

☐ This course teaches distributed systems from both a practical and a theoretical perspective

"In theory, there is not difference between theory & practice. In practice, there is."

- ☐ The practitioner needs the theoretical perspective to understand the implicit assumptions hidden in the technologies, and their consequences
- ☐ The theoretician needs the practical perspective to validate that theoretical models, problems § solutions work in accordance to existing technologies

Approach of this course (2)

To achieve this, we will approach distributed systems through four complementary views:

- 1 The model view
- ☐ The interaction view
- ☐ The architecture view
- □ The algorithm view

The model view

- What distributed entities?
 E.g., processes, objects, threads, etc.
- □ What time assumptions?
 E.g., synchronous, asynchronous, etc.
- □ What failure assumption?
 E.g., crash-stop, malicious, etc.

The interaction view

- What interaction paradigm?
 E.g., message passing, shared memory, etc.
- U What reliability guarantees? E.g., best-effort, reliable, secure, etc.

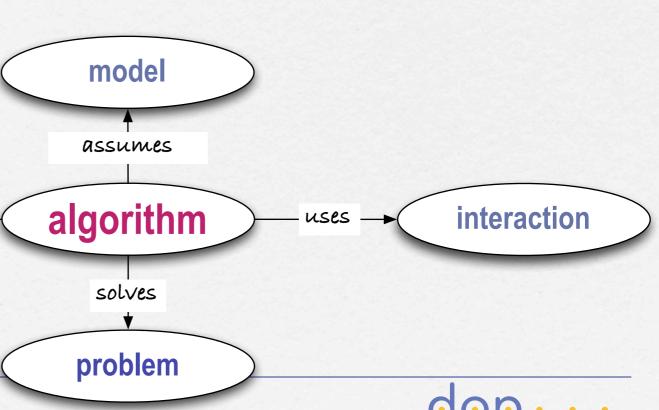
The architecture view

- U What level of decentralization? E.g., client/server, multi-tier, etc.
- ☐ What level of separation of concerns? E.g., library-based, container-based, etc.

The algorithm view

- What problem?
 E.g., internet payment, consensus, etc.
- What algorithm?
 E.g., two phase commit, sliding window, etc.
- □ What complexity and what performance? E.g., NP-complete, polynomial, etc.

The big picture


When implementing a distributed program, you will always end up writing some algorithm. In doing so, you will have to answer the following questions:

← follows

- □ What problem am I trying to solve?
- □ What model do I assume?
- □ What architecture do 1 follow?

architecture

□ What interaction do I use?

Content overview

- D Remote method invocation
- O Concurrent & network programming
- O Mobile app programming
- Distributed algorithms

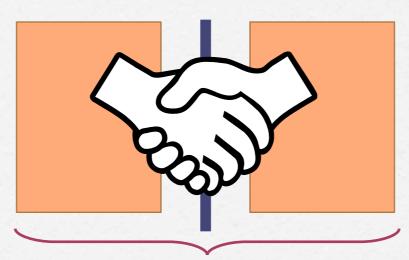
Technologies we will use

- □ Internet protocols (TCP, UDP)
- D Java programming platform
- □ Swift + ios platform

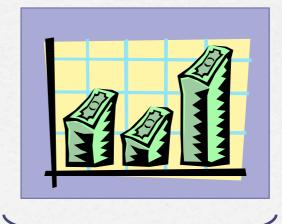
Organization

- □ Lectures + exercises + practical project
- □ Evaluation:
 - ☐ Project (P) group project

- (compulsory)
- □ Final exam (E) individual exam
- (compulsory)


If $E \ge 3$: Final grade = 0.5 x P + 0.5 x E If E < 3: Final grade = E

Exercises & project


- Exercises should help you get started with individual technologies presented
- The project should allow you to understand how technologies can be combined to devise a complete solution... and have fun!

some business logic

distribution technologies

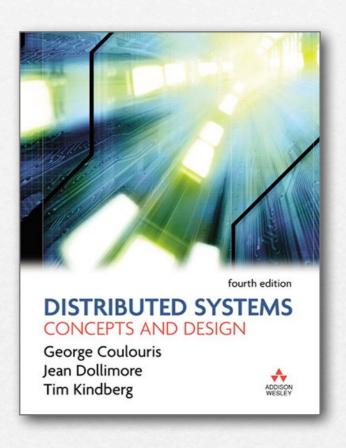
other business logic

The project

- The subject of the project is free but must have a distributed nature and be based on the concepts & tools presented in the lecture and exercise sessions
- Projects are done in groups (membership may slightly vary between groups this is taken into account when grading)

Timetable

8:30 - 10:00


10:15 - 12:00

Sep 21, 2018	Introduction	Remote Method Invocation	Discover I	ab Tools
Sep 28, 2018	Remote Method Invocation		Exercises	
Oct 5, 2018	Concurrent Programming		Exercises	
Oct 12, 2018	Network Programming			
Oct 19, 2018	Exercises			Project kickoff
Oct 26, 2018	Project Specification			
Nov 2, 2018	Project specification		Intermediate Presenta	tion Specification
Nov 9, 2018	Thematic Week			
Nov 16, 2018	Mobile App Development Basics		Exercises	
Nov 23, 2018	Mobile App Development Networking		Project Implementation	
Nov 30, 2018	Distributed Algorithms		Project Q&A	Project Implementation
Dec 7, 2018			Troject &&A	Project Implementation
Dec 14, 2018	Project Q&A	Project Implementation		
Dec 21, 2018	Final Presentation Project Demo & Assessment			
Legend:			Internef 237	
	Exercise		Internef 143	
	Project		Internef 143	
	Presentation		Internef 237	

Further information

- □ http://doplab.unil.ch/ids
- □ vaíbhav.kulkarní@uníl.ch
- □ benoit.garbinato@unil.ch
- □ Interesting book:

Distributed Systems - Concepts and Design, 4th Edition, J. Dollimore, T. Kindberg, G. Coulouris, Addison Wesley / Pearson Education, 2005.

if you consider taking this class register as soon as possible via the following webpage:

http://bit.ly/2cvxwfA